Molecular and Electronic Structures of Clusters of the General Formulas $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ and $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_3(\mu_3 - A)_3$ (M = d-Block Element, A = Group 16 Element)

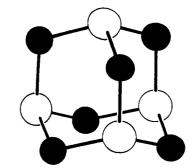
Frank Bottomley

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

Received December 17, 1992

The molecular and electronic structures of $[(\eta - C_5H_5)M]_4(\mu_2 - A)_6$ and $[(\eta - C_5H_5)M]_4(\mu_2 - A)_3$ - $(\mu_3 - A)_3$ (M = Ti, V, Mo; A = O, Se) are compared. Extended Hückel molecular orbital calculations show that the $M_4(\mu_2-O)_3(\mu_3-O)_3$ structure cannot exist unless the M_4 tetrahedron is severely distorted by lengthening of the M^{apical}-M^{basal} distance, because the μ_2 -A- μ_3 -A nonbonded interaction is repulsive. The $M_4(\mu_2$ -Se) $_3(\mu_3$ -Se) $_3$ structure can exist with a small distortion. The $M_4(\mu_2-A)_6$ structure is preferred over $M_4(\mu_2-A)_3(\mu_3-A)_3$ when M-A multiple bonding is important, that is when A = 0. There are 12 cluster orbitals for $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ and 9 for $[(\eta - C_5 R_5)M]_4$ - $(\mu_2-A)_3(\mu_3-A)_3$. The ordering of the energy levels is dependent on A, because the cluster orbitals are the antibonding counterparts of the M-A bonding interaction. Apart from the lowest energy orbital, 1a₁, there is little M–M interaction in any of the cluster orbitals.

Introduction


Clusters of general formula $[L_nM]_4(\mu_2-A)_6$ (L = ligand, M = metal, A = main group atom) with an adamantanelike $M_4(\mu_2 - A)_6$ core (Figure 1) are relatively common for d¹⁰ and main group metals M. Examples are {[XZn]₄- $(\mu_2 - X)_6$ ²⁻ (X = Cl, Br, I),^{1,2} [MeSn]₄(μ_2 -S)₆, and [SP]₄- $(\mu_2-S)_6$ ^{3,4} Clusters of this type were not known until recently for non-d¹⁰ transition elements when A is an atom, although examples exist when A is a group, e.g. in $\{[(PhS)M]_4(\mu_2-SPh)_6\}^{2-}$ (M = Mn, Fe, Co).⁵⁻⁸ Two examples containing non-d¹⁰ transition metals M, combined with oxygen as element A have now been prepared: $[(\eta C_5Me_5M]_4(\mu_2-O)_6$ (M = Ti,⁹V;¹⁰Figure 2). These contain formally d^0 and d^1 metal ions.

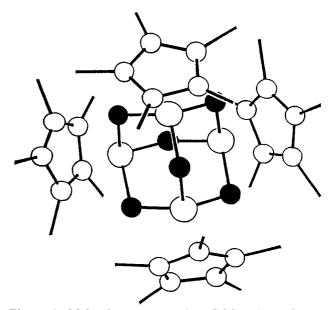
Recently, three clusters having an alternative to the $[L_nM]_4(\mu_2-A)_6$ structure have been prepared. These are $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_3(\mu_3-Se)_3$ (Figure 3),¹¹ $(\eta-C_5Me_5)_6-Mo_8O_{16}$ (Figure 4),¹² and $(\eta-C_5Me_5)_4Mo_5O_{11}$ (Figure 5),¹³ with the $M_4(\mu_2-A)_3(\mu_3-A)_3$ core shown in Figure 6. In the latter two clusters, one η -C₅R₅ ligand is replaced by terminal or bridging oxo ligands to give the $[(\eta-C_5 Me_5 Mo(\mu_2-O)]_3(\mu_3-O)_3 Mo(O)_2(R)$ unit (Figure 7). The clusters $[(\eta - C_5Me_5)Ti]_4(\mu_2 - O)_6$ and $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3$ -

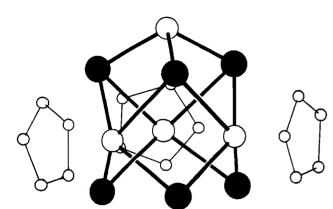
(1) Dean, P. A. W.; Vittal, J. J. In Metal Binding in Sulfur-Containing Proteins; Stillman, M. J., Shaw, C. F., Suzuki, K. T., Eds.; VCH Publishers (in press).

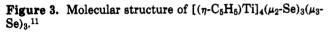
- Bottomley, F.; Karslioglu, S. Organometallics 1992, 11, 326.
 Dance, I. G. Polyhedron 1986, 5, 1037.

- (4) Krebs, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 113.
 (5) Dean, P. A. W.; Vittal, J. J. Can. J. Chem. 1988, 66, 2443.
 (6) Harris K. S. Karris K
- (6) Hagen, K. S.; Holm, R. H. Inorg. Chem. 1984, 23, 418.
 (7) Hagen, K. S.; Stephan, D. W.; Holm, R. H. Inorg. Chem. 1982, 21, 3928
- (8) Dean, P. A. W., Vittal, J. J.; Payne, N. C. Inorg. Chem. 1987, 26, 1683
- (9) Babcock, L. M.; Day, V. W.; Klemperer, W. G. J. Chem. Soc., Chem. Commun. 1987, 858
- (10) Bottomley, F.; Magill, C. P.; Zhao, B. Organometallics 1991, 10, 1946.
 - (11) Bottomley, F.; Day, R. W. Organometallics 1991, 10, 2560.
 (12) Harper, J. R.; Rheingold, A. L. J. Am. Chem. Soc. 1990, 112, 4037.
 - (13) Bottomley, F.; Boyle, P. D.; Chen, J. To be published.

Figure 1. $M_4(\mu_2 - A)_6$ adamantane-like core of $[L_n M]_4(\mu_2 - A)_6$.




Figure 2. Molecular structure of $[(\eta - C_5 Me_5)M]_4(\mu_2 - O)_6$ (M = Ti, V).^{9,10}


 $(\mu_3-Se)_3$ are particularly interesting since they have a common formula, $[(\eta - C_5 R_5)T_i]_4 A_6$, with A = group 16

© 1993 American Chemical Society

 $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ and $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_3(\mu_3 - A)_3$

 $\bigcirc - \bigcirc - \bigcirc - \bigcirc$

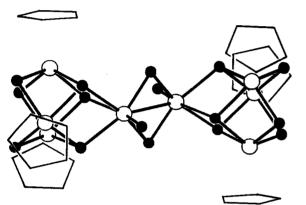


Figure 4. Molecular structure of $(\eta$ -C₅Me₅)₆Mo₈O₁₆.¹²

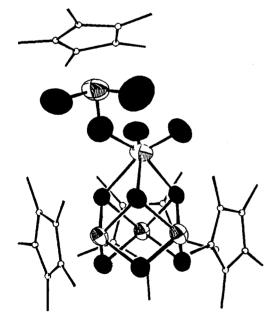


Figure 5. Molecular structure of $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$.

element. There is more steric repulsion in $M_4(\mu_2-A)_3(\mu_3-A)_3$ than in $M_4(\mu_2-A)_6$ because of the eclipsed arrangement of the A atoms in the former. Therefore it is not clear why $[(\eta-C_5Me_5)Ti]_4(\mu_2-O)_6$ and $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_3(\mu_3-Se)_3$ adopt the observed structures.

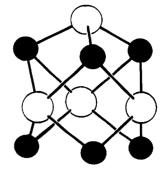
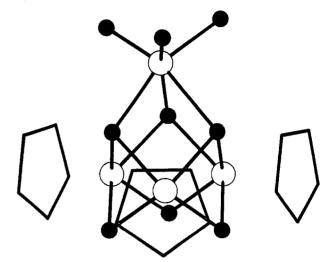
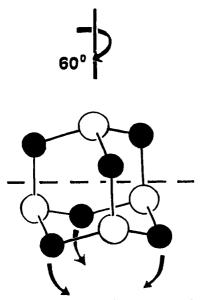
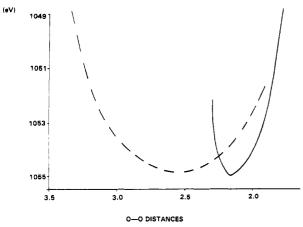


Figure 6. $M_4(\mu_2-A)_3(\mu_3-A)_3$ core of $[L_nM]_4(\mu_2-A)_3(\mu_3-A)_3$.




Figure 7. ${[(\eta - C_5R_5)Mo(\mu_2 - O)]_3(\mu_3 - O)_3Mo(O)_3]}^-$ core of $(\eta - C_5Me_5)_4Mo_5O_{11}$ and $(\eta - C_5Me_5)_6Mo_8O_{16}$.

The present work explores the relationship between the $M_4(\mu_2-A)_6$ and $M_4(\mu_2-A)_3(\mu_3-A)_3$ structures and discusses the reasons for the occurrence of one or the other.


Results and Discussion

Comparison of the $M_4(\mu_2-A)_6$ and $M_4(\mu_2-A)_3(\mu_3-A)_3$ Structures. Extended Hückel calculations on $M_4(\mu_2-O)_6$ and $M_4(\mu_2-O)_3(\mu_3-O)_3$ cores (M = Ti, V, Mo, without η -C₅H₅ ligands), using a regular tetrahedron for the metal atoms, proved that the $M_4(\mu_2-O)_6$ structure was always of lower total energy for any reasonable M-O distances. For $M_4(\mu_2-Se)_6$ and $M_4(\mu_2-Se)_3(\mu_3-Se)_3$ there were no significant differences in the total energies. Therefore we first discuss the reason for the difference between the oxide and selenide cases.

The $M_4(\mu_2-A)_6$ and $M_4(\mu_2-A)_3(\mu_3-A)_3$ structures are related by the motions shown in Figure 8. In essence, three A atoms rotate by 60°, changing from two- to threecoordinate, converting the staggered (octahedral) arrangement of A atoms into the eclipsed (trigonal pyramidal) arrangement. As the three A atoms rotate, the repulsion between the three- and the two-coordinate A atoms increases markedly. The repulsion is reduced by a downand inward movement of the two-coordinate A atoms, but this movement increases the repulsion between the twocoordinate A atoms themselves. The effect of the two types of repulsion on the total energy is shown in Figure 9 for $Mo_4(\mu_2-O)_3(\mu_3-O)_3$ with Mo-Mo = 3.00 Å and Mo-O 1.93 Å. The minimum energy occurs at an O^2-O^3 distance of 2.15 Å and an O^2-O^2 distance of 2.55 Å (A³ = three-coordinate A atom, $A^2 =$ two-coordinate A atom). In $(\eta$ -C₅Me₅)₄Mo₅O₁₁ and $(\eta$ -C₅Me₅)₆Mo₈O₁₆ the observed

Figure 8. Movements required to convert $M_4(\mu_2-A)_6$ into $M_4(\mu_2-A)_3(\mu_3-A)_3$.

Figure 9. Total energy of $Mo_4(\mu_2-O)_3(\mu_3-O)_3$ as a function of O²-O³ (--) and O²-O² (--) distances.

 O^2-O^3 distances are not significantly different from one another and average 2.44 Å; the O^2-O^2 distances average 2.78 Å. Thus, the O^2-O^3 distance calculated for an idealized Mo₄(μ_2 -O)₃(μ_3 -O)₃ structure is shorter by 13.4% than the observed nonbonding contact, whereas the calculated O^2-O^2 distance is 9.0% shorter. The O^2-O^3 interaction is calculated to be repulsive (antibonding, see below), and it is this interaction which is responsible for the higher energy of the $M_4(\mu_2-O)_3(\mu_3-O)_3$ structure compared to $M_4(\mu_2 - O)_6$. Dramatic proof of this was obtained when $V_4(\mu_2 - O)_6$, with V - V = 3.00 Å and V - O =1.81 Å, was compared to $V_4(\mu_2-O)_3(\mu_3-O)_3$, with V-V = $3.00 \text{ Å}, \text{V}^{\text{b}}-\text{O}^2 = 1.81 \text{ Å}, \text{V}^{\text{b}}-\text{O}^3 = 1.90 \text{ Å}, \text{ and } \text{V}^{\text{a}}-\text{O}^3 = 1.90$ Å (M^a = apical M atom, M^b = basal M atom). The calculated O²-O³ distance was reduced to 1.70 Å, and the total energy increased by 12 eV. Thus it is concluded that the $M_4(\mu_2-O)_3(\mu_3-O)_3$ structure will not be stable with respect to $M_4(\mu_2-O)_6$ without significant distortion of the M₄ tetrahedron, as occurs in $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$ and $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$ $C_5Me_5)_6Mo_8O_{16}$.

The effect of Se²–Se³ and Se²–Se² repulsions on the total energy of Ti₄(μ_2 -Se)₃(μ_3 -Se)₃ with Ti–Ti = 3.375 Å and Ti–Se = 2.56 Å is shown in Figure 10. Both curves are flatter than the corresponding ones for Mo₄(μ_2 -O)₃(μ_3 -O)₃. The minimum energy occurs for Se²–Se³ = 3.15 Å

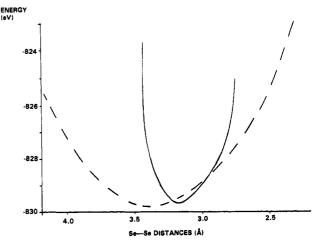


Figure 10. Total energy of $Ti_4(\mu_2-Se)_3(\mu_3-Se)_3$ as a function of Se^2-Se^3 (--) and Se^2-Se^2 (---) distances.

and Se²-Se² = 3.35 Å. The Se²-Se³ distances in $[(\eta$ -C₅H₅)-Ti]₄(μ_2 -Se)₃(μ_3 -Se)₃ average 3.28 Å, and the Se²-Se² distances, 3.67 Å. The calculated Se²-Se³ contacts are only 4% smaller than the observed values, and therefore an undistorted M₄(μ_2 -Se)₃(μ_3 -Se)₃ structure may be stable.

Comparison of the $[(\eta-C_5R_5)M]_4(\mu_2-A)_6$ and $[(\eta-C_5R_5)M]_4(\mu_2-A)_6$ C_5R_5 M]₄(μ_2 -A)₃(μ_3 -A)₃ Structures. The calculations established that the $M_4(\mu_2-O)_3(\mu_3-O)_3$ core was markedly unstable with respect to $M_4(\mu_2-O)_6$ when the M_4 unit was an undistorted tetrahedron. In fact the clusters (η -C₅- Me_5)₄ Mo_5O_{11} and $(\eta$ -C₅ Me_5)₆ Mo_8O_{16} are distorted, having Mo^a-Mo^b distances of 3.31 Å and Mo^b-Mo^b distances of 2.73 and 2.74 Å, respectively.^{12,13} The distortion in [$(\eta$ - C_5H_5 Ti]₄(μ_2 -Se)₃(μ_3 -Se)₃ is much less severe, the Ti¹-Ti^b distances averaging 3.46 Å and Ti^b-Ti^b averaging 3.29 Å.¹¹ The questions are as follows. Why does $[(\eta - C_5 H_5)Ti]_4Se_6$ have the $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ structure, whereas $[(\eta - C_5 Me_5)Ti]_4 O_6$ is $[(\eta - C_5 Me_5)Ti]_4(\mu_2 - O)_6$, and why is the highly distorted $[(\eta - C_5 Me_5) Mo(\mu - O)]_3(\mu_3 - O)_3 Mo(O)_2 R$ unit preferred to $[(\eta - C_5 Me_5) Mo(\mu - O)]_3(\mu_2 - O)_3 Mo(O)_2 R?$ Note that there was no interconversion between $[(\eta - C_5H_5)Ti]_4$ - $(\mu_2-Se)_3(\mu_3-Se)_3$ and $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_6$, as judged by NMR methods.

The first possible reason for the observed structures is the different steric repulsions of the η -C₅R₅ ligands (R = H, Me). The average Ti-Ti distance in $[(\eta$ -C₅Me₅)Ti]₄-(μ_2 -O)₆ is 3.25(3) Å.⁹ In $[(\eta$ -C₅H₅)Ti]₄(μ_2 -Se)₃(μ_3 -Se)₃ the Ti^a-Ti^b distances average 3.462(4) Å and the Ti^b-Ti^b distances, 3.288(4) Å.¹¹ Obviously, there would be no steric problem in interchanging the η -C₅Me₅ and η -C₅H₅ ligands in these compounds. The average Mo^b-Mo^b distance in (η -C₅Me₅)₄Mo₅O₁₁ and (η -C₅Me₅)₆Mo₈O₁₆ is 2.737(1) Å,^{12,13} and the Cr-Cr distances in the undistorted cubane [(η -C₅Me₅)Cr(μ_3 -O)]₄ average 2.834(2) Å.¹⁴ It is concluded that steric differences between η -C₅H₅ and η -C₅Me₅ od not determine the structure adopted by [(η -C₅R₅)M]₄A₆.

It is less easy to assess the different electronic influences of η -C₅H₅ and η -C₅Me₅, because the M₄(μ_2 -A)₆ structure is only known with η -C₅Me₅ whereas M₄(μ_2 -A)₃(μ_3 -A)₃ occurs with both η -C₅H₅ and η -C₅Me₅. However, the η -C₅R₅ ligand will have an electronic influence on the metal, not on the coordination number of A, and as discussed below, the electronic structure of the metal is not a factor

⁽¹⁴⁾ Bottomley, F.; Chen, J.; MacIntosh, S. M.; Thompson, R. C. Organometallics 1991, 10, 906.

in determining which of the two molecular structures will be adopted.

Another possible reason is the number of cluster electrons and their configuration. These are determined by the identity of the metal M, the formal oxidation state of which is +4 (regarding η -C₅R₅ as having a -1 charge and the group 16 element as -2). A detailed analysis (see below) showed that the cluster orbitals are essentially pure metal d and, with one exception, nonbonding in character, as in other clusters of this type such as $[(\eta - C_5 R_5)Cr(\mu_3 - O)]_4$.^{15,16} Since $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$ have 12 cluster orbitals but $[(\eta - C_5 R_5)M]_4(\mu_2 -$ C_5R_5 M]₄(μ_2 -A)₃(μ_3 -A)₃ only 9, clusters with more than 18 cluster electrons (which have not yet been prepared) will strongly favor $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$. There is one orbital in $[(\eta - C_5H_5)M]_4(\mu_2 - A)_6$ which is strongly bonding with respect to the M-M interaction within the M_4 tetrahedron and one orbital in $[(\eta - C_5H_5)M]_4(\mu_2 - A)_3(\mu_3 - A)_3$ which is strongly bonding with respect to the Mb-Mb interaction within the M₃ basal plane, but occupation of this orbital (e.g. when M = V or Mo) does not determine which of the two structures is adopted.

A further possibility is that A^2-A^3 bonding along the axis of the trigonal pyramid of A atoms stabilizes [$(\eta$ - $C_5R_5M_4(\mu_2-A)_3(\mu_3-A)_3$, as has been suggested previously for other $[(\eta - C_5 R_5)M]_m A_n$ clusters.¹⁷ Such A²-A³ bonding implies that the resonance form $[(\eta - C_5H_5)M]_4(\mu_3 - \eta^2 - A_2)_3$ makes a significant contribution to the structure of $[(\eta$ - $C_5H_5M_4(\mu_2-A)_3(\mu_3-A)_3$. This argument was most easily tested by calculations on $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$. The diselenide structure $[(\eta - C_5H_5)Ti]_4(\mu_3 - \eta^2 - Se_2)_3$ contains formally Ti_4^{10+} and six cluster electrons, whereas the selenide $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ contains Ti_4^{16+} and no cluster electrons. Thus the extended Hückel calculations should show significant Se-Se overlap integrals and also a significant contribution of Ti orbitals to the highest occupied molecular orbitals of $[(\eta - C_5 H_5)Ti]_4(\mu_2 Se_{3}(\mu_{3}-Se)_{3}$. Neither of these predictions was borne out by calculations on the $Ti_4(\mu_2$ -Se)_3(μ_3 -Se)_3 core, nor on [(η - C_5H_5 Ti]₄(μ_2 -Se)₃(μ_3 -Se)₃ itself. The Se²-Se³, Se²-Se², and Se³-Se³ overlap populations were all small and negative (-0.019, -0.001, and -0.007 respectively). These may be compared to the Ti-Se overlap populations which were in the range +0.261 to +0.543. Thus all of the Se-Se interactions are antibonding. The highest occupied molecular orbitals of $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ form a set of eight, spanning a range in energy of 0.067 eV. There was a contribution of Ti d orbitals to this set, but it was small (maximum of 5% to any one orbital) and somewhat less than the contribution to these orbitals in $[(\eta - C_5H_5) Ti]_4(\mu_2-Se)_6$. Thus neither the Se–Se overlap populations nor the contribution of Ti orbitals to the highest occupied molecular orbitals supports the concept of Se²-Se³ bonding in these clusters. Calculations on an idealized $[(\eta - C_5 H_5) Ti]_4(\mu_2 - O)_3(\mu_3 - O)_3$ cluster gave a similar result.

The final possibility is that M-A multiple bonding is important in determining which of the structures is adopted. Multiple bonding between a three-coordinate oxygen atom and a metal will be minimal, but that involving a two-coordinate oxygen atom may be extensive. Multiple bonding between O and M has been identified as a major contributor to the stability of the $M(\mu_2-O)M$

unit.^{18,19} The average Ti–O distance of 1.837(3) Å in [(n-1)] $C_5Me_5)Ti_{4}(\mu_2-O)_6$ is in the range 1.75-1.85 Å^{20,21} usually observed in complexes containing the six-coordinate $(\eta$ -C₅R₅)TiL₂(μ -O⁻) unit. These distances are shorter than those for Ti-O where multiple bonding is not possible because of a higher coordination number of Ti or O, where the range is 1.95-2.15 Å.^{20,22} The average Mob-O² distances in $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$ and $(\eta - C_5 Me_5)_6 Mo_8 O_{16}$ are 1.930(8) and 1.954(2) Å, respectively. Where multiple bonding is present, Mo-O² distances are in the range 1.85-1.90 Å;^{20,23,24} otherwise the range is 1.95-2.05 Å. 20,23,25 Thus the Mo-O² distances in $(\eta - C_5 M e_5)_4 M O_5 O_{11}$ and $(\eta - C_5 M e_5)_6 M O_8 O_{16}$ suggest that there is little Mo-O multiple bonding in these compounds. The average Ti^b-Se distance in $[(\eta-C_5H_5) Ti]_4(\mu_2-Se)_3(\mu_3-Se)_3$ (2.508(3) Å) is in the range normally observed for a Ti-Se single bond (2.37-2.64 Å^{11,26-28}) and is in fact longer than the average Ti^a-Se³ distance of 2.389-(3) Å. This indicates that there is little Ti-Se² multiple bonding.

Multiple bonding in these compounds can be assessed by comparative extended Hückel calculations on $[(\eta$ - C_5H_5 $Ti]_4(\mu_2-A)_6$ and $[(\eta-C_5H_5)Ti]_4(\mu_2-A)_3(\mu_3-A)_3$ (A = O, Se). However, a problem arises in estimating the distances in the two unknown clusters $[(\eta - C_5 H_5)T_i]_4(\mu_2 - O)_3(\mu_3 - O)_3$ and $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_6$. As indicated above, if the Ti-Ti and Ti-O distances of $[(\eta - C_5Me_5)Ti]_4(\mu_2 - O)_6$ are used to model $[(\eta - C_5H_5)Ti]_4(\mu_2 - O)_3(\mu_3 - O)_3$, the O²-O³ distance will be reduced to an impossible value. Increasing the Ti-Ti distance to obtain reasonable Ti-O and O²-O³ distances will automatically decrease the Ti-O overlap population and thus the estimate of Ti-O multiple bonding. Conversely, using the long Ti-Se² distance of $[(\eta - C_5 H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ to model $[(\eta - C_5 H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ Se)₆ will lead to an underestimate of the multiple bonding in the latter cluster. For $[(\eta - C_5H_5)T_1]_4(\mu_2 - O)_3(\mu_3 - O)_3$ the Ti-Ti and Ti-O distances were fixed at the same values as for the average Mo-Mo and Mo-O distances in the $[(\eta - C_5 Me_5)Mo(\mu_2 - O)]_3(\mu_3 - O)_3 Mo(O)_2 R unit in (\eta - C_5 Me_5)_4$ Mo_5O_{11} and $(\eta - C_5Me_5)_6Mo_8O_{16}$ (Mo^a-Mo^b = 3.31 Å, Mo^b- $Mo^{b} = 2.735 \text{ Å}, Mo^{a} - O^{3} = 2.175 \text{ Å}, Mo^{b} - O^{3} = 2.03 \text{ Å}, Mo^{b} - O^{3} = 2.0$ $O^2 = 1.93$ Å). Since Mo and Ti have similar radii (2.01 and 2.00 Å, respectively), this should result in a reasonable estimate of multiple bonding. For $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_6$ the Ti–Ti distance was taken as the average Ti–Ti distance in $[(\eta - C_5 H_5) T_i]_4 (\mu_2 - S_e)_3 (\mu_3 - S_e)_3$.

The procedure adopted for assessing the multiple bonding was to compare the Ti-A² overlap integral in $[(\eta$ - C_5H_5 Ti]₄(μ_2 -A)₃(μ_3 -A)₃ with that of Ti-A in [(η -C₅H₅)- $Ti]_4(\mu_2-A)_6$ when the Ti-A distances were varied. It was found that the Ti-Se overlap integral in $[(\eta - C_5H_5)Ti]_4$ - $(\mu_2$ -Se)₆ was proportionally equal to the Ti-O overlap

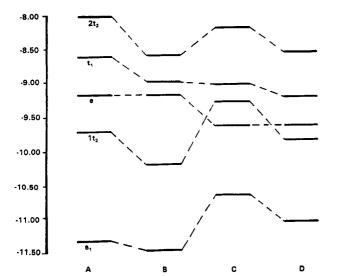
- B.; Steudel, R. Inorg. Chem. 1988, 27, 2596.
 (27) Bottomley, F.; Chin. T.-T.; Egharevba, G. O.; Kane, L. M.; Pataki,
 D. A.; White, P. S. Organometallics 1988, 7, 1214.
 - (28) Maué, P. G.; Fenske, D. Z. Naturforsch. 1988, 43B, 1213.

⁽¹⁵⁾ Bottomley, F.; Paez, D. E.; Sutin, L.; White, P. S.; Köhler, F. H.; Thompson, R. C.; Westwood, N. P. C. Organometallics 1990, 9, 2443.
(16) Williams, P. D.; Curtis, M. D. Inorg. Chem. 1986, 25, 4562.
(17) Rauchfuss, T. B. In The Chemistry of Organic Selenium and Chemistry of Orga

Tellurium Compounds; Patai, S., Ed.; Wiley: New York, 1987; p 339.

⁽¹⁸⁾ Hofmann, P.; Rösch, N.; Schmidt, H. R. Inorg. Chem. 1986, 25, 4470.

⁽¹⁹⁾ Honold, B.; Thewalt, U.; Herberhold, M.; Alt, H. G.; Kool, L. B.; Rausch, M. D. J. Organomet. Chem. 1986, 314, 105.


⁽²⁰⁾ Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28, 339.
(21) Carofiglio, T.; Floriani, C.; Sgamellotti, A.; Rosi, M.; Chiesi-Villa, A.; Rizzoli, C. J. Chem. Soc., Dalton Trans. 1992, 1081.

 ⁽²²⁾ Carofiglio, T.; Floriani, C.; Rosi, M.; Chiesi-Villa, A.; Rizzoli, C.
 Inorg. Chem. 1991, 30, 3245.
 (23) Bottomley, F.; Chen, J. Organometalics 1992, 11, 3404.
 (24) Rheingold, A. L.; Harper, J. R. J. Organomet. Chem. 1991, 403, 905

^{335.}

⁽²⁵⁾ Davidson, J. L.; Davidson, K.; Lindsell, W. E.; Murrall, N. W.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1986, 1677

⁽²⁶⁾ Giolando, D. M.; Papavassiliou, M.; Pickardt, J.; Rauchfuss, T.

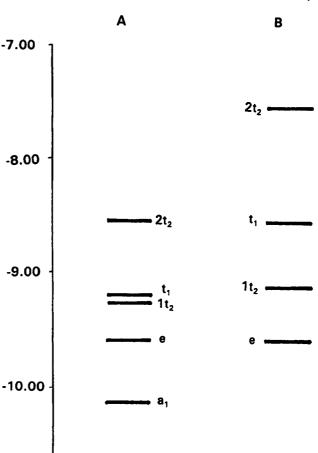


Figure 11. Energies of the cluster orbitals of $[(\eta - C_5H_5)Mo]_4$ - $(\mu_2 - O)_6$ as a function of the Mo-Mo and Mo-O distances. Key: (A) Mo-Mo = 2.73 Å, Mo-O = 1.81 Å; (B) Mo-Mo = 2.73 Å, Mo-O = 1.93 Å; (C) Mo-Mo = 3.00 Å, Mo-O = 1.81 Å; (D) Mo-Mo = 3.00 Å, Mo-O = 1.93 Å.

integral in $[(\eta-C_5H_5)Ti]_4(\mu_2-O)_6$ with a Ti-O distance of 1.84 Å, when the Ti-Se distance was 2.10 Å. Thus multiple bonding in the hypothetical $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_6$ would only equal that achieved in $[(\eta-C_5H_5)Ti]_4(\mu_2-O)_6$ if the Ti-Se distance was considerably shorter than ever observed. The shortest Ti-Se distance in a compound containing η -C₅R₅ appears to be 2.369(2) Å in $[(\eta-C_5H_5)_2-$ Ti] $[(\eta-C_5H_5)ClTi](\mu_2-Se)_2)$.²⁸

It is concluded that the $M_4(\mu_2-A)_6$ structure will be preferred when M-A multiple bonding is important. Thus, in general, for A = O the $M_4(\mu_2-O)_6$ structure will be the rule, for A = Se the $M_4(\mu_2-Se)_3(\mu_3-Se)_3$ structure will be common. The $[(\eta-C_5Me_5)Mo(\mu-O)]_3(\mu_3-O)_3Mo(O)_2(R)$ unit of $(\eta-C_5Me_5)_4Mo_5O_{11}$ and $(\eta-C_5Me_5)_6Mo_8O_{16}$ adopts the $M_4(\mu_2-A)_3(\mu_3-A)_3$ structure and not the $M_4(\mu_2-A)_6$ structure because of extensive multiple bonding to the terminal oxygen atoms within the $Mo(O)_2(OR)$ group. The molybdenum orbitals which otherwise would be available for π -bonding within the $M_4(\mu_2-O)_6$ framework are used to form terminal Mo-O multiple bonds.

Relationship of the Cluster Orbitals of $[(\eta - C_5H_5) M]_4(\mu_2-A)_6$ to Those of $[(\eta-C_5H_5)M]_4(\mu_2-A)_3(\mu_3-A)_3$. The energy levels of the 12 cluster orbitals of $[(\eta - C_5H_5)M]_4$ - $(\mu_2 - O)_6$ (M = Ti, V) were described previously.¹⁰ Figure 11 shows the levels for the model cluster $[(\eta - C_5 H_5)M_0]_4$ - $(\mu_2-O)_6$ and also shows the effect of changing the Mo-Mo and Mo-O distances on the energies of the cluster orbitals. The M-A σ -interactions of the M₄(μ_2 -A)₆ unit span the representations $a_1 + e + t_1 + 2t_2$. The M-M bonding interactions span the representations $a_1 + e + t_2$.²⁹ Within the $M_4(\mu_2 - A)_6$ core, the p orbitals on A, whose principle axis is normal to the plane containing an $M(\mu-A)M$ unit, will carry the overwhelming portion of any M–A π -interaction. These orbitals span the symmetries $t_1 + t_2$. It is seen from Figure 11, that the $1t_2$, t_1 , and $2t_2$ orbitals all decrease markedly in energy as the Mo-O distance increases. The a_1 orbital also decreases in energy, but far less markedly, and the e orbital does not change in energy. This shows that the cluster orbitals of t1 and t2 symmetries are the antibonding counterpart of the Mo-O σ - and

-11.00

Figure 12. Energies of the 12 cluster orbitals of $[(\eta-C_5H_5)-Ti]_4(\mu_2-O)_6$ (A) and the model $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_6$ (B).

 π -interactions. The reduction in energy of the a₁ orbital as the Mo–O distance increases must be due to a contribution from the antibonding Mo–O σ -interaction. When the Mo–Mo distance is increased, the energies of the a₁ and 1t₂ orbitals increase, showing that these orbitals are involved in Mo–Mo bonding. The e, t₁, and 2t₂ orbitals decrease in energy as the Mo–Mo distance increases. These orbitals are antibonding with respect to the Mo–Mo interaction. Detailed analysis of the overlap populations supports these conclusions.

It is seen from Figure 12 that the cluster orbitals of $[(\eta - C_5 H_5)Ti]_4(\mu_2 - O)_6$ span a much smaller range of energy than those of $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_6$. This is a consequence of the greater spatial extent of the Se orbitals compared to O, resulting in greater Ti-Se overlap.¹⁶ The relative ordering of the cluster orbitals was the same in $[(\eta - C_5H_5) Ti]_4(\mu_2-O)_6$ and $[(\eta-C_5H_5)Ti]_4(\mu_2-Se)_6$. However, the e, $1t_2$, and t_1 orbitals were very close in energy for all [(η - $C_5H_5M]_4(\mu_2-O)_6$ (M = Ti, V, Mo) and the energies were very dependent on the M-O and M-M distances. Thus variations in the distances and/or the metal involved may affect the ordering of these three energy levels. This makes the prediction of the ground state electron configuration and magnetic behavior of $[(\eta - C_5 R_5)M]_4(\mu_2 - O)_6$, where M = metal from groups 5-8, for which e, t_1 , and $1t_2$ will be populated, very difficult. In $[(\eta - C_5H_5)Ti]_4(\mu_2-Se)_6$, the e and 1t₂ orbitals are of very similar energy and therefore this diagram must also be used with caution when

⁽²⁹⁾ Bottomley, F.; Grein, F. Inorg. Chem. 1982, 21, 4170.

A

В

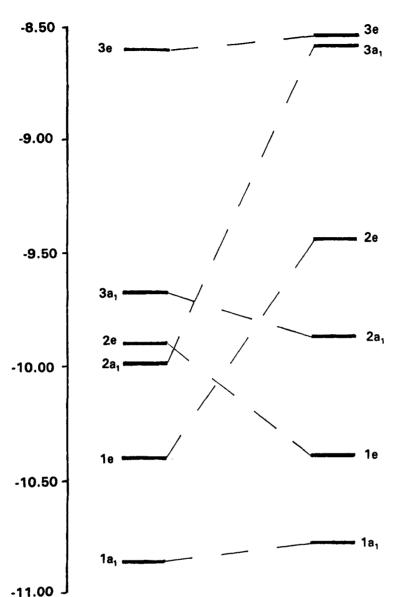
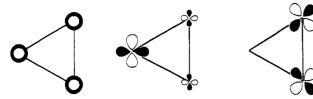



Figure 13. Energies of the nine cluster orbitals of $[(\eta - C_5H_5)M_0]_4(\mu_2 - O)_3(\mu_3 - O)_3$ (A) and $[(\eta - C_5H_5)T_1]_4(\mu_2 - S_2)_3(\mu_3 - S_2)_3$ (B).

predicting electronic configurations. The e orbital remains at the same energy in $[(\eta - C_5H_5)Ti]_4(\mu_2 - O)_6$ and $[(\eta - C_5H_5) - Ti]_4(\mu_2 - Se)_6$. This is expected, since this orbital contains no contribution from the ligands.

For $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_3(\mu_3 - A)_3$ there are only 9 cluster orbitals compared to the 12 in $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_6$, as a consequence of the formation of three Ma-A³ bonds. The energy level ordering in $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ is shown in Figure 13, which also shows the diagram for the model cluster $[(\eta - C_5 H_5) M_0]_4 (\mu_2 - O)_3 (\mu_3 - O)_3$. An analysis of the contributions of atomic orbitals to the molecular orbitals shows that the relationship between the energy level orderings in $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ and $[(\eta - C_5H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$ C_5H_5 Mo]₄(μ_2 -O)₃(μ_3 -O)₃ is quite complicated, as indicated by the connections shown in Figure 13. The reason for the large changes in energy on going from one cluster to the other is again due to the greater spatial extent of the Se orbitals compared to O. The 1e and $2a_1$ orbitals are essentially pure d orbitals localized on M^a, 1e being $d_{x^2-y^2}$ and d_{xy} , $2a_1$ being d_{z^2} . These orbitals are nonbonding with respect to the M^a-M^b interaction and are completely independent of any M^b-M^b interaction. The other orbitals shown in Figure 13 are mainly localized in the M^b₃ plane. The 2e orbital of $[(\eta$ -C₅H₅)Mo]₄(\mu₂-O)₃(\mu₃-O)₃ is antibonding by symmetry with respect to the M^b-M^b interaction. It therefore decreases in energy as the Mo^b-Mo^b distance increases on going from $[(\eta$ -C₅H₅)Mo]₄(\mu₂-O)₃ ((\mu₃-O)₃ to $[(\eta$ -C₅H₅)Ti]₄(\mu₂-Se)₃(\mu₃-Se)₃. The 3a₁ orbital of $[(\eta$ -C₅H₅)Mo]₄(\mu₂-O)₃(\mu₃-O)₃ to $[(\eta$ -C₅H₅)Ti]₄(\mu₂-Se)₃(\mu₃-Se)₃. The 3a₁ orbital of $[(\eta$ -C₅H₅)Mo]₄(\mu₂-O)₃(\mu₃-O)₃ (2a₁ of $[(\eta$ -C₅H₅)Ti]₄(\mu₂-Se)₃(\mu₃-Se)₃, Figure 13) is bonding by symmetry with respect to the M^b-M^b interaction and would therefore be expected to rise in energy as the M^b-M^b distances increase on going from Mo/O to Ti/Se. However this orbital contains an antibonding contribution from the M^b-A² interaction.

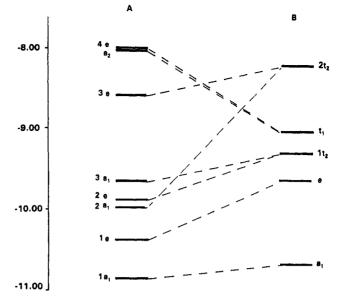

Occupation of the 1a₁ orbital of $[(\eta-C_5R_5)M]_4(\mu_2-O)_6$ (M = Ti, V), which is strongly M-M bonding, stabilizes $[(\eta-C_5R_5)V]_4(\mu_2-O)_6$ compared to $[(\eta-C_5R_5)Ti]_4(\mu_2-O)_6$.¹⁰ In $[(\eta-C_5H_5)M]_4(\mu_2-A)_3(\mu_3-A)_3$, the 1a₁ orbital is localized exclusively on the basal M atoms and is bonding with respect to these atoms (see Figure 14). In $[(\eta-C_5H_5)Ti]_4-(\mu_2-Se)_3(\mu_3-Se)_3$ this orbital is not occupied. The Ti^b-Ti^b

Figure 14. Contributions of the metal d orbitals to the $1a_1$ orbital of $[(\eta - C_5H_5)M_0]_4(\mu_2 - O)_3(\mu_3 - O)_3$.

distances average 3.29 Å, and the Ti^a-Ti^b, 3.46 Å. The longer Ti^a-Ti^b distance is due to the Se²-Se³ nonbonding repulsion discussed above. The difference in the distances is not large (0.17 Å), and the Ti–Ti distances in $[(\eta$ -C₅H₅)- $Ti_{4}(\mu_{2}-Se)_{3}(\mu_{3}-Se)_{3}$ are comparable to those in related clusters. Examples are $[(\eta - C_5 H_4 Me)T_i]_5(\mu_3 - S_e)_6$, where Ti-Ti = 3.299-3.379(3) Å,³⁰ [(η -C₅H₅)Ti]₄(μ_2 -Se₂)₂(μ_2 -Se)- $(\mu_3-Se)_2(\mu_4-O)$ (Ti-Ti = 3.114-3.464(4) Å²⁸), $(\eta-C_5H_5)_2$ Ti- $(\mu-Se)_2TiCl(\eta-C_5H_5)$ (Ti-Ti = 3.399(2) Å²⁸), and [(η - $C_5H_5)_2Ti(\mu-Se)_2Ti(\eta-C_5H_5)]_2(\mu-Se)$ (Ti-Ti 3.421(4) Å²⁷). On the other hand, in $(\eta$ -C₅Me₅)₄Mo₅O₁₁ and $(\eta$ -C₅Me₅)₆- Mo_8O_{16} the average Mo^b-Mo^b distance of 2.735 Å is not only much shorter (0.58 Å) than the Mo^a-Mo^b distance (3.31 Å) but also considerably shorter than that observed in polyoxomolybdates such as $[(\eta - C_5H_5)Ti(Mo_5O_{18})]^{3-1}$ $(M_0-M_0 = 3.288(4), 3.297(4) Å^{31})$ and $[(\eta - C_5Me_5)Mo_6O_{18}]^{-1}$ $(Mo-Mo = 3.263(2), 3.314(2) Å^{23})$. The Mo^b-Mo^b distances approach those of 2.575(1) Å in $[(\eta - C_5H_5)M_0]_3(\mu - C_1)(\mu_3 - C_2)$ $\eta^1-\eta^2-\eta^2-C_4(CF_3)_4)(\mu_3-O)$, for which Mo-Mo multiple bonding was proposed.³² The very short Mo^b-Mo^b distance is ascribed to the occupation of the a1 orbital, which is bonding over the three Mo^b atoms (see Figure 14). In the model cluster $[(\eta - C_5 H_5) M_0]_4(\mu_2 - O)_3(\mu_3 - O)_3$, the orbitals next in energy are 1e and $2a_1$, which are almost completely localized on the apical Mo atom and, although occupied, contribute nothing to the Mob-Mob interaction. The Mob-Mo^b overlap integrals are 0.066, which may be compared to the overlap integrals of $Mo^{b}-O^{2}(0.212)$, $Mo^{b}-O^{3}(0.257)$, and Mo^a–O³ (0.121). Calculations on the $\{[(\eta - C_5H_5) M_0(\mu-O)]_3(\mu_3-O)_3M_0(O)_3$ unit present in $(\eta-C_5Me_5)_4$ - Mo_5O_{11} and $(\eta$ -C₅Me₅) Mo_8O_{16} show that the orbitals 1e and $2a_1$ of $[(\eta - C_5H_5)M_0]_4(\mu_2 - O)_3(\mu_3 - O)_3$ are pushed to a higher energy because they contain a contribution from d orbitals of Mo^a which are involved in multiple bonding to the terminal oxygen atoms. In $\{[(\eta - C_5H_5) Mo(\mu-O)]_3(\mu_3-O)_3Mo(O)_3$ the energy level ordering is $1a_1$ $< 1e < 2a_1$, and 1e is occupied by two electrons. This orbital is almost completely localized on the Mo^b atoms of $\{[(\eta - C_5H_5)Mo(\mu - O)]_3(\mu_3 - O)_3Mo(O)_3\}$ but is antibonding by symmetry with respect to the Mo^b-Mo^b interaction. Thus the Mo^b-Mo^b overlap integral of 0.051 is due to the 1a₁ orbital, which carries all of the Mo^b-Mo^b bonding interaction.

In $[(\eta - C_5 H_5)Ti]_4(\mu_2 - Se)_3(\mu_3 - Se)_3$, the Ti^a-Se³ distances average 2.389(3) Å, which is shorter than the average Ti^{b} —Se³ distance of 2.700(4) Å. This difference is expected since the Ti^a atom is six-coordinate but Ti^b is sevencoordinate. On the other hand, in $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$ and $(\eta$ -C₅Me₅)₆Mo₈O₁₆ the Mo^a-O³ distances average 2.168-(7) and 2.182(3) Å, respectively, which are longer than the Mo^b—O³ averages of 2.030(7) and 2.031(2) Å. The lengthening of the Mo^a—O³ distances is due to the strong

Figure 15. Relationship between the cluster orbitals of $[(\eta C_5H_5M_0]_4(\mu_2-O)_3(\mu_3-O)_3$ (A) and those of $[(\eta-C_5H_5)M_0]_4(\mu_2-$ O)₆ (B).

trans influence of the M-O unit. In $(\eta - C_5 Me_5)_4 Mo_5 O_{11}$ there are two Mo^a=O and one Mo^a-O-Mo units. The Mo^a—O³ distances trans to Mo^a=O are 2.194(7) and 2.251-(8) Å. Trans to Mo^a-O-Mo the Mo^a-O³ distance is 2.060(7) Å. In $(\eta$ -C₅Me₅)₆Mo₈O₁₆ there is one Mo^a=O and two Mo^a-O-Mo units. The Mo^a-O distances are 2.260-(2), 2.137(2), and 2.150(2) Å, respectively.

In the calculations on $[(\eta - C_5H_5)M_0]_4(\mu_2 - O)_3(\mu_3 - O)_3$ and $\{[(\eta - C_5 H_5) M_0]_3(\mu_3 - O)_3 M_0(O)_3\}^-$ it was found that, as with $[(\eta - C_5 H_5)M]_4(\mu_2 - O)_6$, some of the cluster orbitals were very close in energy (for example $2a_1$ and $2e_1$, Figure 13). The energies of these orbitals (particularly 2a1) were dependent on the Mo-O and Mo-Mo distances. Therefore prediction of ground state electronic configurations and magnetic properties of clusters with electrons in these orbitals will be uncertain.

The relationship between the cluster orbitals of $[(\eta$ - $C_5H_5MO_4(\mu-O)_6$ and those of $[(\eta-C_5H_5)MO_4(\mu_2-O)_3(\mu_3 O_{3}$ is shown in Figure 15. Two features of the correlation diagram are obvious. The first is that the cluster orbitals increase in energy on going from the $M_{04}(\mu_2-O)_3(\mu_3-O)_3$ structure to $Mo_4(\mu-O)_6$. This is a consequence of the Mo-O antibonding contribution of oxygen to the cluster orbitals. as discussed above. The second is that the three orbitals which are pushed to high energy as a result of the formation of three σ -bonds on going from Mo₄(μ -O)₆ to Mo₄(μ ₂-O)₃- $(\mu_3-O)_3$ come solely from the t_1 set. This is due to symmetry. The three new bonds formed on going from $[(\eta - C_5 H_5)M]_4(\mu_2 - A)_6$ to $[(\eta - C_5 H_5)M]_4(\mu_2 - A)_3(\mu_3 - A)_3$ involve only the three basal M atoms. The six $M^{b}-A^{3} \sigma$ -bonds span the representations $a_1 + a_2 + 2e$, whereas the three $M^a-A^3\sigma$ -bonds span $a_1 + e$. Since t_1 and t_2 of $[(\eta-C_5H_5)M]_4$ - $(\mu_2 - A)_6 (T_d)$ correlate with $a_2 + e$ and $a_1 + e$ of $[(\eta - C_5 H_5)M]_4$ - $(\mu_2-A)_3(\mu_3-A)_3$ (C_{3v}) respectively, formation of the three new $M^{b}-A^{3} \sigma$ -bonds requires that t_{1} be used.

As discussed above, the primary force which decides whether the $[(\eta - C_5 H_5)M]_4(\mu_2 - A)_6$ or the $[(\eta - C_5 H_5)M]_4(\mu_2 - M_5)M]_4(\mu_2 - M_5)M]_4(\mu_2 - M_5)M]_4(\mu_3 - M_5)M]_5(\mu_3 - M_5$ A)₃(μ_3 -A)₃ structure is adopted is M–A multiple bonding. The occupancy of the cluster orbitals by any number of electrons will play only a very minor role, as is clear from Figure 15. Electron counts from 1 to 14 favor the $[(\eta$ - $C_5H_5M_4(\mu_2-A)_3(\mu_3-A)_3$ structure. Since the a_2 and 4e

⁽³⁰⁾ Fenske, D.; Grissinger, A. Z. Naturforsch. 1990, 45B, 1309.
(31) Che, T. M.; Day, V. W.; Francesconi, L. C.; Frederick, M. F.;
Klemperer, W. G.; Shum, W. Inorg. Chem. 1985, 24, 4055.
(32) Davidson, J. L.; Davidson, K.; Lindsell, W. E.; Murrall, N. W.;

Welch, A. J. J. Chem. Soc., Dalton Trans. 1986, 1677.

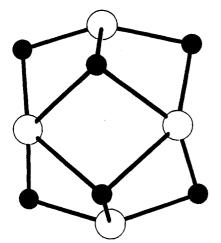


Figure 16. $M_4(\mu_2-A)_4(\mu_3-A)_2$ core of $[L_nM]_4(\mu_2-A)_4(\mu_3-A)_2$. orbitals of the $[(\eta-C_5H_5)M]_4(\mu_2-A)_3(\mu_3-A)_3$ structure are antibonding with respect to the M^a-A^3 interaction, 18-24 cluster electrons can only be accommodated by the $[(\eta-C_5H_5)M]_4(\mu_2-A)_6$ structure.

Other $[(\eta - C_5 R_5)M]_4 A_6$ Structures. Two other structures for $[L_n M]_4 A_6$ are possible. The first has the M_4 - $(\mu_2 - A)_4(\mu_3 - A)_2$ core shown in Figure 16. However, in the compounds of this type which are known, for example $[M_2 Cl_2((S(CH_2)_2 NMeCH_2)_2)]_2 (M = Zn,^{33} Cd^{34})$, the metal atoms lie in an approximate plane.^{33,34} The butterfly of metal atoms is opened so wide that a rectangle is formed. There are no $[(\eta - C_5 R_5)M]_4(\mu_2 - A)_4(\mu_3 - A)_2$ examples of this type. The second structure has the $\{[M(\mu_2 - A)_2M](\mu_2 - A)\}_2$ core shown in Figure 17. The metal atoms again form a rectangle. We have not found any examples of this type. Organometallics, Vol. 12, No. 7, 1993 2659

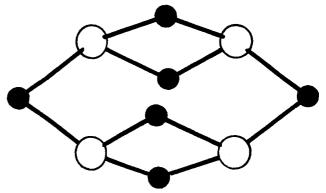


Figure 17. $\{[M(\mu_2-A)_2M](\mu_2-A)\}_2 \text{ core of } [L_nM]_4(\mu_2-A)_6.$

Experimental Section

All calculations were of the extended Hückel type, using the programs of Hoffmann and co-workers.³⁵ The parameters for Ti,³⁶ Mo,³⁸ and Se³⁹ were taken from the literature. The M–C₅H₅-(centroid) distance was taken as 2.034 Å, the C–C distances were 1.40 Å, and the C–H distances were 0.96 Å. The M–O and M–Se distances are given in the text.

Acknowledgment. I thank Prof. Friedrich Grein, Robert W. Day, and Jinhua Chen, University of New Brunswick, and Prof. P. A. W. Dean, University of Western Ontario, for helpful discussions and information.

OM920801D

⁽³³⁾ Hu, W. J.; Barton, D.; Lippard, S. J. J. Am. Chem. Soc. 1973, 95,1170.

⁽³⁴⁾ Fawcett, T. G.; Ou, C.-C.; Potenza, J. A.; Schugar, H. J. J. Am. Chem. Soc. 1978, 100, 2058.

 ⁽³⁵⁾ Howell, J.; Rossi, A.; Wallace, D.; Haraki, K.; Hoffmann, R. ICON8 and FORTICON8. QCPE 1977, 11, 344.
 (36) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729.

 ⁽³⁶⁾ Launer, J. W.; Hofmann, R. J. Am. Chem. Soc. 1976, 98, 1729.
 (37) Köhler, F. H.; Hofmann, P.; Prössdorf, W. J. Am. Chem. Soc.
 1981, 103, 6369.

⁽³⁸⁾ Summerville, R. H.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 7240.

⁽³⁹⁾ Gressier, P.; Whangbo, M.-H.; Meerschaut, A.; Rouscel, J. Inorg. Chem. 1984, 23, 1221.