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Summary: Photolysis of  hexamethyl-2,2-dimesityltrisi- 
lane in the presence of N-mesitylpyridine-2-aldimine 
(3) gives the silylene C-H insertion product 4a together 
with the [4 + 11 cycloaddition product 5a. Heating of 
neat 4a as well as of  the sterically more encumbered 
N-2,6-diisopropylphenyl derivative 4b leads to an  un- 
expected rearrangement of the C-H insertion products 
into the 1,3-diaza-2-silacyclo-4-pentene derivatives 
5a,b. The  X-ray  structure analysis of 5a shows that the 
heteroaromatic ring of 3has been converted into a system 
of conjugated double bonds. 

1,4-Diheterodienes, for example lP-diazabutadienes or 
2,2'-bipyridyl (bpy), react with silylenes containing elec- 
tron-releasing groups to give the formal [4 + 11 cycload- 
dition products 1 and 2. While the formation of l2 
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presumably takes place in a manner analogous to the well- 
known trapping reactions with buta-1,3-dienes,3 the re- 
action of bpy with silylenes cannot be interpreted so easily. 
The NMR data and the violet colors, which are reflected 
in the longest wavelength absorptions of -560 nm, as well 
as the extreme air sensitivity are indicative of structure 
2,4 in which the heteroaromatic rings of bpy have been 
converted into a system of conjugated double bonds. 
Nevertheless, a Lewis acid-base adduct5 resulting from 
the respective silylene and the nitrogen atoms of the 

t Dedicated to Professor Otto J. Scherer on the occasion of his 60th 
birthday. 
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(2) Weidenbruch, M.; Lesch, A.; Peters, K. J. Organomet. Chem. 1991, 
407, 31. 
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(4) (a) Mikulaki, C. M.; MacDiarmid, A. G. Unpublished results. Cited 
in: MacDiarmid, A. G .  Intra-Sci. Chem. Rep. 1973, 7,83. (b) Weiden- 
bruch, M.; Sch&fer, A.; Marsmann, H. J. Organomet. Chem. 1988,354, 
C12. (c) Weidenbruch,M.;Lesch,A.;Marsmann,H. J. Organomet. Chem. 
1990,385, C47. 

0276-7333/93/2312-2881$04.00/0 

bidentate bpy ligand cannot be completely excluded. 
Unfortunately, we have been unable to obtain crystals of 
the ring system 2 suitable for an X-ray structure analysis 
to date. There is an X-ray structure determination 
available for the related bi~(2,2'-bipyridyl)silane.~ How- 
ever, it is not clear how this compound is formed during 
the sublimation of S i (b~y)3 .~  

In order to obtain more information about the formation 
and structures of these ring systems, analogous reactions 
were carried out using pyridine-2-aldimines 3. As opposed 
to bpy, these imines contain only one heteroaromatic ring, 
but they do make possible a wide variation of the 
substituents on the acyclic nitrogen atom. While in the 
presence of aliphatic groups only unstable [4 + 1 3  
cycloadducts are obtained in most cases: the photolysis 
of hexamethyl-2,2-dime~ityltrisilane~ and 3a in n-pentane 
yielded a red solution from which 20% of red 5a1° was 
isolated, upon cooling to -30 "C. After prolonged cooling 
at  -30 O C ,  37% of yellow 4a1° was obtained. 

Replacement of the mesitylgroups by the bulkier N-2,6- 
diisopropylphenyl groups resulted in the formation of both 
the CH insertion product 4ba (31 % ) and the cycloadduct 
5b" (23%). 

~~ 

(5) Gillette, G. R.; Noren, G. H.; West, R. Organometallics 1989,8,487 
and references cited therein. 

(6) (a) Morancho, R.; Pouvreau, P.; Constant, G.; Joud, J.; Galy, J .  J. 
Organomet. Chem. 1979,166,329. (b) Gmelin Handbook of Inorganic 
Chemistry, 9th Ed.; Springer-Verlag: Berlin, 1989; Silicon, Supplement 
Vol. B4, p 334. 

(7) Herzog, S.; Krebs, F. Naturwissemchaften 1963,50, 300. 
(8) Weidenbruch, M.; Piel, H.; Lesch, A.; Peters, K.; von Schnering, 

H. G. J. Organomet. Chem., in press. 
(9) Fink, M. J.; Michalczyk, M. J.; Haller, K. J.; West, R.; Michl, J. 

Organometallics 1984, 3, 793. 
(10) 48: yellow solid; mp 131 "C (beginning rearrangement); lH NMR 

o-CHs), 2.34 (broad, 6H, o-CHs), 2.57 (broad, 12H, o-CHs), 6.29 (8 ,  lH,  
SiH), 6.48 (broad, lH), 6.64 (broad, lH),  6.70 (s,4H, Mes H), 6.76 (s,2H, 
Mes H), 6.89 (broad, lH), 8.18 (broad, 1H); 13C NMR (75.44 MHz, C a s )  
8 18.45,20.75,21.11,24.45, 121.07,123.61,123.94, 124.94,126.96, 129.16, 
129.30, 131.17, 133.31, 136.18, 138.89, 144.77, 149.75, 183.35 (SiCN); IR 
(KBr) Y 2168 (SiH) cm-l; mas8 spectrum (EI/70 eV) m/z 490 (M+, 100 % ); 
UV-vis h (e) 270 (6570), 410 (530) nm. Anal. Calcd for CmH&IzSi: C, 
80.77; H, 7.80; N, 5.71. Found C, 80.49; H, 7.80, N, 5.53. Sa: red solid; 
mp 210 "C (sublimes); 1H NMR (300 MHz, C&) 6 2.03 (8,6H, p-CHs), 

~ H , ~ J H S H ~  = 9.5 Hz), 6.05 (H3, d, lH), 6.11 (H6, d, lH), 6.64 (s,2H, Mes 
H), 6.71 is, 4H, Mes H); 13C NMR (75.44 MHz, C&) 6 19.11,20,97,24.21, 
24.46. 103.96 (C5). 110.32 (C7). 119.32 (c4) ,  119.76 (C3). 122.25 (CZ), 

(300 MHz, C&) 8 1.99 (8, 3H, p-CHs), 2.10 (8 ,  3H, o-CH~), 2.13 (s, 3H, 

2.08 (s, 6H, o-CH~), 2.09 (8 ,  3H, p-CHs), 2.39 (8, 12H, ~ C H S ) ,  5.04 (H5, 
dd, lH,  'JH~,Hs = 6.5 Hz; 3 J ~ 5 ~ s  = 6.5 Hz), 5.48 ( H ~ , s ,  lH), 5.60 (H4, dd, 

129.44,129.75,132:84 (C6), 134.96,136.64,138.05,139.77,144.23,144.42; 
IR (KBr) Y 1605 s, 1588 m (C=C) cm-1; mass spectrum (CI, isobutane) 
m/z 491 (MH+, 100 7%); UV-vis (n-hexane) h 448, 473, 505,546 nm. 
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The simultaneous formation of the isomeric compounds 
4 and 5 during photolysis indicates that they probably 
result from common intermediates. In the first step 
dimesitylsilylene presumably reacts with the acyclic CN 
double bond in a [2 + 11 fashion to provide the azasila- 
cyclopropane derivatives 6, which can easily be rearranged 
to give CH insertion products 4 or the formal [4 + 11 
cycloaddition products 5. 

6 

The reactions of 2,3-dimethylbutadiene with meth- 
ylphenylsilylene12 and diphenylsilylenel3 proceed similarly 
to give an intermediate silacyclopropane which subse- 
quently rearranges to yield two isomeric products as well. 
Unlike 6, this intermediate does not contain a hydrogen 
atom in the direct vicinity of the silicon atom and, 
therefore, the subsequent reaction must proceed via a 
somewhat different mechanism. 

When 4a is heated to temperatures above its melting 
point, the color changes from yellow to red, which indicates 
that a rearrangement is taking place. Under these 
conditions, the spectral datal0 show that 4a unexpectedly 
rearranges to form the isomeric compound 5a, which is 
isolated in 70% yield along with decomposition products. 
It can be assumed that, a t  elevated temperatures, the 
equilibrium between 4,5, and 6 is irreversibly shifted in 
the direction of the five-membered ring, which is pre- 
sumably thermodynamically favored. Similarly, upon 
heating of 4b to ca. 200 'C the rearranged compound 5b 
is isolated in 53% yield. 

However, attempts to rearrange 4a or 4b into 5a or 5b 
by means of photolysis were unsuccessful. In both cases 
the starting materials were almost quantitatively recov- 
ered. 

(11) 5 b  red solid; mp 218-221 OC; lH NMR (300 MHz, C&) 6 0.66 
(d, 6H, iPr CHs, ~ J H H  = 6.7 Hz), 1.23 (d, 6H, iPr-CHa, V H ~  = 6.7 Hz), 
2.00 (a, 6H, p-CHa), 2.27 (broad, 12H, o-CHs), 3.22 (broad, 2H, iPr CH), 
4.99 (H5, ddd, lH,  'JHSg4 = 7.2 Hz, a J ~ ~ g ~  = 5.7 Hz, 'JM,HS 1.2 Hz), 
5.54 (H4, ddd, lH,  s J ~ 4 ~ s  9.6 Hz, 'JH(,H@ = 0.9 Hz), 5.65 (H7, 8,  lH) ,  
5.98 (H3, dd, lH), 6.05 (H6, dd, IH), 6.62 (8, 4H, Mea H), 6.93-7.14 (m, 
3H); 'W NMR (75.44MH2, C&) 6 20.93,22.05,24.35,27.12,28.74,104.20 
(CS), 112.62 (C7), 119.50 (C4), 123.61 (C3), 125.18,126.09,126.81,129.86, 
132.74 (C6), 139.81, 141.41, 144.44, 148.57; IR (KBr) Y 1603 s, 1591 m 
(C=C) cm-1; mass spectrum (EI/70 eV) m/r  532 (M+, 100 5% ); UV-vis 
(n-hexane) X (6) 448 (1300), 473 (1290), 502 (910), 543 (330) nm. Anal. 
Calcd for CdlrNzSi: C, 81,15; H, 8.32; N, 5.26. Found C, 80.77; H, 
8.25; N, 5.14. 

(12) Ishikawa, M.; Ohi, T.; Kumada, M. J. Organomet. Chem. 1976, 
86, C23. 

(13) Tortorelli, V. J.; Jones, M.; Wu, S.; Li, Z. Organometallics 1983, 
2, 759. 
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Figure 1. Molecular structure of 5a in the crystal (hydrogen 
atoms omitted). Selected bond lengths (A) and bond angles 
(deg): Si-N1 = 1.759(4), Si-N3 = 1.762(3),N3-C4 = 1.419(5), 

C8 = 1.436(9), C&C9 = 1.344(7), C9-N1 = 1.363(6); C10- 
Si-C19 = 113.2(2), Nl-Si-N3 = 90.0(2). 

A slow sublimation of 5a produced very air-sensitive 
single crystals whose X-ray structure analysis14 not only 
establishes the structure of the bicyclic compounds 5 but 
also indirectly the structure of the bpy adducts 2 (Figure 
1). 

As expected, silylene addition to 3 does not form a Lewis 
acid-base adduct; rather, the heteroaromatic ring of 3a is 
converted into a system of conjugated double bonds with 
loss of two 7r electrons. The average bond lengths of d = 
1.345A for the double bonds and d = 1.435 A for the single 
bonds are typical for a system of alternating double and 
single bonds. Within the five-membered ring both ni- 
trogen atoms have a nearly planar environment (sum of 
angles 359.6' for N1 and 355.8' for N3), thereby enforcing 
a narrow N-Si-N angle of 90' and slightly elongated Si-N 
distance~.~J5 This structure determination also provides 
clues as to the cause of the dark colors of the ring systems 
2 and 5 as well as the cause of the black color of Si(bpy)2.6 
Obviously, these colors result from one (5) or two (2) 
o-quinonoid rings in connection with the sila substitution. 
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C4-C5 = 1.348(6), C 5 4 6  = 1.433(6), C6-C7 1.330(8), C7- 

(14) Crystallographic data for 68: CmH&&3i, mol w t  490.76, ortho- 
rhombic, space group Pbca, a = 17.468(4) A, b = 19.514(4) A, c = 16.625(4) 
A, V = 5667(2) As, Z = 8, d d d  = 1.150 g cm",  AM^ = 0.710 73 A, p = 
0.11 mm-l. The data (7168 reflections, 6516 unique) were collected at 23 
"C on a Siemens R3m/V diffractometer using the Wyckoff scan mode 
( 8 ,  = 27.5O), and an empirical absorption correction was applied. The 
structure was solved by direct phase determination and refiied by full- 
matrix least squares using 3672 reflections with F > 3dF) to R = 0.080, 
R, = 0.067, and GOF = 2.31. All non-hydrogen a t o m  were refined 
anisotropically. All calculatione were performed on a MicroVAX I1 
computer using Siemens SHELXTL PLUS. 

(15) Lucevics, E.; Pudova, 0.; Sturkovich, R. Molecular Structure of 
Organosilicon Compounds; Ellis Horwood, Chichester, U.K., 1989. 
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