A Bimetallic Tantalum–Zinc Complex with an Ancillary Aryldiamine Ligand as Precursor for a Reactive Alkylidyne Species: Alkylidyne-Mediated C-H Activation and a **Palladium-Mediated Alkylidyne Functionalization**

Hendrikus C. L. Abbenhuis,[†] Nantko Feiken,[†] Henk F. Haarman,[†] David M. Grove,[†] Ernst Horn,[‡] Anthony L. Spek,[‡] Michel Pfeffer,[§] and Gerard van Koten*,†

Department of Metal-Mediated Synthesis, Debye Research Institute, and Department of Crystal and Structural Chemistry, Bijvoet Research Institute, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Laboratoire de Synthèses Métallo-induites, Unité Associée au CNRS No. 416, Université Louis Pasteur, 4 Rue Blaise Pascal, 67008 Strasbourg Cedex, France

Received February 22, 1993

The 1:1 reaction of $TaCl_2\{C_6H_3(CH_2NMe_2)_2-2,6\}(=CH-t-Bu)$ with neopentylzinc chloride affords the bimetallic complex $TaCl_2 C_6 H_3 (CH_2 NMe_2)_2 - 2,6 (\mu - C - t - Bu) (\mu - ZnCl) (2)$ in high yield. Crystals of 2 belong to the space group $P_{2_12_12_1}$ with a = 9.725(2) Å, b = 10.436(2) Å, c = 20.766(3)Å, Z = 4, $M_r = 613.11$, V = 2107.5(7) Å³, ρ (calcd) = 1.932 g·cm⁻³. The pentacoordinate tantalum center has a coordination geometry between trigonal bipyramidal and square pyramidal while the zinc center has a distorted tetrahedral ligand array; the alkylidyne functionality and the aryl ipso-carbon bridge between the zinc and tantalum centers. The p-orbital at C_{ipso} of the aryldiamine ligand forms a 2-electron bond to the zinc center, and this aryldiamine ancillary thus functions as an 8-electron donor. The reaction of 2 with tmeda at 60 °C leads to elimination of zinc chloride and formation of the alkylidene complex TaCl{C₆H₃(CH₂N(Me)CH₂)-2-(CH₂- NMe_2)-6}(=CH-t-Bu); this is an alkylidyne-mediated activation reaction of a methyl C-H bond in a NMe₂ group. In the presence of $[Pd(C_6H_4CH_2NMe_2-2)(\mu-X)]_2$ (X = Cl, I) the reaction of bimetallic 2 with tmeda [Me₂N(CH₂)₂NMe₂] appears to generate TaCl₂(C₆H₄CH₂NMe₂-2)[=C(t-Bu}{C₆H₃(CH₂NMe₂)₂-2,6}] and, as such, is an unanticipated, new palladium-mediated alkylidyne functionalization reaction.

Introduction

The reactivity of the metal-carbon triple bond in carbyne complexes¹ has been studied by several groups. Principal aims have been either the use of the carbyne fragment as a building block in organic synthesis or the use of the metal-carbon triple bond as a sterically hindered heteroacetylene, for example, in cluster synthesis.^{2,3} In particular there has been extensive employment of the isolobal analogy⁴ between group 6 metallacarbynes and alkynes to guide the synthesis of polymetallic compounds, whereby one adds $M(\equiv CR)(L)(CO)_2$ (L = 6-electron ligand) complexes to coordinatively unsaturated metal species.² Very few studies, however, report the use of this concept to achieve C—C bond formation.^{5,6} Recently, it has been shown that low oxidation state tungsten and molybdenum carbyne complexes containing either cyclopentadienyl or tripod ligands can react with $[Pd(C_6H_4 CH_2NMe_2-2)(\mu-X)]_2$ (X = Cl, I) to give organometallic products wherein there is a new C-C bond formed through insertion of a W=C or Mo=C bond into a Pd-C bond.⁶ Compared to such low oxidation state carbyne complexes, higher oxidation state alkylidyne species should have a more reactive nucleophilic M = C unit^{7,8} that may be more likely to participate in C-C bond formation reactions. However, reactions between high oxidation state metal alkylidyne complexes and late transition metal species containing a metal-to-carbon bond do not seem to have been investigated so far.

In a previous paper, we reported the synthesis of a high oxidation state tantalum alkylidene complex, TaCl₂- ${C_6H_3(CH_2NMe_2)_2-2,6} = CH-t-Bu$ (1),^{9b} that contains a monoanionic aryldiamine ancillary ligand that markedly enhances the kinetic stability of this complex by forming intramolecular Ta-C-C-C-N chelate rings. In this

^{*} To whom correspondence should be addressed.

[†] Debye Research Institute, University of Utrecht

[‡] Bijvoet Research Institute, University of Utrecht.

Fischer, H., Hoffmann, P., Kreissl, F. R., Schrock, R. R., Schubert, U., Weiss, K., Eds. Carbyne Complexes; Verlag Chemie: Weinheim, 1988. (2) (a) Stone, F. G. A. Angew. Chem. 1984, 85, 96. (b) Davies, S. J.; Howard, J. A. K.; Pilotti, M. U.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1989, 2289 and references cited therein.

⁽³⁾ In organotantalum chemistry, however, a number of heterobimetallic and -polymetallic complexes have been reported, but none of the synthetic methods employed here involves a reaction with a tantalum alkylidyne complex. Heterometallics that contain an 18-electron dicyclopentadienyltantalum fragment are well-represented.34-d The remaining heterometallic tantalum complexes reported are either saltlike derivatives of the hexacarbonyltantalate anion, so-h Lewis-acid stabilized tantalum alkylidene^{3h} and alkylidyne complexes^{10,18} or heterobimetallic complexes in which a specially designed ligand system binds two metal centers; In which a specially designed light system binds two metal centers;
 ligand systems used in this field are (oxyalkyl)phosphines³ and a bis-(tetramethylcyclopentadienyl)ethane ligand.^{3k} (a) Budzelaar, P. H. M.;
 van der Zeijden, A. A. H.; Boersma, J.; van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. Organometallics 1984, 3, 159. (b) Harris, D. H.;
 Keppie, S. A.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1973, 1653.
 (c) Perrey, D.; Leblanc, J. C.; Moise, C.; Martin-Gil, J. J. Organomet. Chem. 1991, 412, 363. (d) Jacobsen, E. N.; Goldberg, K. I.; Bergmann, P. G. J. Am. Chem. Soc. 3706. C. C. M. 1951, 412, 505. (d) Sacobsen, E. N.; Goldberg, K. I.; Bergmann,
 R. G. J. Am. Chem. Soc. 1988, 110, 3706. (e) Werner, R. P. M.; Filbey,
 A. H.; Manastyrskyj, S. A. Inorg. Chem. 1964, 3, 298. (f) Ellis, J. E.;
 Davidson, A. Inorg. Synth. 1976, 16, 68. (g) Davidson, A.; Ellis, J. E. J.
 Organomet. Chem. 1972, 36, 113. (h) Keblys, K. A.; Dubeck, M. Inorg. Chem. 1964, 3, 1646. (i) Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. 1978, 100, 2389. (j) Baxter, S. M.; Wolczanski, P. T. Organometallics 1990, 9, 2498. (k) Buzinkai, J. F.; Schrock, R. R. Inorg. Chem. 1989, 28, 2837.

+ ZnCl(CH2-t-Bu), - CMe4, yield 79%. i ï + 1/2 Zn(CH₂-*t*-Bu)₂, - CMe₄, yield <50%. iii + [Li{C₆H₃(CH₂NMe₂)₂-2,6]₂, - LiCl, - dme, yield <50%.

paper we report a synthetic approach that converts 1 into a Lewis-acid stabilized alkylidyne species. We also show examples of various tantalum alkylidyne-mediated reactions, including the intramolecular activation of a C-H

Results

bond in a NMe₂ group and the unprecedented function-

alization of an alkylidyne fragment obtained with a

cyclometalated palladium species.

Synthesis of a Bimetallic Tantalum-Zinc Complex. The 1:1 reaction of the alkylidene complex TaCl₂- $\{C_6H_3(CH_2NMe_2)_2-2,6\}(=CH-t-Bu)$ (1) with neopentylzinc chloride, a mild base, leads to alkylidene α -H abstraction that affords the red, bimetallic, neopentylidyne complex $TaCl_{2}{C_{6}H_{3}(CH_{2}NMe_{2})_{2}-2,6}(\mu-C-t-Bu)(\mu-ZnCl)(2)$ in high yield (Scheme I, route i). When, instead, this α -H abstraction is performed with 0.5 equiv of dineopentylzinc, complex 2 is formed in less than 50% yield (Scheme I, route *ii*). In an alternative approach, the transmetalation reaction of the trimetallic ditantalum-zinc complex ${TaCl_2(\mu-C-t-Bu)(dme)}_2Zn(\mu-Cl)_2^{10}(dme = MeO(CH_2)_2$ -OMe) with the aryllithium compound $[Li_{C_6H_3}(CH_2-$ NMe₂)₂-2,6}]₂¹¹ also affords bimetallic 2 but in low yield (Scheme I, route *iii*). Bimetallic 2 can be easily isolated from the reaction mixtures by evaporation of the solvent and subsequent extraction of the solid residue with benzene; the complex crystallizes in large red needles from benzene/pentane solutions. The solid compound is thermally stable to at least 80 °C and can be safely handled for short periods in air. Cryoscopic molecular weight measurements show that 2 is monomeric in benzene.

The ¹H (200.13 MHz) and ¹³C (50.32 MHz) NMR data of 2 in C_6D_6 are not temperature dependent to at least 80 °C (the highest temperature employed) and are consistent with its formulation as shown in Scheme I. The ¹H NMR spectrum contains four anisochronous methyl resonances for the two NMe₂ units of the aryldiamine ligand and an

- (5) (a) Hart, I. J.; Jeffrey, J. C.; Lowry, R. M.; Stone, F. G. A. Angew. Chem., Int. Ed. Engl. 1988, 27, 1703. (b) Kim, H. P.; Angelici, R. J. Adv. Organomet. Chem. 1987, 27, 51.
- (6) (a) Kläui, W.; Hamers, H.; Pfeffer, M.; De Cian, A.; Fischer, J. J.
- Organomet. Chem. 1990, 394, 213. (b) Engel, P. F.; Pfeffer, M.; Fischer, J.; Dedieu, A. J. Chem. Soc., Chem. Commun. 1991, 1274.
 (7) (a) Freudenberger, J. H.; Schrock, R. R. Organometallics 1985, 4, 1937. (b) McCullough, L. G.; Schrock, R. R.; Dewan, J. C.; Murdzek, J. C. J. Am. Chem. Soc. 1985, 107, 5987

(8) Freudenberger, J. H.; Schrock, R. R. Organometallics 1986, 5, 398. (9) (a) Sharp, P. R.; Astruc, D.; Schrock, R. R. J. Organomet. Chem.
 1979, 182, 477. (b) Abbenhuis, H. C. L.; Grove, D. M.; van der Sluis, P.; Spek, A. L.; van Koten, G. Recl. Trav. Chim. Pays-Bas 1990, 109, 446. (c) Abbenhuis, H. C. L.; Feiken, N.; Haarman, H. F.; Grove, D. M.; Horn, E.; Kooijman, H.; Spek, A. L.; van Koten, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 996.

(10) Gal, A. W.; van der Heijden, H. J. Chem. Soc., Chem. Commun. 1983, 420.

(11) Jastrzebski, J. T. B. H.; van Koten, G.; Konijn, M.; Stam, C. H. J. Am. Chem. Soc. 1982, 104, 5490.

AX pattern for each of the two CH₂N units. Since there are also four ¹³C NMR resonances for the NMe₂ units, one can conclude that each nitrogen center is a stable tetrahedral array that reflects the molecular asymmetry present. This can only occur when both pyramidal inversion of the nitrogen center is blocked and when rotation around the $C-NMe_2$ bond is hindered. This means that in 2 the tantalum-nitrogen and the zinc-nitrogen interactions are stable on the NMR time scale and that in solution it has a structure with stable five-membered Ta-C-C-N and Zn-C-C-C-N chelate rings. The ¹³C NMR spectrum contains a resonance at δ 295.4 ppm for the bridging alkylidyne α -carbon. The resonance for the bridging C_{ipso} atom of the monoanionic aryldiamine ligand is at δ 175.2 and is to a higher field of the nonbridging Cipso atom resonances in other aryltantalum complexes⁹ that are found in the range $190 \le \delta \le 210$.

Solid State Structure and Molecular Geometry of $TaCl_{2}{C_{6}H_{3}(CH_{2}NMe_{2})_{2}-2,6}(\mu-C-t-Bu)(\mu-ZnCl)(2).$ In order to elucidate the stereochemistry of the ligand distribution around the metal centers and to obtain information about the bonding modes of both the aryldiamine ligand and the alkylidyne unit, an X-ray structural analysis of 2 has been carried out. Suitable crystals were grown from a benzene solution of 2 into which pentane vapor was allowed to diffuse slowly.¹² The crystal structure of 2 involves the packing of four discrete monomers in an orthorhombic unit cell. An ORTEP drawing of 2, along with the adopted numbering scheme is shown in Figure 1; selected bond lengths and angles are listed in Table I. The structure determination shows 2 to be a bimetallic species in which the metal atoms of a TaCl₂ and a ZnCl unit are bridged by a neopentylidyne (=C-t-Bu) unit via carbyne carbon C(13) and an aryldiamine ($C_6H_3(CH_2 NMe_{2}_{2}^{-2,6}$ ligand via C_{ipso} atom C(9). The aryldiamine ligand further coordinates through the N-donor atoms of its two CH₂NMe₂ arms, one to each metal, to complete the coordination sphere of the two metal centers. The resulting coordination geometry around zinc is distorted tetrahedral and that around tantalum is between trigonal bipyramidal and square pyramidal (70% along the Berry pseudorotation coordinate toward the latter).¹³ The C(9)based aryl ligand bridge between zinc and tantalum is very asymmetric: the angle made by the Ta-Zn vector with the least squares plane through the aryl carbon atoms is 65.2(2)° and deviates markedly from the 90° expected for a symmetrically bridging aryl system (see Figure 2).

C-H Bond Activation Reaction of a NMe₂ Group in 2. Treatment of bimetallic 2 with one or more equivalents of tmeda [=Me₂N(CH₂)₂NMe₂] at 60 °C leads

⁽⁴⁾ Hoffmann, R. Angew. Chem. 1982, 94, 725.

⁽¹²⁾ van der Sluis, P.; Hezemans, A. M. F.; Kroon, J. Appl. Crystallogr. 1989, 22, 340.

⁽¹³⁾ Holmes, R. R. Prog. Inorg. Chem. 1984, 32, 119 and references cited therein.

Figure 1. ORTEP drawing of the structure of 2 in the crystal, with 50% probability ellipsoids.

Figure 2. Bridging aryldiamine ligand in the bimetallic complex 2. The other ligands have been omitted for clarity. Left: view along the C(4)-C(8) axis (aryl carbon atoms perpendicular to the plane of drawing). Right: approximate view along Ta-Cipso.

Table I.	Relevant Data for the Geometry of 2						
Bond Lengths (Å)							
Ta-Cl(1)	2.3830(15)	Ta-Cl(3)	2.3628(16)				
Ta-C(9)	2.321(6)	Ta-C(13)	1.862(6)				
Ta-N(1)	2.313(6)	TaZn	2.729(1)				
Zn-Cl(2)	2.214(2)	Zn-C(9)	2.258(6)				
Zn-C(13)	2.114(6)	Zn-N(2)	2.101(5)				
Bond Angles (deg)							
Cl(1)-Ta-N(1)	83.69(15)	N(1)-Ta-C(9)	75.0(2)				
C(9)-Ta-Cl(3)	95.79(16)	C(9)-Ta-C(13)	102.5(2)				
Cl(1)-Ta-Cl(3)	91.90(5)	Ta-C(13)-C(14)	158.5(4)				
Cl(1)-Ta-C(13)	103.04(18)	C(9) - Zn - C(13)	96.9(2)				
C(9)-Zn-Cl(2)	117.71(17)	C(9) - Zn - N(2)	86.7(2)				
N(2)-Zn-Cl(2)	108.49(15)	Cl(2)-Zn-C(13)	118.51(15)				

to clean and quick elimination of ZnCl₂ (as ZnCl₂(tmeda)) with concomitant formation of a tantalum neopentylidene complex 3 characterized as TaCl{C₆H₃(CH₂N(Me)CH₂)- $2-(CH_2NMe_2)-6$ (=CH-t-Bu) (Scheme II, route i). The elimination of ZnCl₂ from 2 could not be achieved by an analogous reaction with dme or by tetrahydrofuran (THF) at reflux for 4 h. Complex 3 can be regarded as a product that arises from a postulated intermediate TaCl{C₆H₃(CH₂-NMe2)2-2,6}(=C-t-Bu) (6) by a hydrogen atom abstraction from a methyl group of a NMe2 unit by the Ta=C function. In an alternative approach, 3 can be prepared by the reaction of the alkylidene complex 1 with 1 equiv of MeLi in THF at low temperature (Scheme II, route ii). The remaining chlorine atom of the alkylidene complex 3 can be substituted by a tert-butoxide ligand in a clean transmetalation reaction with LiO-t-Bu, leading to the halogen-free alkylidene complex Ta(O-t-Bu){C₆H₃-(CH₂N(Me)CH₂)-2-(CH₂NMe₂)-6}(=CH-t-Bu) (4) in high yield (Scheme II, route v). The yellow alkylidene complexes 3 and 4 are air-sensitive but thermally quite stable, and they can be stored intact for months under a nitrogen atmosphere.

The ¹H (300.13 MHz) and ¹³C (75.74 MHz) NMR data of 3 and 4 in C_6D_6 are consistent with their formulations as shown in Scheme II. As a result of the C-H activation reaction (vide supra), they both contain an aryldiamine ligand with one NMe₂ and one NMe unit, and the corresponding three methyl group resonances are observed either at ambient temperature (3) or at lower temperature (4). For complex 4 the two anisochronous ¹H NMR resonances for the NMe2 unit coalesce at 20 °C (toluene d_8). In the ¹H NMR spectra of both 3 and 4 the three CH₂(N) moieties present each provide an AB pattern. A high-field AX pattern (δ 3.0 and 1.3) with a small ²J(H,H) of 10 Hz can be assigned to the new Ta-CH2-N unit that has resulted from the C-H activation reaction; the Ta-CH₂-N unit in the related, and structurally characterized, complex TaCl₂{C₆H₄(CH(Me)N(Me)CH₂)-2}-(CH₂Ph)(THF) provides similar NMR data.¹⁴ To gain insight into the bonding in the triangular Ta-CH₂-N unit, proton-coupled ¹³C NMR spectra have been measured for 3 and 4 and these provided ${}^{1}J(C,H)$ values of 146 and 141 Hz, respectively; these are close to the ${}^{1}J(C,H)$ value of 135 Hz in the Ar-CH₂N units. The NMR data of the C_{α} alkylidene atom of the =-CH-t-Bu unit in 3 (δ 253.1, ${}^{1}J(C_{\alpha},H) = 91 \text{ Hz}$) and in 4 (δ 250.3, ${}^{1}J(C_{\alpha},H) = 96 \text{ Hz}$) are typical for electron-deficient alkylidene complexes.¹⁵

The reactivity of the alkylidene complexes 3 and 4 toward alkenes is very low. In C_6D_6 complexes 3 and 4 react slowly with ethene and neopentylethene (4,4dimethylpent-1-ene) is liberated, but the reaction is not clean; no trace of the metathesis product tert-butylethene (3,3-dimethylbut-1-ene) was detected. The formation of neopentylethene is indicative of a reductive rearrangement occurring in an intermediate tantalacyclobutane complex (as is regularly observed in tantalum alkylidene-mediated reactions¹⁶) and has not been further investigated.

Evidence for a Palladium-Mediated Synthesis of a Functionalized Tantalum Alkylidene Complex. Bimetallic 2 does not react with $[Pd(C_6H_4CH_2NMe_2-2)(\mu-$ X]₂(X = Cl, I) in either toluene or THF. When, however, the tmeda-induced elimination of ZnCl₂ from bimetallic 2 is performed in the presence of these dimeric palladium complexes the final product isolated in low yield is a blue complex 5 (Scheme II, routes iii and iv) and not 3 (the product of a C-H activation reaction). Complex 5 is airsensitive and slightly thermally unstable but can be stored intact under a nitrogen atmosphere at -30 °C. For 5 the ¹H and ¹³C NMR data (vide infra) are consistent with a proposed formulation of TaCl2(C6H4CH2NMe2-2)[=C(t-

1979, 101, 4558. (b) Schrock, R. R. Science 1983, 219, 13.

⁽¹⁴⁾ Abbenhuis, H. C. L.; Grove, D. M.; van Mier, G. P. M.; Spek, A. L. Recl. Trav. Chim. Pays-Bas 1990, 109, 363. Abbenhuis, H. C. L.; van Belzen, R.; Grove, D. M.; Klomp, A. J. A.; van Mier, G. P. M.; Spek, A. L.; van Koten, G. Organometallics 1993, 12, 210.

^{(15) (}a) Schultz, A. J.; Brown, R. K.; Williams, J. M.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 169. (b) Churchill, M. R.; Hollander, F. J. Inorg. Chem. 1978, 17, 1957. (c) Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 1930. (d) Churchill, M. R.; Wasserman, H. J. Inorg. Chem. 1981, 20, 2899. (e) An excellent reference book is: Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons Ltd.: New York, 1988. (f) Schrock, R. R. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1. (16) (a) McLain, S. J.; Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc.

Scheme II. Alkylidyne-Mediated Alkylidene Syntheses

i + tmeda (benzene, 60 °C) , - ZnCl₂(tmeda), yield 69%

ii + LiMe (THF, -78 °C) , - CH4, - LiCl, yield 40%.

- iii + tmeda, + [Pd(C₆H₄CH₂NMe₂-2)(µ-i)]₂, ZnCl(I)(tmeda), Pd⁰, yield ~50%.
- *iv* + tmeda, + [Pd(C₆H₄CH₂NMe₂-2)(μ-Cl)]₂, ZnCl₂(tmeda), Pd⁰, yield ~20%.
- v + LiO-*t*-Bu, -LiCl, yield 100 %.
- $vi + [Pd(C_6H_4CH_2NMe_2-2)(\mu-X)]_2 (X = I, CI)$ unclean reaction.

Bu{C₆H₃(CH₂NMe₂)₂-2,6}]. This is a neopentylidene complex in which the alkylidene α -hydrogen atom of a =CH-t-Bu unit (present in 1) has been substituted by a $C_6H_3(CH_2NMe_2)_2$ -2,6, aryldiamine, group. Note that regardless of the starting palladium complex the only halide present in isolated 5 is chloride (see Discussion). Attempts to obtain crystals of 5 suitable for X-ray analysis failed since the complex invariably crystallized in thin fibers. When bimetallic 2 was reacted with tmeda in the presence of ClC₆H₄CH₂NMe₂-2, instead of [Pd(C₆H₄CH₂- $NMe_2-2)(\mu-X)]_2$ (X = Cl, I), no 5 was formed. Under the same conditions as those that resulted in the formation of 5, $TaCl{C_6H_3(CH_2N(Me)CH_2)-2-(CH_2NMe_2)-6}(=CH$ t-Bu) (3) also reacts with $[PdX(C_6H_4CH_2NMe_2-2)]_2$ (X = Cl, I) but this reaction results in a complex mixture of unidentified organometallic species that does not contain 5 (Scheme II, route vi).

Further evidence for our postulated structure of 5 comes from a FAB mass spectrum of the organic products obtained by hydrolysis of complex 5. This spectrum showed mainly parent ions that could be attributed to the protonated forms of the arylamine $C_6H_5CH_2NMe_{2-2}$ (m/e = 136.1) and the neopentyl-aryldiamine $CH_2(t-Bu)\{C_6H_3(CH_2NMe_2)_2.2,6\}$ (m/e = 263.2). After similar deuterolysis, a FAB mass spectrum was obtained with peaks attributable to $C_6H_4DCH_2NMe_2-2$ and $CD_2(t-Bu)\{C_6H_3(CH_2NMe_2)_2.2,6\}$; the incorporation of one and two deuterium atoms, respectively, in these products is consistent with the deuterolysis of a Ta—C single bond and a Ta—C double bond in complex 5.

The ¹H NMR spectrum of 5 (300.13 MHz, C_6D_6 , 25 °C) is given in Figure 3 and shows four anisochronous resonances for N-bonded methyl groups in a 1:1:2:2 ratio and three AB patterns for the CH₂N units in accord with the formulation TaCl₂($C_6H_4CH_2NMe_2$ -2)[==C(*t*-Bu)-{ $C_6H_3(CH_2NMe_2)_2$ -2,6}], as shown in Scheme II. To reach this conclusion, it is necessary to make the reasonable assumptions that on the NMR time scale only the NMe₂ unit of the arylmonoamine $C_6H_4CH_2NMe_2$ -2 forms a coordinative bond to the tantalum center and that on this time scale the tantalum center is a chiral entity that does not racemize. In order to facilitate the assignments of the ¹H and ¹³C NMR data of 5 and to probe the mechanism by which it is formed from bimetallic 2, we have carried out a deuterium labeling experiment. The d_3 analogue of 2, $TaCl_2\{C_6D_3(CH_2NMe_2)_2-2,6\}(\mu-C-t-Bu)(\mu-ZnCl)$, was prepared (see Experimental Section) and reacted with tmeda and $[Pd(C_6H_4CH_2NMe_2-2)(\mu-I)]_2$. This reaction gave $TaCl_2(C_6H_4CH_2NMe_2-2)$ [==C(t-Bu){C_6D_3(CH_2NMe_2)_2-2,6]], and no products with deuterium incorporated in another part of the complex were found (see Figure 3). Comparison of the ¹H NMR spectra of 5 and its d_3 analogue allows assignment of all the aromatic resonances present. In this functionalized alkylidene complex 5 the low-field aryl resonance for one proton of the aryldiamine at δ 8.36 is a remarkable feature for which we have no explanation. Inspection of the aryl resonance multiplicities shows that the $C_6H_3(CH_2NMe_2)_2$ -2,6 ligand is intact, and this excludes an interpretation based on isomerization to a 2,4-disubstituted aryldiamine ligand, as encountered in late transition metal chemistry.¹⁷ The ¹³C NMR resonance of the alkylidene α -carbon in 5 is located at δ 278 and that of the C_{ipso} atom of $C_6H_4CH_2NMe_2-2$ is at δ 203.8; these values are characteristic for tantalum aryl⁹ and tantalum alkylidene¹⁵ complexes, respectively. Consistent with the postulated formulation of 5 these two resonances appear as singlets in the proton-coupled ¹³C NMR spectrum.

Discussion

Synthesis and Structure of Bimetallic 2. Most known tantalum (and some tungsten) alkylidyne complexes contain a Lewis acid,^{10,18} e.g. Li⁺, ZnCl⁺, Zn²⁺, or Al³⁺ that becomes incorporated as a direct result of the preparative method used. The alkylidene α -H atom of a precursor alkylidene complex has a relatively high acidity that allows its abstraction (as a proton) by a metal alkyl

⁽¹⁷⁾ van der Zeijden, A. A. H.; van Koten, G.; Luijk, R.; Nordemann, R. A.; Spek, A. L. Organometallics 1988, 7, 1549.

 ^{(18) (}a) Guggenberger, L. J.; Schrock, R. R. J. Am. Chem. Soc. 1975,
 97, 2935. (b) Sharp, P. R.; Holmes, S. J.; Schrock, R. R. J. Am. Chem.
 Soc. 1981, 103, 965.

Figure 3. Top: highfield part of the ¹H NMR (C_6D_6 , 300.13 MHz) spectrum of the alkylidene complex TaCl₂($C_6H_4CH_2$ -NMe₂-2)[$=C(t-Bu)\{C_6H_3(CH_2NMe_2)_2-2,6\}$] (5). Middle: aromatic resonances of 5 and their assignments. Bottom: corresponding resonances in the d_3 complex containing a $\{C_6D_3(CH_2NMe_2)_2-2,6\}$ function. (* denotes solvent.)

Figure 4. Hyperconjugation accounting for the structural features of the *tert*-butyl cation (top) and by analogy for the structures of the alkylidene complexes (bottom).

compound under mild conditions. This acidity of alkylidene α -H atoms is a feature of high oxidation state, electron-deficient, early transition metal alkylidenes in which the metal withdraws electron density from the alkylidene C_{α} -H_{α} bond. This situation using a hyperconjugation description results in a mesomer in which the alkylidene α -carbon is triply bonded to the metal center and the alkylidene C_{α} -H_{α} bond is weakened (Figure 4, mesomer b). Similar hyperconjugation is well-known in carbocation chemistry, *e.g.* the *tert*-butyl cation (see also Figure 4), and is used to explain short C-C bonds and lengthened C-H linkages.¹⁹ Although this model for

Figure 5. Left: main resonance structure including the coordinative bonds that account for the structural features of bimetallic 2. Right: bond lengths (Å) in the Ta-C-Zn-C fragment.

describing metal-to-carbon alkylidene bonding has been refined by theoretical studies,²⁰ even in this simple form it accounts for all the structural and spectroscopic features of tantalum alkylidene complexes:¹⁵ (i) the Ta– C_{α} – C_{β} angle is typically in the range 150-170° and is much larger than the 120° expected for a formally sp²-hybridized α -carbon; (ii) the Ta- C_{α} - H_{α} angle (70-80°) is small, the C_{α} - H_{α} bond $(\sim 1.30 \text{ Å})$ is lengthened, and the value of ${}^{1}J(C_{\alpha}-H_{\alpha})$ is small (70–130 Hz); (iii) the Ta– C_{α} bond is so short (1.8–2.0 Å) that its range overlaps that of the Ta– C_{α} bond lengths in tantalum alkylidyne complexes. In 18-electron tantalum alkylidene complexes that do not contain an electrondeficient tantalum center, the resonance structure a (Figure 4) becomes more important and consequently larger Ta- C_{α} bond lengths and smaller Ta- C_{α} - C_{β} angles are found.²¹ Replacing the proton in resonance structure b by a metal cation affords an isoelectronic structure b' (Figure 4) that can be used to describe Lewis-acidcontaining alkylidyne complexes; here the hyperconjugative valence structure b' is especially important due to the ability of the Lewis acid to bear a significant positive charge.

For bimetallic TaCl₂{C₆H₃(CH₂NMe₂)₂-2,6}(μ -C-t-Bu)- $(\mu$ -ZnCl) (2) the structural data of the Ta(μ -C-t-Bu)Zn unit could be interpreted as a Ta=C-t-Bu fragment combined with a Zn—C σ -bond, i.e. as a zincaalkylidene complex. However, we favor a description with a Ta=Ct-Bu fragment and a C \rightarrow Zn donative interaction from a filled p-orbital on C_{α} (Figure 5), not only because it is in line with the hyperconjugation model but also because it best shows this complex as a precursor to a Lewis-acidfree alkylidyne complex and thus accounts for its observed reactivity. In this description of 2 there are interesting Lewis-base interactions present that lead to an 18-electron count for zinc and to a 14-electron count for tantalum. In detail there are three coordinative bonds to the cationic ZnCl⁺ moiety: the lone pair of one of the nitrogen donors of the aryldiamine ligand, a filled p-orbital of the alkylidyne C_{α} , and a filled p-orbital of the aryldiamine C_{ipso} (vide infra). In 2 the bridging interaction of C_{ipso} and the orientation of the aryldiamine ring are such that the p-orbital at C_{ipso} is directed toward the zinc center while the Ta atom is almost in line with the C_{ipso} — C_{para} vector of the aryldiamine ligand (Figure 2). Consequently, the bonding of the bridging C_{ipso} is then described as being a 2-electron Ta— $C_{ipso} \sigma$ -bond with electron donation of the filled p-orbital of Cipso to the zinc center to form a

⁽¹⁹⁾ Hehre, W. J. Acc. Chem. Res. 1975, 8, 369.

^{(20) (}a) Goddard, R. J.; Hoffmann, R.; Jemmis, E. D. J. Am. Chem. Soc. 1980, 102, 7667. (b) Franci, M. M.; Pietro, W. J.; Hout, R. F., Jr.; Hehre, W. J. Organometallics 1983, 2, 281. (c) Cundari, T. R.; Gordon, M. S. J. Am. Chem. Soc. 1991, 113, 5231 and references cited therein. (21) (a) Schrock, R. R.; Messerle, L. W.; Clayton, C. D.; Guggenberger, L. J. J. Am. Chem. Soc. 1978, 100, 3793. (b) Guggenberger, L. J.; Schrock, R. R. M. Soc. 1975, 97, 6579.

coordinative $Zn-C_{ipso}$ bond. This latter structural feature is like that of the early stages in the attack of an electrophile E^+ on a benzene ring, *i.e.* the formation of a π -complex in which effectively 2-electron donation from the benzene ring to E⁺ occurs.

As in 2 there is also 2-electron donation from an aryl p-orbital to a metal center in the recently reported structure of the arene adduct cis-Pd(C₆F₅)₂(C₆H₅CH₂- NMe_2).²² This palladium complex and 2 thus mimic an initial stage of electrophilic attack at an aryl carbon atom that does not lead to substantial deformation of the aryl moiety. We have previously reported platinum complexes that contain a σ -metal-substituted arenonium ion in which rehybridization of an sp²-C center has already taken place²³ and which therefore mimic a later stage in electrophilic attack at an aryl carbon atom.

Spectroscopic evidence for the participation of the C_{ipso} p-orbital in bonding to the zinc center is provided by the unusual ¹³C NMR C_{ipso} resonance value of δ 175.2. This value deviates from those found for C_{ipso} atoms either in tantalum compounds with the same aryldiamine ligand or in tantalum mesityl compounds (190 $\leq \delta \leq 210^9$) where the low-field resonance arises from aryl-to-tantalum bonding in which there is additional electron donation from the filled p-orbital on C_{ipeo} to empty d-orbitals on the (electron-deficient) tantalum center. As a result a resonance structure can be drawn in which C_{ipso} is doubly bonded to the tantalum, *i.e.* like the bonding in a tantalum alkylidene fragment, and it is known empirically that the formation of such a carbon-to-metal multiple bond results in a typically low-field carbon resonance of δ 200–400. In bimetallic 2 the situation is different, the filled p-orbital of C_{ipso} is directed toward a zinc center and, thereby, its p-electron density cannot be donated to tantalum so that a high-field shift of C_{ipso} results.

This 4-electron three-center Ta-Cipso-Zn bonding described above is preferred by us over an alternative 2-electron three-center (2e-3c) description. Examples of both types of aryl bonding and borderline cases are welldocumented in arylmagnesium,²⁴ -copper, and -cuprate chemistry.²⁵⁻²⁷ For instance, in polynuclear arylcopper complexes of the type $[Cu(C_6H_2R_3-2,4,6)]_4$ (R = Me, *i*-Pr, Ph) an increase in the bulk of the ortho substituents is known to change the nature of the $Cu-C_{ipso}$ bonding from a symmetrical 2e-3c bonding mode in the trimethyl complex,²⁵ via asymmetric bonding in the triisopropyl complex (described as either 2e-2c Cu-Cipso bonding and $Cu-C_{ipso} \pi$ -donation),²⁶ to purely 2e-2c $Cu-C_{ipso}$ bonding in the triphenyl complex.²⁷ Overall, the aryldiamine ligand in bimetallic 2 participates in a 4-electron three-center bond involving Cipso and in coordinative Ta-N and Zn-N bonds so that this ligand is an 8-electron donor. Such a high electron donating capacity makes the $C_6H_3(CH_2-$ NMe₂)₂-2,6 monoanion an excellent ancillary ligand, that is capable of stabilizing high oxidation states of early transition metal centers.

Alkylidyne-Mediated C-H Bond Activation in a NMe Unit. The preparation of an alkylidene species $TaCl{C_6H_3(CH_2N(Me)CH_2)-2-(CH_2NMe_2)-6}(=CH$ t-Bu) (3) both from the bimetallic alkylidyne complex 2 by addition of tmeda and from the neopentylidene complex $TaCl_2 \{C_6H_3(CH_2NMe_2)_2-2,6\}$ (=CH-t-Bu) by reaction with MeLi as base points to the common intermediacy of a very reactive Lewis-acid-free alkylidyne species TaCl- $\{C_6H_3(CH_2NMe_2)_2-2,6\}$ (=C-t-Bu) (6). This intermediate arises in the reaction of 2 with tmeda by elimination of $ZnCl_2(tmeda)$ (Scheme II, route *i*) and in the reaction of 1 with MeLi by abstraction of the α -H atom with formation of LiCl and CH₄ (Scheme II, route ii). In this postulated alkylidyne intermediate 6 there then follows an alkylidynemediated proton abstraction from one of the nitrogenbonded methyl groups of the aryldiamine ligand (NMe C-H activation) to afford alkylidene species 3. It has been reported that a similar Lewis-acid-free alkylidyne is probably generated in situ from the reaction of the trimetallic complex $TaCl_2(\mu-C-t-Bu)(dme)$ with alkynes that is accompanied by elimination of ZnCl₂ and dme.²⁸

On the basis of the substantial, and well-documented. trans influence of a neopentylidyne unit²⁹ the intermediate alkylidyne species 6 probably has a square pyramidal structure with the neopentylidyne function in the apical position and the tridentate-bonded aryldiamine ligand and the remaining chlorine atom in the basal plane. In this structure both NMe₂ units of the aryldiamine ligand are cis-positioned relative to the neopentylidyne unit and this arrangement is ideal for an alkylidyne-mediated abstraction of a hydrogen atom from a C-H bond in a NMe unit; this reaction is likely to occur via a multicenter pathway. Many analogous multicenter C-H activation reactions have been documented in the area of high-valent early transition metal chemistry.³⁰ and activation by alkyl, alkylidene, and benzyne groups is possible.³¹ For instance, Rothwell and co-workers have shown that the ligands 2,6di-tert-butylphenoxide and 2,6-diphenylphenoxide can undergo intramolecular activation of their aliphatic and aromatic C-H bonds at d⁰ metal centers.³² We have already reported a stereoselective C-H activation reaction in a NMe unit of the dibenzyltantalum complex TaCl₂- ${C_{6}H_{4}(CH(Me)NMe_{2})-2}(CH_{2}Ph)_{2}$ that occurs via a multicentered σ -bond metathesis and that leads to the formation of a triangular Ta-CH2-N unit¹⁴ like that in

⁽²²⁾ Falvello, L. R.; Forniés, J.; Navarro, R.; Sicilia, V.; Tomás, M. Angew. Chem., Int. Ed. Engl. 1990, 29, 892.
(23) (a) van Koten, G.; Timmer, K.; Noltes, J. G.; Spek, A. L. J. Chem. Soc., Chem. Commun. 1978, 250. (b) Grove, D. M.; van Koten, G.; Louwen, J. N.; Noltes, J. G.; Spek, A. L.; Ubbels, H. J. C. J. Am. Chem. Soc. 1982, 104, 6609. (c) Terheijden, J.; van Koten, G.; Vinke, I. C.; Spek, A. L. J. Am. Chem. Soc. 1985, 107, 2891.
(20) Machine B. Schett G. Alaberrar O. S. Heishkubart F. Smath.

⁽²⁴⁾ Markies, P.R.; Schat, G.; Akkerman, O.S.; Bickelhaupt, F.; Smeets, w . J. J.; van der Sluis, P.; Spek, A. L. J. Organomet. Chem. 1990, 393, 315

⁽²⁵⁾ Meyers, E. M.; Gamberotta, S.; Floriani, C.; Chiesi-Villa, A.;
Guastini, C. Organometallics 1989, 8, 1067.
(26) Nobel, D.; van Koten, G.; Spek, A. L. Angew. Chem. 1989, 101,

^{211.}

⁽²⁷⁾ Lingnau, L.; Strähle, J. Angew. Chem. 1988, 100, 409.

⁽²⁸⁾ van der Heijden, H.; Gal, A. W.; Pasman, P.; Orpen, A. G. Organometallics 1988, 4, 1847. (29) (a) Edwards, D. S.; Biondi, L. V.; Ziller, J. W.; Churchill, M. R.;

Schrock, R. R. Organometallics 1983, 2, 1505. (b) Rocklage, S. M.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. Organometallics 1982, 1, 1332. (c) Chiu, K. W.; Jones, R. A.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1981, 1204. (d) Chisholm, M. H.; Conroy, B. K.; Huffman, J. C. Organometallics 1986,
 5, 2384. (e) Mayr, A.; Dorries, A. M.; McDermott, G. A.; Geib, S. J.;
 Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 7775. (f) Fischer, E. O.;
 Wittmann, D.; Himmelreich, D.; Cai, R.; Ackermann, K.; Neugebauer, D. Chem. Ber. 1982, 115, 3152.

 ⁽³⁰⁾ Ryabov, A. D. Chem. Rev. 1990, 90, 403.
 (31) (a) Latesky, S. L.; McMullen, A. K.; Rothwell, I. P.; Huffman, J. J. Am. Chem. Soc. 1985, 107, 5981. (b) Chamberlain, L. R.; Rothwell, I.P.; Huffman, J.C. J. Am. Chem. Soc. 1986, 108, 1629. (c) Chamberlain, L. R.; Kerschner, J. L.; Rothwell, A. P.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 6471. (d) Chamberlain, L. R.; Rothwell, I.

P. J. Am. Chem. Soc. 1983, 105, 1665.

⁽³²⁾ Rothwell, I. P. Acc. Chem. Res. 1988, 21, 153.

3 and $4.^{14}$ Structurally similar triangular Ta—CH₂—P and Ta=CH—P units have also been reported.³³

The formation of the functionalized alkylidene complex $TaCl_2(C_6H_4CH_2NMe_2-2) = C(t-Bu) \{C_6H_3(CH_2NMe_2)_2-$ 2,6] (5) from 2 with tmeda and $[Pd(C_6H_4CH_2NMe_2-2) (\mu-X)_2$ can also be explained by assuming 6 to be a key intermediate. However, details of this route are far from clear and the absence of the diiodo or iodo/chloro analogue of 5 clearly indicates that halogen exchange processes are important and that ZnXCl species invariably provide one of the chlorine atoms present in 5; in combination with the long reaction times employed and the heterogeneous nature of the reaction medium it is not inconsistent that the better yield of dichloro complex 5 was obtained with $[Pd(C_6H_4CH_2NMe_2-2)(\mu-I)]_2$ as starting material. Complex 5 can be thought of as arising from insertion of the alkylidyne unit of 6 into the $Ta-C_{ipso}$ bond of the aryldiamine, formally a reductive elimination reaction. Complementary to this reductive step, the $C_6H_4CH_2$ -NMe₂-2 grouping and a chlorine atom are transferred to the tantalum center in an oxidative fashion, formally an oxidative addition of an aryl chloride to a tantalum(III) center. However, the mechanism and exact role played by the palladium center in the overall formation of 5 are not fully understood; among unsolved points are the incorporation of two Cl atoms in the product even when $[Pd(C_6H_4CH_2NMe_2-2)(\mu-I)]_2$ is used and the fact that simple reaction of the aryl chloride ClC₆H₄CH₂NMe₂-2 with 2 in the presence of tmeda does not afford 5 at all.

Nevertheless, the conversion of 2 to 5 is a new example illustrating the potential of palladium-mediated functionalization of an alkylidyne complex. Among other examples are the recently reported reactions of low-valent carbyne complexes $M \equiv C-p$ -Tol(Cp)(CO)₂ (M = Mo, W) with cyclometalated palladium compounds (Scheme III)^{6b} that afford heterobimetallic species which are either adducts of the palladium moiety to a metal carbyne or products resulting from insertion of the $M \equiv C$ triple bond into a Pd—C bond. Reductive elimination from the latter would result in complexes containing functionalized alkylidene units as in 5, but this has so far not be achieved (possibly due to the stabilizing influence of the CO ligands).

Conclusions

The synthetically easily accessible bimetallic tantalumzinc complex 2 is an excellent precursor for a very reactive alkylidyne species and provides insight into the versatility of aryl-to-metal bonding. The ancillary $C_6H_3(CH_2NMe_2)_2$ -2,6 aryldiamine ligand in 2 acts as an unanticipated 8-electron donor with a demonstrated ability to stabilize "state of the art" early transition metal species. Under specific conditions, this aryldiamine can act as a proton donor by converting one of its NMe_2 units into a new anionic N,C-chelating fragment: $N(Me)CH_2^-$. Starting from bimetallic 2, a completely new method for functionalized alkylidenes seems to be possible.

Experimental Section

All experiments were performed in a dry nitrogen atmosphere using standard Schlenk techniques. Solvents were stored over sodium benzophenone ketyl and distilled prior to use. Elemental analyses were provided by the Institute of Applied Chemistry (TNO), Zeist, or by Dornis and Kolbe, Mülheim a.d. Ruhr; ¹H and ¹³C NMR spectra were recorded on Bruker AC200 or AC300 spectrometers. Mass spectra for the hydrolysis/deuterolysis products of 5 were obtained from C₆D₆/pryridine-d₆ solutions on a VG Analytical ZAB HF mass spectrometer using FAB ionization with thioglycerol as matrix. TaCl₂(C₆H₈(CH₂NMe₂)₂-2,6}(—CHt-Bu) was prepared according to a literature procedure.^{9b}

TaCl₂{C₁H₁(CH₂NM₀₂)₂-2,6}(µ-C-t-Bu)(µ-ZnCl) (2). A purple suspension of TaCl₂{C₆H₃(CH₂NMe₂)₂-2,6}(=CH-t-Bu) (6.31 g, 12.3 mmol) in a solution of ZnCl₂ (0.97 g, 7.12 mmol) and Zn(CH₂-t-Bu)₂ (1.28 g, 6.16 mmol) in Et₂O (100 mL) was stirred at 20 °C for 5 days. The solvent was removed in vacuo and the sticky residue triturated with hexane. The resulting red powder was extracted with warm (50 °C) benzene (150 mL). The extract was concentrated in vacuo to ca. $50\,\mathrm{mL}$ and layered with pentane (200 mL). After standing at 20 °C for 3 days, large red crystals of the product could be isolated; yield: 5.94g (79%). Anal. Calcd for C₁₇H₂₈N₂Cl₃TaZn: C, 33.30; H, 4.60; N, 4.57. Found: C, 32.81; H, 4.82; N, 4.42. ¹H NMR (200.13 MHz, C₆D₆, 25 °C, TMS): δ 1.55 (s, 9 H, t-Bu), 1.75, 1.94, 2.42, and 2.71 (s, 4 × 3 H, NCH₈), 2.26, 2.33, 4.43, and 5.03 [d, ${}^{2}J(H,H) = 13$ Hz, 4×1 H, CH₂N], 6.62 (dd, 2 H, m-C₆H₃), 6.97 (t, 1 H, p-C₆H₃). ¹⁸C{¹H} NMR (50.32 MHz, C₆D₆, 25 °C, TMS): δ 35.2 [C(CH₃)₈], 51.2 [C(CH₃)₈], 47.4, 47.9, 48.1, and 54.0 (NCH₃), 67.0 and 71.6 (CH₂N), 175.2 (C_{ipeo} of C₆H₃), 295.4 (C-t-Bu).

TaCl{C_tH_s(CH_sN(Me)CH₂)-2-(CH₂NMe₂)-6}(—CH-t-Bu) (3). Route i. To astirred purple solution of TaCl₂{C₆H₃(CH₂NMe₂)₂-2,6}(μ -C-t-Bu)(μ -ZnCl) (0.65 g, 1.1 mmol) in benzene (100 mL) at 62 °C was added tmeda (1.7 mL, 7.4 mmol). Within 30 min at 62 °C, the color of the mixture changed to yellow-brown. After stirring for 18 h at room temperature, the solvent was removed *in vacuo* leaving a brown spongy material that was extracted with hexane (1 × 100 mL). The solvent was removed from the extract *in vacuo*, leaving 0.48 g (92%) of crude brown product. Subsequent crystallization from warm (60 °C) hexane (50 mL) gave 0.35 g (69%) of 3 as large block-shaped yellow crystals.

Route ii. To a stirred purple solution of $TaCl_2\{C_6H_3(CH_2-NMe_2)_2-2,6\}(=CH-t-Bu)$ (0.71 g, 1.4 mmol) in THF (100 mL) at -108 °C was added 0.9 mL of a 1.6 M solution of LiMe in hexane (1.4 mmol). The resulting solution was allowed to warm to room temperature during which time the color gradually changed to brown-red. The solvent was removed *in vacuo* affording a solid that was suspended in hexane (100 mL) and stirred for 2 days. Subsequent hot filtration (60 °C) gave an orange filtrate that was concentrated *in vacuo* to *ca.* 40 mL. From this concentrated solution, yellow 3 crystallized readily at -30 °C; yield 0.26 g (40%).

^{(33) (}a) Cotton, F. A.; Falvello, L. R.; Najjar, R. C. Organometallics
1980, I, 1640. (b) Gibson, V. C.; Graimann, C. E.; Hare, P. M.; Green,
M. L. H.; Bandy, J. A.; Grebenik, P. D.; Prout, K. J. Chem. Soc., Dalton Trans. 1985, 2025.

Table II.	Crystal Data and Details of the Structure
	Determination of 2

(a) Crystal Data					
formula	$C_{17}H_{28}Cl_3N_2TaZn$				
mol wt	613.11				
cryst syst	orthorhombic				
space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)				
$a, b, c(\mathbf{A})$	9.725(2), 10.436(2), 20.766(3)				
$V(\dot{A}^3)$	2107.5(7)				
Z	4				
D_{calc} (g cm ⁻³)	1.932(1)				
F(000)	1192				
μ (cm ⁻¹)	66.8				
cryst size (mm)	$0.37 \times 0.63 \times 0.80$				
(b) Data Collection					
temp (K)	100				
$\theta_{\min}, \theta_{\max}$	1.0, 29.4				
scan type	ω/2θ				
radiation, λ (Å)	Μο Κα, 0.710 73				
$\Delta \omega$ (deg)	$0.81 + 0.35 \tan \theta$				
hor and vert aperture (mm)	2.83, 5.0				
ref reflns	-4,4,0; 4,0,-4; 0,4,-4				
data set	-12 to $+13$, $0-14$, -24 to 0				
total no of data, no. of unique data	5481, 4851				
no. of obsd data	$4746 [I > 2.5\sigma(I)]$				
(c) Refinement					
N _{ref} , N _{par}	4746, 219				
weighting scheme	$w = 1.0/[\sigma^2(F) + 0.0017F^2]$				
final R, R _w , S	0.034, 0.054, 2.69				
max/av shift/error	0.09/0.01				
$min/max resd dens (e/Å^3)$	-1.8/1.6 (near heavy atoms)				

Anal. Calcd for $C_{17}H_{28}N_2ClTa$: C, 42.82; H, 5.92; N, 5.88. Found: C, 42.75; H, 5.94; N, 5.81. ¹H NMR (300.13 MHz, C₆D₆, 24 °C, TMS): δ 0.90 (s, 1 H, CH-t-Bu), 1.17 (s, 9 H, CH-t-Bu), 1.32 and 3.18 [2 d, ²J(HH) = 9.6 Hz, 2 × 1 H, TaCH₂N], 2.07, 2.85, and 2.97 [3 s, 3 × 3 H, N(CH₃)], 3.20 and 4.09 [2 d, ²J(HH) = 15.7 Hz, 2 × 1 H, CH₂N], 3.32 and 4.47 [2 d, ²J(HH) = 12.9 Hz, 2 × 1 H, CH₂N], 6.98 (dd, 2 H, m-C₆H₃), 7.14 (t, 1 H, p-C₆H₃). ¹³C{¹H} NMR (50.32 MHz, C₆D₆, 24 °C, TMS): δ 34.4 [C(H)C-(CH₃)₈], 46.3 [C(H)C(CH₃)₈], 46.9, 52.2, and 58.6 [N(CH₃)], 73.3 (CH₂N), 84.5 (Ta-CH₂N), 193.1 (C_{ipee} of C₆H₃), 253.1 [C(H)-t-Bu, ¹J(¹³C-⁻¹H) = 91 Hz].

Ta(O-t-Bu){C₄H₃(CH₂N(Me)CH₂)-2-(CH₂NMe₂)-6}(=CHt-Bu) (4). A yellow solution of 3 (1.27 g, 2.66 mmol) and LiOt-Bu (0.22 g, 2.7 mmol) in hexane (100 mL) was stirred for 2 h at 40 °C and then for 3 h at 20 °C. The LiCl precipitate that formed was filtered off and the solvent removed from the filtrate in vacuo, leaving crude yellow product 4 in quantitative yield. The compound can be purified by recrystallization from a minimum of hexane. Anal. Calcd for C₂₁H₃₇N₂OTa: C, 49.03; H, 7.25; N, 5.44. Found: C, 48.29; H, 7.20; N, 5.36. ¹H NMR (300.13 MHz, C₆D₆, 24 °C, TMS): δ 1.29 (s, 9 H, CH-*t*-Bu), 1.41 (s, 9 H, O-t-Bu), 1.37 and 2.91 [2 d, ${}^{2}J(HH) = 9.8$ Hz, 2 × 1 H, TaCH2N], 2.4 [br s, 6 H, N(CH3)2], 3.03 (s, 3 H, NCH3), 3.35 (s, 1 H, CH-t-Bu), 3.47 and 4.02 [2 d, ${}^{2}J(HH) = 13.0$ Hz, 2×1 H, CH_2N , 3.57 and 4.18 [2 d, ${}^2J(HH) = 15.7$ Hz, 2 × 1 H, CH_2N], 7.02 (d, 2 H, m-C₆H₈), 7.18 (t, 1 H, p-C₆H₃). ¹³C{¹H} NMR (75.47 MHz, C6D6, 24 °C, TMS): 834.0 [C(H)C(CH3)3], 35.2 [OC(CH3)3], 45.2 [C(H)C(CH₃)₃], 47.7 (br), 51.1 (br), and 58.4 [N(CH₃)], 70.0 and 73.6 (CH₂N), 76.6 (Ta—CH₂N), 77.4 [OC(CH₃)₃], 194.8 (C $_{ipso}$ of C_6H_3), 250.3 [C(H)-t-Bu, ${}^{1}J({}^{13}C-{}^{-1}H) = 96$ Hz].

TaCl₂(C₆H₄CH₂NMe₂-2)[=C(*t***-Bu){C₆H₃(CH₂NMe₂)₂-2,6]] (5). [Pd(C₆H₄CH₂NMe₂-2)(\mu-I)]₂ (0.86 g, 2.3 mmol) was suspended in a stirred solution of TaCl₂{C₆H₃(CH₂NMe₂)₂-2,6}-(\mu-C-***t***-Bu)(\mu-ZnCl) (1.16 g, 1.89 mmol) in THF (35 mL). A slight excess of tmeda (0.40 mL, 2.65 mmol) was added, and the stirred brown suspension gradually blackened during 15 h. The solvent was removed** *in vacuo* **and the remaining sticky solid triturated with hexane. Subsequent extraction with hexane (2 × 75 mL) followed by removal of the solvent** *in vacuo* **gave the crude bluepurple product in** *ca***. 50% yield. Compound 5 can be obtained spectroscopically pure (by ¹H and ¹³C NMR) after repeated recrystallization from pentane. Anal. Calcd for C₂₈H₃₈N₃Cl₂Ta:**

 Table III.
 Final Coordinates and Equivalent Isotropic

 Thermal Parameters and Their Esd's in Parentheses for the

 Non-H Atoms of 2

atom	x	у	Z	$U(eq)^a (Å^2)$
Ta	0.25757(2)	0.09897(2)	0.10272(1)	0.0080(1)
Zn	0.07764(6)	-0.08956(6)	0.13719(3)	0.0101(2)
Cl(1)	0.47610(14)	0.20202(14)	0.10627(7)	0.0169(4)
Cl(2)	0.05270(15)	-0.30019(13)	0.13180(7)	0.0152(4)
Cl(3)	0.14493(16)	0.28458(14)	0.14096(8)	0.0180(4)
N(1)	0.3543(6)	-0.0137(5)	0.0182(3)	0.0130(12)
N(2)	-0.1148(5)	0.0075(5)	0.1576(3)	0.0160(12)
C(1)	0.4832(6)	-0.0813(7)	0.0350(3)	0.0197(17)
C(2)	0.3836(7)	0.0826(6)	-0.0342(3)	0.0190(17)
C(3)	0.2550(6)	-0.1074(5)	-0.0074(3)	0.0163(17)
C(4)	0.1133(7)	-0.0497(6)	-0.0103(3)	0.0143(17)
C(5)	0.0255(7)	-0.0724(6)	-0.0629(3)	0.0190(17)
C(6)	-0.1084(7)	-0.0275(6)	-0.0612(3)	0.0187(17)
C(7)	-0.1550(7)	0.0337(7)	-0.0060(3)	0.0227(19)
C(8)	-0.0692(6)	0.0558(6)	0.0460(3)	0.0163(17)
C(9)	0.0722(6)	0.0218(6)	0.0440(3)	0.0147(16)
C(10)	-0.1296(6)	0.0979(6)	0.1105(3)	0.0170(16)
C(11)	-0.2240(7)	-0.1028(6)	0.1492(3)	0.0220(16)
C(12)	-0.1225(7)	0.0455(7)	0.2248(3)	0.0203(17)
C(13)	0.2659(6)	-0.0150(5)	0.1715(3)	0.0117(14)
C(14)	0.3177(6)	-0.0754(6)	0.2319(3)	0.0143(14)
C(15)	0.3864(6)	-0.2045(6)	0.2163(3)	0.0170(17)
C(16)	0.2020(7)	-0.0968(7)	0.2803(3)	0.0197(17)
C(17)	0.4263(7)	0.0154(6)	0.2619(3)	0.0197(17)

 ${}^{a} U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}^{*} \mathbf{a}_{j}.$

C, 48.46; H, 5.94; N, 6.52. Found: C, 46.42; H, 5.81; N, 6.48.³⁴ ¹H NMR (300.13 MHz, C₆D₆, 25 °C, TMS): δ 1.57 (s, 9 H, t-Bu), 2.07, 2.11, 2.18, and 2.36 (4 s, 18 H, NMe), 2.65 and 4.64 (d, ²J = 11.8 Hz, 2 × 1 H, CH₂N), 3.24 and 4.27 (2 d, ²J = 13.1 Hz, 2 × 1 H, CH₂N), 4.07 and 4.43 (2 d, ²J = 16.4 Hz, 2 × 1 H, CH₂N), 7.26 (m, 5 H, ArH), 8.36 (d, ³J = 7.6 Hz, 1 H, o-H of C₆H₃), 9.44 (dd, ³J = 7.3 Hz, ⁴J = 1.0 Hz, 1 H, o-H of C₆H₄). ¹³C[¹H] NMR (75.47 MHz, C₆D₆, 25 °C, TMS): δ 36.5 [C(CH₃)₃], 47.3 [C(CH₃)₃], 46.3, 48.4, 50.8, and 51.8 (NCH₃), 66.0, 71.1, and 71.7 (CH₂N), 125.2–158.6 (ArC), 203.8 (C_{ipeo} of C₆H₄), 278.4 (C-t-Bu).

Hydrolysis and Deuterolysis of 5. A stirred blue solution of 5 (ca. 10 mg) in C_6D_6 (0.5 mL) was treated with a drop of H_2O or D_2O whereupon instantaneous decolorization occurred and a white precipitate formed. A drop of pyridine- d_5 was added and the mixture filtered through Celite to afford a colorless solution that was used for the FAB measurements.

 $C_6D_3Me_2$ -1,3-Br-2. A vigorously stirred mixture of 2-bromo-1,3-dimethylbenzene (37 g), D_2SO_4 (22 mL), and D_2O (6 mL) was heated at reflux for 3×1 min. (Prolonged reflux leads to thermal decomposition.) The reaction mixture was stirred at 20 °C for 18 h, and the resulting gray slush was diluted with 50 mL of H₂O. The organic product was subsequently extracted with CCl₄ (3 × 50 mL), dried over Na₂SO₄, and purified by distillation; yield 20 g of $C_6D_3Me_2$ -1,3-Br-2 with 90% deuterium enrichment of the three aryl hydrogens.

 $\begin{array}{l} TaCl_2(C_6H_4CH_2NMe_2-2)[=C(t-Bu)\{C_6D_3(CH_2NMe_3)_2-2,6\}]. \\ C_6D_3Me_2-1,3-Br as prepared above was used for the successive synthesis (six further steps) of TaCl_2(C_6H_4CH_2NMe_2-2)[=C(t-Bu)\{C_6D_3(CH_2NMe_2)_2-2,6\}] as described for its non-deuterated analogue 5. \end{array}$

Crystal Structure Determination of 2. Crystal data and numerical details of the structure determination of 2 are given in Table II. X-ray data were collected for a red-brown crystal mounted on a glass fiber at 100 K on an Enraf-Nonius CAD4 diffractometer with Zr-filtered Mo K α radiation. The cell parameters were derived from the 25 SET4 setting angles with $15 < \theta < 18^{\circ}$. Intensity data were corrected for Lp, a small linear decay of 1%, and absorption (corrections 0.76:1.39) (DIFABS).³⁵

⁽³⁴⁾ An explanation for the too low C, H, N values found for this new complex is the incorporation of a little ZnCl₂ that is coordinated by the "free" CH₂NMe₂ functions. Anal. Calcd for 5-0.2 ZnCl₂: C, 46.49; H, 5.70; N, 6.26.

⁽³⁵⁾ Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.

The structure was solved for the heavy atoms with the TREF option of SHELXS-8636 and subsequent difference Fourier syntheses and refined by full-matrix least squares techniques on $F.^{37}$ All H-atoms were introduced at calculated positions with C-H = 1.08 Å and refined riding on their carrier atom. Convergence was reached at R = 0.034, $R_w = 0.054$. Weights were based on counting statistics. One common isotropic thermal parameter for H-atoms was used. Scattering factors were taken from Cromer and Mann,³⁸ and anomalous dispersion corrections, from Cromer and Liberman.³⁹ Refinement of the enantiomorphous model resulted in the slightly higher R = 0.036. Geometrical calculations and illustrations were done with the program

(36) Sheldrick, G. M. SHELXS86. Program for crystal structure determination. University of Göttingen, Federal Republic of Germany, 1986

University of Cambridge, England, 1976.
(38) Cromer, D. T.; Mann, J. B. Acta Crystallogr. 1968, A24, 321.
(39) Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.

PLATON.⁴⁰ All calculations were carried out on a MicroVax-II cluster. Final coordinates of the non-hydrogen atoms of 2 are given in Table III.

Acknowledgment. This work was supported in part (H.C.L.A. and A.L.S.) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO). We thank R. Hueber for recording the mass spectra and A. J. M. Duisenberg for collecting the X-ray data.

Supplementary Material Available: For 2, tables of hydrogen atom positions and isotropic thermal parameters, anisotropic thermal parameters, and complete bond distances and angles (5 pages). Ordering information is available on any current masthead page.

OM9300991

⁽³⁷⁾ Sheldrick, G. M. SHELX76. Crystal structure analysis package.

⁽⁴⁰⁾ Spek, A. L. Acta Crystallogr., Sect. A 1990, 46, C34.