Preparation and X-ray Structure of (**1,2-Bis(methoxycar bony1)ethyl) cobalt Tricarbonyl Triphenylphosphine and Its Acyl Precursor**

Ferenc Ungváry^{*,†} and István Kovács[‡]

Institute of Organic Chemistry and Research Group for Petrochemistry of the Hungarian Academy of Sciences, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary

Birgit Hammerschmitt and Gerhard Cordier

Anorganisch-Chemisches Institut der Technischen Hochschule Darmstadt, Hochschulstrasse 10,0-6100 Darmstadt, Germany

Received December 1, 1992

Summary: The sec-alkylcobalt carbonyl complex Me02- CCH&H(CONe)Co(CO)SpPh3 (3) and its acylprecursor $MeO₂CCH₂CH(CO₂Me)C(=O)Co(CO)₃PPh₃ (2)$ were prepared in 64 and 60% yields from MeO_2CCH_2CH _C O_2 - M e)Co(CO)₄ (1) and PPh₃ at room temperature and at 0 **"C,** *respectively, and were characterized by IR, 'H, 13C- {'H), and 31P{1H) NMR spectroscopy. The solid-state structure of 3 was determined by a single-crystal X-ray diffraction technique. The compound crystallizes in* $= 1785.8(7)$ pm, $c = 988.0(4)$ pm, $\beta = 103.5(2)$ °, $Z = 4$, and $R = R_w = 0.0995$.

Numerous phosphine-substituted alkylcobalt carbonyls are known.^{1,2} The well-characterized examples are those in which a primary alkyl group is attached to the cobalt. They were prepared either by the reaction of an alkyl halide with phosphine-substituted carbonylcobaltate(**1-)** anion or, in cases where the alkyl group has electronwithdrawing substituent(s), by decarbonylation of the corresponding phosphine-substituted acyl complex.

Secondary alkylcobalt carbonyls have not been prepared by these methods. NaCo(CO)₃PPh₃ does not afford any carbon-cobalt-bonded species in reactions with several *sec-alkyl* (and allyl) halides.3 Similar attempts were made with $NaCo(CO)₄$ earlier but failed to give stable alkyl- or acylcobalt tetracarbonyls.4

Alternatively, the reaction of HCo(CO)₄ with α , β unsaturated carboxylic acid esters afforded fairly stable $RCH(CO_2R')Co(CO)_4$ complexes $(R = Me, Et, CH_2CO_2R')$ $R' = Me$, Et).⁵ In this series $MeO₂CCH₂CH(CO₂Me)Co (CO)_4$ was successfully isolated,^{5d} which is the parent compound of $MeO_2CCH_2CH(CO_2Me)Co(CO)_3PPh_3$, the first PPha-substituted secondary alkylcobalt carbonyl possessing hydrogen atoms in a position β to cobalt. Here we report the preparation and structure characterization of $MeO₂CCH₂CH(CO₂Me)Co(CO)₃PPh₃.$

Experimental Section

General Considerations. *All* manipulations involving airsensitive compounds were carried out by standard Schlenk technique⁶ using deoxygenated, dry solvents and gases. Infrared spectra were recorded on a Specord IR 75 (Carl Zeiss, Jena) spectrometer in a 0.061-mm solution cell with CaF₂ windows and were calibrated with benzene (1959.6 cm⁻¹) and polystyrene (1601.4 cm^{-1}) . ¹H, ¹³C, and ³¹P NMR spectra were obtained on Varian Unity 300 and Varian CFT 20 spectrometers. The chemical shifts were referenced to tetramethylsilane (TMS) (¹H, $13C$) and 85% H₃PO₄ (31P).

Preparation of $(1,2$ -Bis(methoxycarbonyl)ethyl)cobalt Tetracarbonyl (1) .^{5d} A 16-mL amount of a 1 M pentane solution of $HCo(CO)_4$ (16 mmol, -60 °C) was added to a stirred solution of dimethyl fumarate (13.8 g, 96 mmol) in a $CH₂Cl₂$ -pentane mixture (2.5:l v/v, 400 mL) at 10 "C under CO. The CO pressure was raised to 900 mmHg, and the stirring was continued for 3 h. The resulting light brown solution was concentrated to 200 mL under vacuum at -20 °C and placed on dry ice overnight. Cold filtration at -79 "C on a P-2 glass frit gave 10.8 g of crystale (a mixture of dimethyl fumarate and $Co_2(CO)_8$) and a light reddish yellow fiitrate. When the foregoing procedure was repeated twice, 1.0 and 0.2 g of solids were removed from 70- and 20-mL concentrates, respectively. The volume of the final filtrate was reduced to ca. 7 mL, 14 mL of pentane was added, and the product was crystallized at -79 °C. Cold filtering, washing with 3×4 mL of cold pentane, and drying under vacuum at -20 °C gave 3.27 g (65 % yield) of **CH302CCH*HbCHx(C02CH3)Co(CO)~ as** thermally sensitive light yellow crystals. IR (hexane): v_{CO} 2111 m-s, 2046 8,2036 vs, 2026vs,1744 m-w, 1720 w cm-l. 'H NMR (CDCls, -20 "C): **S** 3.71 (a, 3H, CH3), 3.66 **(8,** 3H, CH3), 3.33 (dd, **Ju** = 12.45 Hz, $J_{\text{bx}} = 3$ Hz, 1H, CH^z), 3.11 (dd, $J_{\text{ax}} = 12.45$ Hz, $J_{\text{ab}} =$ 17.2 Hz, 1H, CH^a), 2.56 (dd, $J_{bx} = 3$ Hz, $J_{ab} = 17.2$ Hz, 1H, CH^b)

⁺Institute of Organic Chemistry.

*^t***Hungarian** Academy of Sciences.

⁽¹⁾ (a) Kemmitt, R. D. W.; Russel, D. R. In *Comprehensive Organo- metallic Chemistry;* Wilkiion, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, **1982;** Vol. **5,** pp **47-87.** (b) Galamb, V.; Pályi, G. Coord. Chem. Rev. 1984, 59, 203. (c) Organocobalt Compounds: Mononuclear Compounds. In *Gmelin Handbook of In-*
organic Chemistry; Slawisch, A., Ed.; Springer-Verlag: New York, 1983;

Suppl. Sei. Vol. **5,** Part I, p **85. (2)** (a) Wilford, J. B.; Powell, H. M. *J. Chem. SOC. A* **1967, 2092. (b)** Galamb, V.; Pályi, G.; Cser, F.; Furmanova, M. G.; Struchkov, Y. T. J.
Organomet. Chem. 1981, 209, 183. (c) Martin, J. T.; Baird, M. C.
Organometallics 1983, 2, 1073. (d) Tso, C. C.; Cutler, A. R. Organometallics 1986, 5, V.; Pályi, G.; Boese, R.; Schmid, G. *Organometallics* **1987**, 6, 861. (g)
Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.; Ungváry, F.; Pályi, G. *Organometallics* **1989**, 8, 1096. (h) Haász, F.; Bartik, T.; Galamb, V.; Phlyi, G. *Organometallics* **1990, 9, 2773.** (i) Ungvhy, F.; Wojcicki, A. J. *Organomet. Chem.* **1990,396,95. 6)** Somlyai-HaBsz, J.; HaBsz, F.;

Galamb, V.; Benedetti, A.; Zucchi, C.; Pályi, G.; Krümmling, T.; Happ, B.; Bartik, T. J. Organomet. Chem. 1991, 419, 205.

(3) Kovács, I.; Ungváry, F.; Garst, J. F. Organomet. 2199, 419, 205.

(4) Kovács, I.; Ungváry, F.;

^{(5) (}a) Ungváry, F.; Markó, L. Organometallics 1986, 5, 2341. (b)
Ungváry, F.; Sisak, A.; Markó, L. *Abstracts of Papers*, 199th National
Meeting of the American Chemical Society, Boston, MA, Apr 22–27, 1990; American Chemical Society: Washington, DC, 1990; Part 2, CATL 0045.
(c) Kovács, I.; Ungváry, F. XXVIIIth International Conference on
Coordination Chemistry (ICCC), Gera, Germany, Aug 13–18, 1990; Proceedings Part 1, 3-35. (d) Ungváry, F.; Sisak, A.; Markó, L. In *Homogeneous Transition Metal Catalyzed Reactions;* Moser, W., **Slocum,** D., Eds.; Advances in Chemistry **230;** American Chemical Society: Washington, DC, **1992;** p **297.**

⁽⁶⁾ Shriver, D. F. *The Manipulation of Air-Sensitiue Compounds;* McGraw-Hilk New York, **1986.**

ppm. $^{13}C_{1}^{11}H_{1}^{11}NMR$ (CDCl₃, -15 °C): δ 194.1 (s, 3CO), 177.6 (s, 20.0 *(8,* CH) ppm. COO), 169.9 (8, COO), 50.0 (8, CHs), 49.8 (8, CHs), 39.6 **(8,** CHz),

Preparation of $(2,3-Bis(methoxycarbonyl))$ propanoyl)**cobalt Tricarbonyl Triphenylphosphine (2).** To a freshly prepared light yellow solution of 1 $(474 \text{ mg}, 1.5 \text{ mmol})$ in a COsaturated pentane-CH₂Cl₂ mixture (10:1 v/v, 12 mL) at 0° C was added powdered PPh_3 (393 mg, 1.5 mmol) at once with stirring under a CO atmosphere. The PPh₃ dissolved within a few seconds, and the solution became pale yellow. Crystallization was initiated by scratching the inside wall with a glass rod. After 20 min the separated solid was filtered and washed with 3 **X** 2 mL of cold pentane and dried under vacuum at $0 °C$ to give 520 mg (60% yield) of light ocher crystals of $CH₃O₂CCH[*]H⁵CH[*](CO₂–$ 1968 vs, 1737 8,1663 m, 1650 m cm-l. IR (KBr): *vco* 2050 w, 1984 8,1966 vs, 1736 8,1665 m cm-1. lH NMR (CDCL, -20 "C): *6* 4.75 CH_3)C(=O)Co(CO)₃PPh₃. IR (CH₂Cl₂): ν_{CO} 2053 w, 1987 vs, $(dd, J_{ax} = 6 Hz, J_{bx} = 8 Hz, 1H, CH^2), 3.74$ (s, 3H, CH₃), 3.68 (s, 3H, CHs), 2.91 (dd, *J,* = 6 Hz, **Jab** 17 Hz, lH, CH'), 2.79 (dd, $J_{\text{bx}} = 8$ Hz, $J_{\text{ab}} = 17$ Hz, 1H, CH^5) ppm. ¹³C{¹H} NMR (CDCl₃, 0 °C): δ 236.1 (d, J_{PC} = 38.6 Hz, CoC(=0)C), 196.9 (d, J_{PC} = 22.3 Hz, 3CO), 169.8 *(8,* COO), 166.7 *(8,* COO), 131.0 (d, *Jpc* = 11.3 Hz, o -C₆H₅), 130.3 (d, J_{PC} = 45 Hz, *ipso*-C₆H₅), 129.1 (d, J_{PC} = 1.8 Hz, $p - C_6H_5$, 126.9 (d, $J_{\text{PC}} = 10.5$ Hz, $m - C_6H_5$), 69.6 (d, J_{PC} $= 23.3$ Hz, CH), 50.5 (s, CH₃), 50.0 (s, CH₃), 31.1 (s, CH₂) ppm. 31P{¹H} NMR (CDCl₃, 0 °C): δ 48.9 ppm. Anal. Calcd for $C_{28}H_{24}CoO_8P$: Co, 10.2; P, 5.36. Found: Co, 10.54; P, 5.35.

Preparation of **(12-Bis(methoxycarbony1)ethyl)cobalt Tricarbonyl Triphenylphosphine (3).** To a freshly prepared solution of 1 (680 mg, 2.15 mmol) in CO-saturated CH₂Cl₂ (8 mL) at 0 °C was added a solution of PPh₃ (620 mg, 2.36 mmol) in pentane (40 mL). After 24 h at room temperature a red-brown precipitate $(Co_2(CO)_{6}(PPh_3)_2)$ was removed by filtration on a P4 glass frit, and the clear yellow filtrate was kept at -22 °C for crystallization. Crystals obtained in 52 h were separated from the light yellow solution with a P2 glass frit, washed with 2×5 mL of pentane, and dried under vacuum. This gave 570 mg (48.2% yield) of golden yellow air-stable crystals of $CH₃O₂$ -**CCHaHbCHx(C02CH~)Co(CO)sPPha.** A second crop (193 mg, 16.3%) could be collected after concentrating the solution to about 20 mL and crystallizing at -22 °C. IR (CH₂Cl₂): $\nu_{\rm CO}$ 2046 vw, 1981 vs, 1970 vs, 1736 m, 1697 m cm-'. IR (KBr): *YCO* 2043 vw, 1980 vs, 1967 vs, 1729 s, 1696 m cm⁻¹. ¹H NMR (CDCl₃, room temperature): δ 3.68 (s, 3H, CH₃), 3.63 (s, 3H, CH₃), 3.3 (dd, J_{ax} $= 11.7$ Hz, $J_{bx} < 5$ Hz, 1H, CH^z), 3.2 (dd, $J_{ax} = 11.7$ Hz, $J_{ab} =$ 16.5 Hz, lH, CH*), 2.7 (dd, **JbI** < 5 Hz, **Jab** = 16.5 Hz, lH, CHb) ppm. ^{13}C ¹H} NMR (CDCl₃, room temperature): δ 197.1 (d, J_{PC} $= 23.1$ Hz, 3CO), 179.8 (s, CH₂COO), 170.9 (d, $J_{PC} = 6$ Hz, CHCOO), 131.1 (d, **Jpc** = 10.9 Hz, **o-C&I5),** 130.9 (d, *Jpc* = 47.5 Hz, *ipso-C*₆H₅), 129.2 (d, J_{PC} = 2.0 Hz, *p-C*₆H₅), 126.9 (d, J_{PC} = 10.7 Hz, m-C&), 49.5 *(8, CHs),* 48.9 *(8,* CHa), 40.2 **(e,** CHz), 17.0 (d, **Jpc** = 19.6 Hz, CH) ppm. 3lP{lH] NMR (CDCls, room temperature): δ 58.2 ppm. Anal. Calcd for C₂₇H₂₄CoO₇P: Co, 10.72; P, 5.64. Found: Co, 10.66; P, 5.62.

Crystallographic Analysis of 3. Single crystals for structure determination were obtained by slow cooling of a solution prepared from 309 mg of 3 in 2.5 mL of CH_2Cl_2 , which was diluted at 30 "C with 30 mL **of** pentane, to room temperature. The crystal used for data collection was mounted inside a sealed glass capillary and transferred to a Philips PW1100 automated diffractometer equipped with graphite-monochromated Mo K_{α} radiation. Weissenberg recordings showed a primitive lattice **of** monoclinic symmetry. Reflections $h0l$ only present for $h + l =$ 2n and *OkO* only present for *k* = *2n,* respectively, restrict the choice of space group to $P2_1/n$. Unit cell constants were determined by the least-squares fit of the diffractometer setting angles for 25 reflections. Intensities were measured by the θ -2 θ scan method out to a maximum 2θ value of 40° . A total of 2890 unique intensities was measured, with 1654 of these satisfying the condition $F_0^2 > 4\sigma(F_0^2)$. Corrections for Lorentz and polarization effects were made in the **usual** manner. The poeitions of Co, P, C1, and 04 atoms were determined by direct phase

Table I. Crystal Data and Data Collection and Refinement Details for MeO₂CCH₂CH(CO₂Me)Co(CO)₃PPh₃ (3)

	Crystal Data
formula	$C_{27}H_{24}CoO_7P$
fw	550.37
cryst size, mm	$0.25 \times 0.20 \times 0.12$
cryst syst	monoclinic
space group	$P2_1/n$ (No. 14)
a, pm	1522.2(6)
$b,$ pm	1785.8(7)
c , pm	988.0(4)
β , deg	103.5(2)
$V, 10^6$ pm ³	2611.5
z	4
D_{calc} , g cm ⁻³	1.40
μ , cm ⁻¹	7.45
	Data Collection and Refinement
diffractometer used	Philips PW1100
temp, K	298
radiation	Mo Ka, graphite
	monochromated
2θ limits, deg	$5 - 40$
scan speed, deg min ⁻¹	3.6
no. of unique rflns	2890
no. of obsd rflns	1654
$(F_0^2 \ge 4\sigma(F_0)^2)$	
method of phase	direct
determination	
program	SHELXS-86 (for Co, P, C1, O4),
	SHELX-76 (for C and O atoms)
no. of variables	155
$R(F)^q = R_w(F)^b$	0.0995
	${}^{\circ}R(F) = \sum F_{\circ} - F_{\circ} /\sum F_{\circ} $, ${}^{\circ}R_{\rm w}(F) = (\sum w(F_{\circ} - F_{\circ})^2/\sum w F_{\circ} ^2)^{1/2}$

 $\text{with } w = 1/\sigma^2(F_o).$

determination methods (SHELXS-86); those of the other C and 0 atoms resulted from Fourier and difference Fourier syntheses (SHELX-76), where position criteria have been taken into consideration. Absorption was taken **into** account by a computationally supported method (DIFABS). The heavy atoms Co and P were anisotropically handled. Further crystallographic details are given in Table I. The final positions and the thermal parameters for **3** are shown in Table 11. Selected bond lengths and bond angles are collected in Table 111.

Results and Discussion

The addition of PPh₃ either to the isolated MeO_2CCH_2 - $CH(CO₂Me)Co(CO)₄ (1)$ or to the *in situ* prepared reaction product of dimethyl fumarate and $HCo(CO)_4$ in pentane- CH_2Cl_2 solvent mixtures at 0 °C gave MeO₂CCH₂CH(CO₂-

Me)C(=0)Co(CO)₃PPh₃ (2) (eq 1), which was isolated as
\nMeO₂CCH₂CH(CO₂Me)Co(CO)₄ + PPh₃
$$
\rightarrow
$$

\nMeO₂CCH₂CH(CO₂Me)C(=0)Co(CO)₃PPh₃ \rightleftarrows
\n \times
\nMeO₂CCH₂CH(CO₂Me)Co(CO)₃PPh₃ + CO (1)

light yellow crystals in 60 *9%* yield. Complex **2** was found to be stable at room temperature **as** a solid under CO atmosphere but decarbonylated slowly in solution into $MeO₂CCH₂CH(CO₂Me)Co(CO)₃PPh₃$ (3) and CO. The decarbonylation was facilitated by purging the solution with argon. According to the IR spectra of the reaction mixture, **24** h was necessary under argon at room temperature to achieve a complete decarbonylation. The decarbonylation **was** always accompanied by some decomposition, leading to a minor amount of $Co_2(CO)_{6}$ -

^{*a*}**Estimated standard deviations in the least significant figure(s) are given in parentheses. ^{***b***} The anisotropic thermal parameter is** $U_{eq} = \frac{1}{3}$ $= (\sum_i \sum_j U_{ij} a_i^* a_j^* (\mathbf{a}_i \mathbf{a}_j)).$

 $(PPh₃)₂⁷$ as a red-brown precipitate, which could be removed by filtration. The formation of $Co_2(CO)_6$ (PPh₃)₂ occurred only **as** long **as** complex 2 was present. On the other hand, **3** is thermally stable in chlorinated hydro. carbon or alkane solutions at least up to $50 °C$ under argon (temperature limits of the stability were not determined). When such solutions were cooled, golden yellow crystals of **3** were obtained in good yield. The formation of **3** by the decarbonylation of 2 is reversible; keeping a CH_2Cl_2 solution of 3 under **120** atm of CO pressure at room temperature resulted in a quantitative transformation into **2.**

The new cobalt complexes were characterized by a combination of elemental analysis, IR and NMR (1H, $^{13}C_{1}^{11}H$, and $^{31}P_{1}^{11}H$) spectroscopy, and, in the case of 3, X-ray crystallography.

Both the solution and solid-state IR spectra in the *vco* region are similar to those reported for $RCo(CO)₃PR'₃$ (R $=$ alkyl, acyl; $R' =$ alkyl, aryl, alkoxy, aryloxy), having a distorted-trigonal-bipyramidal structure with three equatorial CO ligands and axial PPh_3 and R groups.¹ According to the overall symmetry-lowering effect of the bulky and asymmetric R group in **2** and **3,** three instead of two terminal *uco* bands are present. The appearance of two acyl *uco* bands in the solution spectrum of **2** indicates a hindered rotation about the "alkyl" carbon-"acyl" carbon

(7) **Vohler,** 0. *Chem. Ber.* 1968,91,1235.

 T able III. Selected Bond Distances (pm) and Bond Angles

axis⁸ similar to the established case of CH_2FC - $(=0)Co(CO)₃PPh₃.⁹$ In the solid state, however, only one rotamer exists, **as** shown by a single band at **1665** cm-1.

The NMR spectra confirm the presence of the expected ligands around the cobalt atom. The ¹H NMR spectra of both **2** and **3** show a typical ABX spin-spin coupling pattern for the substituted ethyl group, **as** found for 1 and dimethyl chlorosuccinate,'O respectively **(see** Experimental Section and Table IV). The **Jab** value of each compound fits the characteristic values of a geminal coupling of diastereotopic methylene protons. The J_{ab} , J_{ax} , and J_{bx} coupling constants show considerable parallels in the **1-3** and 2-dimethyl chlorosuccinate pairs. The poor resolution observed in the case of **3** did not allow **us** to determine the value of the small J_{bx} coupling constant, which might be obscured by the superposition of an expected additional small coupling of the methine proton to the phosphorus, **as** well. The different sets of vicinal coupling constants $(J_{ax} = 12.45 \text{ Hz} \text{ and } J_{bx} = 3 \text{ Hz in } 1, J_{ax} = 11.7 \text{ Hz and } J_{bx}$ $<$ 5 Hz in 3, J_{ax} = 6 Hz and J_{bx} = 8 Hz in 2, and J_{ax} = 7.5 Hz and $J_{bx} = 6.8$ Hz in dimethyl chlorosuccinate) indicate that a free rotation around the $-CH_2CH-$ axis is only slightly hindered in **2** and dimethyl chlorosuccinate but probably strongly hindered in 3 and 1. The number of resonances in the ¹³C{¹H} NMR spectra of 2 and dimethyl chlorosuccinate, **as** well as in 3 and 1, corresponds to the number of different carbon nuclei in these compounds in the corresponding chemical shift range. In addition to

⁽⁸⁾ Pannell, K. H.; Bittman, L. J. *Z.* Naturforsch. 1972, *27B,* 1109.

⁽⁹⁾ Lindner, E.; Zipper, M. *Chem. Ber.* 1974, 107, 1444. (10) The preparation of dimethyl chlorosuccinate has been published elsewhere.³ Data for CH₃O₂CCH²H³CH²CH²CH²CH₃ are as follows. IR (hexane): v_{CO} 1761, 1749 cm⁻¹. ¹H NMR (CDCl₃): δ 4.63 (d Hz, *J*_{bx} = 6.8 Hz, 1H, CH^x), 3.80 *(8, 3H, CH₂COOCH₃), 3.70 <i>(8, 3H, CHCOOCH₃)*, 3.15 *(dd, J₃₂* = 7.5 Hz, *J₄* = 17.0 Hz, 1H₂ CH⁴), 2.93 *(dd, J_{bx}* = 6.8 Hz, *J_{sb}* = 17.0 Hz, 1H, CH^b) ppm. ¹³C^{+H} NMR (CDCl₃): *6* 169.6 *(8, CHCOO)*, 169.0 *(8, CH₂COO)*, 53.2 *(8, CHCOOCH*₃), 52.1 *(8,* CH2COOCHs), 51.1 *(8,* **CH),** 39.3 *(8,* **CH2)** ppm.

In CDCl₃. b R = CH₃O₂CCH₂CH(CO₂CH₃). c Recorded at -20 °C for 1 and 2, but at room temperature for 3 and RCI. d Recorded at -15 °C for 1, at 0 °C for 2, and at room temperature for 3 and RCl.

Figure 1. Solid-state structure of MeO₂CCH₂CH(CO₂Me)- $Co(CO)₃PPh₃$ (3).

the expected carbon-phosphorus couplings, one of the carboxylic carbon resonances of 3 shows a doublet at 170.9 ppm $(J_{PC} = 6 \text{ Hz})$. This signal probably belongs to the carboxylic carbon adjacent to the methine group, which is three bonds away from the phosphorus. An unequivocal assignment of the 13C resonances to the corresponding methoxycarbonyl groups could be made only in the case of dimethyl chlorosuccinate by performing an INEPT longrange experiment.¹¹

Although $PPh₃$ is the most widely used ligand for

stabilizing alkyl- and acylcobalt carbonyls, the ³¹P NMR data for these complexes have been published only in a c_{21} α ^{c2} few cases. Considering the few data available, we find that the 31P **signals** of both **2** and 3 are at the same chemical shift **as** found for propargyl acyl and propargyl complexes, respectively.²ⁱ Some further observations^{2c,d,12,13} also support that varying the steric and electronic properties of the alkyl chain in both types of complexes does not influence the 31P chemical shifts in solution.

> The crystalstructure of 3 is shown in Figure 1. In accord with the IR structures both in solution and in the solid state, the X-ray structure confirms a trigonal-bipyramidal geometry with the CO ligands and cobalt in the equatorial plane and phosphorus and C16 in axial positions. Structures of three PPh₃-substituted alkylcobalt^{2a,b,f} and three PPh₃-substituted acylcobalt carbonyl complexes^{2e,f,14} have been reported to date and may be used for comparison. The Co-P distance (223.3(5) pm) is practically the same **as** in the reported examples, but it is shorter than the " σ -only" value.¹⁵ The Co-C_{ax} distance is 211.6(17) pm. A similar bond length was observed in $PhCH_2O_2CCH_2Co$ - $(CO)_3$ PPh₃ (210.9(8) pm).^{2b} In all other cases the Co-C_{ax} distance is significantly shorter.^{2a, e , f , 14 The conformation} of the substituted ethyl group is staggered with C17 and Co in *anti* and C12 and C17 in *gauche* positions.

> Acknowledgment. We gratefully acknowledge the assistance of Dr. G. Szalontai (Veszprém, Hungary) in recording and evaluating the NMR spectra. We also thank Professor H.-F. Klein (Darmstadt, Germany) for discussions. This work was partially supported by the Hungarian Science Foundation under Grant No. OTKA 2325.

OM920766A

⁽¹¹⁾ Bax, J. *J.* **Magn. Reson. 1984,57, 314.**

^{(12) (}a) Seel, F.; Flaccus, R. D. *J.* **Fluorine Chem. 1978, 12, 81. (b)** Ungváry, F.; Markó, L. Organometallics 1983, 2, 1608.

⁽¹³⁾ A complete NMR investigation of **a series** of **alkyl- and acylcobalt carbonyl complexes is currently in progress in our laboratories. 'H, ¹³C(¹H), and ³¹P(¹H) ***NMR spectra of* **Y_Co(C0)**₃PPb₃ (Y = MeC(=O) EtC(=O), **n-PrC(=O), i-PrC(=O), t-BuC(--O), NCCH9) have been recorded. The** ³¹P chemical shifts of 2 and 3 show good agreement with these values, as well: Szalontai, G.; Kovács, I.; Ungváry, F. Unpublished results. (14) Milstein, D.; Huckaby, J. L. J. Am. Chem. Soc. 1982, 104, 6150.

^{(16) (}a) Bennet, M. J.; Mason, R.Nature 1966,206,760. (b) Churchill,

M. R. In Perspectives in Structural Chemistry; Dunitz, J. D., Ibers, **J. A., E&.; Why: New York, 1970; Vol. 3, p 126.**