The First Palladium(0) Complex with Only Secondary Phosphines as Ligands and Its Oxidative-Addition Reactions with $CH₂Cl₂$ and CHCl₃, Giving the Thermally Stable **Derivatives** *trans***-[** $PdCl(R)(PBu^t_2H)_2$ **] (** $R = CH_2Cl$ **,** $CHCl_2$ **)**

Piero Leoni

Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, Via Risorgimento, 35, I-56126 Pisa, Italy, and Scuola Normale Superiore, Piazza dei Cavalieri, **7,** *I-56100 Pisa, Italy*

Received April 22, 1993

Summary: Pd(PBut₂H)₃, (1), obtained by reacting Pd- $(n^5-C_5H_5)(n^3-C_3H_5)$ with PBu^t₂H, oxidatively adds the *C-C1 bond of methylene chloride and of chloroform,giving the thermally stable derivatives trans-[PdCl(CH2Cl)-* $(PBu^t_2H)_2$, (2) and trans-[PdCl(CHCl₂)(PBu^t₂H)₂], (3), *respectively. Complex 1 solutions deposit, by gentle warming, the known dimer* $[Pd(\mu-PBu_t^t)(PBu_t^t)]]_2$ *.*

Although tertiary phosphines are ubiquitous ligands in coordination and organometallic chemistry, $¹$ the amount</sup> of data available on primary and secondary phosphine metal complexes are relatively scarce. Notably low is the number of reports on the synthesis of low-valent mononuclear complexes with late transition metals. Only two types of d^7 systems appear to have been reported, namely $[IrH(PEt₂H)₅]Y²$ and $CoX₂(PR₂H)_n$;³ something more is known about d⁸ systems (Fe(0),^{4,5} Rh(I),^{2,6-9} Ir(I),^{2,5-9} Ni- (II) ,¹⁰ Pd (II) ,^{7,11} and Pt (II) ¹²), and far as d¹⁰ systems are concerned, examples are limited to $Au(I),^{13,14}$ but $M(0)$ partners $(M = Ni, Pd, Pt)$ are unknown. The main obstacle to the isolation of such systems comes from the reactivity of P-H bonds, which easily undergo oxidative addition to electron-rich metal fragments, giving phosphido-hydrido deratives. $6,15$ On the other hand, the great aptitude of phosphido ligands to bind to late transition metals in a bridging rather than a terminal fashion accounts for the utility of secondary phosphine complexes as precursors to polynuclear derivatives.16

- **(3)** Bressan, M.; Rigo, P. *Znorg.* Chem. **1975, 14, 38.**
- **(4)** Cowley, A. H.; Kemp, R. A. *Znorg.* Chem. **1983,22,647.**
- **(5)** Powell, **J.;** Gregg, M. R.; Sawyer, J. F. *Znorg.* Chem. **1988,27,4626.**
- **(6)** Hayter, R. G. *Znorg.* Chem. **1964, 3, 301. (7)** Sanders, **J.** R. *J.* Chem. *SOC. A* **1971, 2991.**
-
- **(8)** Hackett Bushweller, C.; Rithner, C. D.; Butcher, D. J. *Inorg.* Chem.

1984, 23, 1967.

(9) Murray, B. D.; Power, P. P. Organometallics 1984, 3, 1199.

(10) (a) Palmer, R. A.; Whitcomb, D. R. J. Magn. Reson. 1980, 39, 371.

(b) Rigo, P.; Bressan, M. Inorg. Chem. 1972, 11, 1314.

(11) (a) Pas **3046.**

(12) Huffman, **J.** C.; Lloyd, B. R. *Znorg.* Chem. **1989,28,3087. (13)** (a) Schmidbaur, H.; Weidenhiller, G.; Steigelmann, 0.; Miiller, G.

Chem. Ber. 1990, 123, 285. (b) Schmidbaur, H.; Aly, A. A. M. Z.
Naturforsch., B 1979, 34, 23. (c) Schmidbaur, H.; Weidenhiller, G.; Aly, A. A. M.; Steigelmann, O.; Müller, G. Z. Naturforsch., B 1989, 44, 1503.
A. A. M.; St 327. (c) Dyson, D. B.; Parish, R. V.; McAuliffe, C. A.; Pritchard, R. G.; Fields, R.; Beagley, B. J. Chem. Soc., Dalton Trans. 1989, 907.
(15) Baker, R. T.; Calabrese, J. C.; Glassman, T. E. Organometallics

1988, 7, 1889.

An earlier report¹⁷ on the reactivity of $Pd(n^5-C_6H_5)(n^3 C_3H_5$) with PBu^t₂H described the formation of the Pd(I) dimer $[Pd(\mu-PBu_t^t)(PBu_t^t)]]_2$. The reaction proceeds in high yield under severe thermal conditions, and the dimer was suggested to form through the intermediacy of Pd(PBut2H)z. Interest in such a compound **as** a promising building block for the synthesis of new mono- and polynuclear Pd derivatives stimulated a reexamination of the reaction.

 $Pd(\eta^5-C_5H_5)(\eta^3-C_3H_5)$ reacts rapidly and completely with PButzH in excess, giving a colorless, air-sensitive solid (92 *5%* yield) which has been characterized by spectroscopic and elemental analyses as $Pd(PBu_t^H)$ ₃ (1a).¹⁸ The IR spectrum of la exhibits a single ν_{PH} band of medium-strong intensity at 2244 cm^{-1} , while ν _{-CH} bands in the 3100-3000-cm-l region are missing. The absence of both the Cp and allyl functionalities¹⁹ has been confirmed by NMR spectroscopy (benzene- d_6 , 293 K). The ¹H NMR spectrum consists of two slightly broadened doublets (integrated ratio 1:18), one at 4.40 ppm with a typical large $^{1}J_{\text{PH}}$ value (256 Hz) for the P-H protons and the second at 1.42 ppm $(^3J_{\text{PH}} = 27 \text{ Hz})$ for the tert-butyl protons. The ³¹P{¹H} NMR spectrum (toluene-d₈, 293 K) shows a singlet at 54.5 ppm that splits into a broadened doublet ($^{1}J_{\text{PH}} = 256 \text{ Hz}$) in the corresponding proton-coupled spectrum. 1H and proton-coupled ³¹P NMR spectra of $M(PR_2H)$, fragments $(n > 1)$ are generally more complicated due to the presence of the $[AMX_m]_n$ spin system $(A = P, M = P-H, X = R)$ protons);^{10a,11a,20} the simplicity of complex 1 spectra suggests a rapid equilibration (eq 1) causing the loss of PP', PH', and HH' inter-phosphine couplings.

⁽¹⁾ McAuliffe, C. A. In *Comprehensive Coordination Chemistry;* Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., **1987;** Vol. **2,** p **989. (2)** Rigo, P.; Bressan, M. *Znorg.* Chem. **1976,** *15,* **220.**

⁽¹⁶⁾ (a) Rosenberg, S.;Geoffroy,G. L.;Rheingold, A. L. *Organometallics* **1985,4,1184.** (b) Powell, **J.;** Brewer, J. C.; Gulia, G.; Sawyer, J. F. *Inorg. Chem.* **1989,** *28,* **4470.** (c) Blum, T.; Braunstein, P.; Tiripicchio, **A,;** Tiripicchio Camellini, M. *Organometallics* **1989,8, 2504.**

⁽¹⁷⁾ Leoni, P.; Sommovigo, M.; Pasquali, M.; Sabatino, P.; Braga, D. J. *Organomet.* Chem. **1992,423, 263.**

⁽¹⁸⁾ $Pd(\eta^5-C_5H_5)(\eta^3-C_3H_5)$ (807 mg, 4.09 mmol) was dissolved in acetone **(15 mL)** and slowly dropped at 0 °C into a solution of 2.442 **g** (16.7 mmol) of PButzH in acetone **(10** mL). A colorless solid precipitated during the addition. The mixture was stirred for **16** min at room temperature, and the solid was filtered, washed with acetone (10 mL), and *uacuum* dried, giving 2.05 *g* of 1a. Anal. Calcd for C₂₄H₅₇P₃Pd: C, 52.9; H, 10.5. Found: C, 52.4; H, 10.2.

⁽¹⁹⁾ (a) The formation of complex **1** is accompanied by the reductive elimination of 5-allyl-1,3-cyclopentadiene, which rapidly isomerizes to 1-allyl-1,3-cyclopentadiene (¹³C NMR (C₆D₈, 293 K) δ 147.08 (147.43) ⁸, **137.28 (137.42)** d, **132.77 (132.57)** d, **131.11 (131.02)** d, **127.34 (127.50)** d, **115.42 (115.00)** t, **43.34 (43.30)** t, **35.54 (35.49)** t)l@b and then, slowly, to an equilibrium mixture of **1-** and **2-allyl-1,3-cyclopentadiene** (W **NMR 133.80 (133.71)** d, **126.98 (126.85)** d, **115.73 (116.26)** t, **41.46 (41.37)** t, **34.24 (34.63)** tl.19b The same behavior was observed in the reaction of $Pd(\eta^5-C_5H_6)(\eta^3-C_3H_6)$ with tertiary phosphines.^{19c,d} (b) Literature δ values (in parentheses) taken from: Hill, E. A.; Hsieh, K.; Condroski, K.; Sonnentag, H.; Skalitzky, D.; Gagas, D. J. Org. Chem. 1989, 54, 52 Werner, H. *Helu. Chim. Acta* **1973,56, 2819.** Cas, **293** K) **6 145.03 (145.24) 8, 136.67 (136.77)** d, **134.89 (134.77)** d,

Figure 1. NMR spectra of complex 2, showing the subspectra of the $[AMX_{18}]_2$ spin system: (a) ¹H spectrum, X component $(C(CH_3)_3$ protons); (b) ¹H spectrum, M component $(P-H)$ protons) and the CH₂Cl triplet; (c) proton-coupled ³¹P spectrum, A component.

$$
\mathbf{Pd}(\mathbf{PBu}_2^t \mathbf{H})_3 \rightleftarrows \mathbf{Pd}(\mathbf{PBu}_2^t \mathbf{H})_2 + \mathbf{PBu}_2^t \mathbf{H} \qquad (1)
$$

1a 1b

The above equilibrium was confirmed by low-temperature ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR spectra (toluene- d_8). At 203 K the main singlet is found at **55.1** ppm and new small singlets appear at **62.1** and **17.5** ppm; the signal at **17.5** ppm has been assigned to free $PBu_{2}^{t}H$, by comparison with a sample of the pure ligand analyzed under identical conditions (toluene-de, **203 K).21** The signals at **55.1** and **62.1** ppm have been attributed to **la** and **lb,** respectively. Although quantitative comparisons of peak areas are affected by large errors in 31P{1HJ NMR spectroscopy, **la** was qualitatively observed to be the predominant species in solution.²² Addition of excess PBu^t₂H did not affect significantly the chemical shift of the signal at **55.1** ppm or the yields or the elemental analyses of the preparations, suggesting that $Pd(PBu_t^t)$ is not accessible for steric reasons.

As far as its reactivity is concerned, at least two sites in complex **la** are susceptible to profitable synthetic manipulations: (a) the P-H bonds of the secondary phosphines, which can oxidatively add to other metal fragments and generate new polynuclear derivatives, and (b) the electron-rich metal, to which a reactivity pattern similar to that observed in the parent Pd(0) tertiary phosphine complexes23 can in principle be ascribed. The

previously anticipated¹⁷ intermediacy of a $Pd(0)$ $PBu^t₂H$ complex in the formation of the Pd(I) dimer $[Pd(\mu PBu_{2}^{t}(PBu_{2}^{t}H)$ ₂ was confirmed; in fact, gentle warming of a toluene solution of **la** causes the dimer to quantitatively separate out with H_2 evolution.

The Pd center easily undergoes oxidative-addition reactions. Complex 1a was suspended in CH_2Cl_2 and stirred at ambient temperature. Complete dissolution of the solid was observed in a few minutes and, after workup, 70% of pure *trans*-[PdCl(CH₂Cl)(PBu^t₂H)₂] (2) was obtained as a colorless, microcrystalline solid which was characterized by means of spectroscopic and elemental analyses.24

The IR spectrum of complex 2 shows ν_{PH} at 2332 cm^{-1} ; ν (as) and ν (s) for the CH₂ function were observed at 2979 and **2943** cm-l, respectively, and shifted to **2239** and **2156** $cm⁻¹$ in the $CD₂$ analogue. The presence of the chloromethyl functionality was confirmed by ¹H NMR spectra (benzene- d_6 , 293 K), which exhibit a sharp triplet $(^3J_{\rm PH}$ $= 10.9$ Hz) at 3.73 ppm, typical of $CH₂X$ protons coupled to two equivalent phosphines (trans-[PdCl(CH₂Cl)(PCy₃)₂] δ 3.92 ppm, t, ${}^3J_{\text{PH}}$ = 8.0 Hz);²⁵ this signal was absent when CD_2Cl_2 was used instead of CH_2Cl_2 . The two chemically equivalent but magnetically inequivalent phosphine **ligands** produce the expected $[AMX_{18}]_2$ patterns $(A = P, M =$ $P-H, X = C(CH₃)₃$ in the ¹H and proton-coupled ³¹P NMR spectra.^{10a,11a,20} The ¹H NMR spectrum shows the X part of the spin system, constituted by the approximately **2:l: 2:1:2** quintet at **1.44** ppm (Figure la) due to the tert-butyl $protons;20$ other signals in the spectrum are a sharp doublet $(^1J_{\rm PH} + ^3J_{\rm PHM} = 321.8$ Hz) and a broad doublet $(J_{\rm apparent}$ = **125** Hz) both centered at **3.68** ppm (Figure lb) which constitute part of the M subspectrum (only the low-field element of a third symmetrical broad doublet **was** observed, the upfield element being hindered under the tert-butyl signal; **Japparent** and the intensity of this doublet depend on **2Jpp).10aJ1a,20** 31P{1H) spectra show a sharp singlet at **65.9** ppm, which splits into a six-line signal (Figure **IC)** in

^{(20) (}a) Mann, B. E. *J.* **Chem.** *Soc. A* **1970,3050. (b) Bright, A.; Mann, B. E.; Masters, C.; Shaw, B. L.; Slade, R. M.; Stainbank, R. E.** *J. Chem.* **SOC. A 1971, 1826.**

⁽²¹⁾ slP{lH) NMR chemical shifta of phosphines are temperature dependent; A6/AT values in the range 0.002-0.07 ppm/deg have been measured in: Gordon, M. D.; Quin, L. D. *J. Magn. Reson.* **1976,22,149. tBulPH absorbs at 20.2 ppm at 293 K.**

⁽²²⁾ The **amount of diseociation of la at 203 K is ca, 5-10** ?6 , **aa evaluated by integration of SlP(1H) NMRspectra. However, meaningful comparison of peak areas of SlP NMR spectra is only obtainable in proton-coupled spectra (to avoid NOE effects). Moreover, free phosphines have long relaxation times, and long delays between each pulse should be employed. For both of these effects, and for the low solubility of the complex at 203 K, the time necessary to acquire spectra with correct integral ratios becomes prohibitively long. 1H NMR was not practical for this purpose because of serious overlapping of the signals.**

⁽²³⁾ Maitlis, P. M. In Comprehemiue Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, A. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 6, p 243.

⁽²⁴⁾ Anal. Calcd for $C_{17}H_{40}Cl_2P_2Pd$: C, 42.2; H, 8.34. Found: C, 42.4; H, 8.37.

⁽²⁵⁾ Huser, M.; Youinou, M. T.; Osborn, J. A. *Angew. Chem., Int. Ed. Engl.* **1989,28, 1386 and references therein.**

the corresponding proton-coupled spectrum (part **A** of the spin system).^{10a,11a} $^{1}J_{\text{PH}} = 318, \,^{2}J_{\text{PP}} = 380, \,^{3}J_{\text{PH}_{\text{M}}} =$ 3.75, ${}^{3}J_{\text{PH}_X}$ = 13.9, and ${}^{5}J_{\text{PH}_X}$ < 1 Hz could be extracted directly from the spectra, **as** indicated in the literature, and were consistent with the values for the analogue *trans-* $[MXY(PR₂H)₂].^{10a,11a,20}$

The same kind of reactivity was observed with CHCl₃, and *trans*-[PdCl(CHCl₂)(PBu^t₂H)₂] (3) was isolated in 65% yield. The dichloromethyl ligand was observed at $\delta_{\rm H}$ $= 6.15$ ppm (t, ${}^{3}J_{PH} = 11.2$ Hz, missing in the CDCl₂ analogue); all other signals in ${}^{1}H$, ${}^{31}P{}^{1}H$, and ${}^{31}P$ NMR spectra were consistent with the suggested structure²⁶ and much similar to the corresponding signals in the spectra of complex **2.**

Thermal^{25,27} and photochemical^{25,28,29} CH_2Cl_2 activation has precedents; however, undesired bimolecular decomposition of the chloromethyl derivatives to the corresponding chlorides and ethylene has often been observed. Similar decomposition pathways are even more accessible to dichloromethyl derivatives, which have been rarely observed as transient species and occasionally isolated.^{27f,29} Complexes **2** and 3 are stable both in the solid state and in solution³⁰ and represent excellent starting materials

for the synthesis of a large variety of palladium organometallics³¹ and good candidates for studies of catalytic incorporation of CH_2Cl_2 and $CHCl_3$ in organic chemicals by C-C-bond-forming cross-coupling reactions. 32

Acknowledgment. Financial support from the "Ministero della Ricerca Scientifica e Tecnologica" (MURST) and the Consiglio Nazionale delle Richerche (CNR, Rome) is gratefully acknowledged.

OM930186T

(29) (a) Freedman, D. A,; Mann, K. R. *Znorg. Chem.* **1991, SO,** *836.* (b) Labinger, J. A.; Osbom, J. A,; Coville, N. J. *Znorg. Chem.* **1980,19,3236. (30)** C& solutions of complexes **2** and **3** were heated **24** h at **55** OC

without noticeable decomposition.
(31) (a) Werner, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 927. (b)

⁽²⁶⁾ Anal. Calcd for $C_{17}H_{39}CJ_8P_2Pd$: C, 39.4; H, 7.59. Found: C, 39.1; H, 7.65. ¹H NMR (C₉D₆, 293 K): δ 6.15 (1 H, t, ${}^{3}J_{\rm PH} = 11.2$ Hz, CHCl₂), 3.1 (M part of the [AMX₁₈]₂ spin system, 2 H, P-H)

⁽²⁷⁾ **(a)Ghilardi,C.A.;Midollini,S.;Moneti,S.;Orlandiui,A.;Ramirez,** J. A. J. *Chem. SOC., Chem. Commun.* **1989,304.** (b) Bums, **E. G.;** Chu, S. S. C.; de Meester, P.; Lattman, M. Organometallics 1986, 5, 2383. (c)
Monaghan, P. K.; Puddephatt, R. J. Organometallics 1985, 4, 1406. (d)
Winter, C. H.; Gladysz, J. A. J. Organomet. Chem. 1988, 354, C33. (e)
Appleton, W. R.; Fryzuk, M. D.; James, B. R.; Rettig, S. J. *Organometallics* **1991, 10, 3767.**

^{(28) (}a) Caapar, J. **V.** J. *Am. Chem. SOC.* **1986,107,6718.** (b) Bartocci, C.; Maldotti, A.; Soetero, S.; **Travereo,** 0. J. *Organomet. Chem.* **1983,258, 253.**

⁽³¹⁾ (a) Werner, H. *Angew. Chem., Znt. Ed. Engl.* **1983,22,927.** (b) Hofmann,L.; Werner, H. J. *Organomet. Chem.* **1986,289,141. (c)** Werner, H.; Paul, W.; Feser, R.; Zolk, R.; Thometzek, P. *Chem. Ber.* **1986,118, 261.** (d) Werner, H.; Hofmann, L.; **Feser,** R.; Paul, W. *J. Organomet. Chem.* **1986,282,317.** *(e)* Wemer, H. *fire Appl. Chem.* **1982,64,177. (32)** Negishi, E. *Acc. Chem. Res.* **1982,15, 340.**