Coordination of $CB_{11}H_{12}^{-}$ to Cationic Zirconium(IV) Complexes. Synthesis and Structures of $(C_5H_5)_2Zr(\eta^2-CH_2Ph)(CB_{11}H_{12}), (C_5H_4Me)_2Zr(CH_3)(CB_{11}H_{12}),$ and $(C_5Me_5)Zr(CH_3)_2(CB_{11}H_{12})$

Donna J. Crowther, Samuel L. Borkowsky, Dale Swenson, Tara Y. Meyer, and Richard F. Jordan*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received March 16, 1993

The reaction of Ag[CB₁₁H₁₂] with Cp₂Zr(CH₂Ph)₂ yields Cp₂Zr(η^2 -CH₂Ph)(η^1 -CB₁₁H₁₂) (1), in which the carborane coordinates to Zr via a single B-H-Zr bridge involving the B-H bond trans to the carbon of the closo CB₁₁H₁₂⁻ anion. Data for 1: a = 9.802(5) Å, b = 13.663(5) Å, c = 10.860(4) Å, $\beta = 92.48(4)^\circ$, V = 1453(2) Å³, Z = 2, in space group P2₁/m. A similar structure is observed for Cp'₂Zr(CH₃)(η^1 -CB₁₁H₁₂) (2, Cp' = C₅H₄Me), which is prepared by reaction of Cp'₂Zr(CH₃)₂ with Ag[CB₁₁H₁₂]. Data for 2: a = 13.504(2) Å, b = 19.432(3) Å, c = 7.919(1) Å, V = 2078(1) Å³, Z = 4, in space group Pnn2. The reaction of Cp*Zr(CH₃)₃ (Cp* = C₅Me₅) with Ag[CB₁₁H₁₂] yields Cp*Zr(CH₃)(η^3 -CB₁₁H₁₂) (3), in which the carborane coordinates in a unique tridentate fashion via three B-H-Zr bridges involving the B-H bonds on a triangular face opposite the carborane carbon. Data for 3: a = 12.360(3) Å, b = 19.450(4) Å, c = 9.161(2) Å, $\beta = 90.93(4)^\circ$, V = 2202(1) Å³, Z = 4, in space group P2₁/c. Complex 1 polymerizes ethylene, and 2 oligomerizes propene under mild conditions, while 3 is unreactive with propene, 2-butyne, or styrene, apparently due to the lower lability of the tridentate carborane ligand. The CB₁₁H₁₂ligands of 1-3 are rapidly displaced by CH₃CN or THF.

The reactivity of electrophilic cationic organometallic species such as $Cp_2Zr(R)^+$ and $Cp_2Zr(R)(L)^+$ is strongly influenced by the availability of vacant coordination sites, which in turn is determined by ligand lability, solvent coordination, intramolecular agostic interactions, and cation-anion interactions.¹ One strategy for accessing reactive but still isolable organometallic cations is to utilize a weakly coordinating anion which coordinates or ionpairs strongly enough to impart solubility in nonpolar, poorly coordinating solvents but is sufficiently labile to be displaced by substrates of interest (e.g. olefins).² Hlatky and Turner have demonstrated that anionic carborane clusters are useful weakly coordinating anions for Cp₂- $Zr(R)^+$ cations through their preparation of $Cp*_2Zr$ - $(CH_3)(C_2B_9H_{12})$ $(Cp^* = C_5Me_5)$.³ This ion pair contains a $C_2B_9H_{12}$ - counterion linked to the Zr cation by a B-H-Zr bridge, is soluble in toluene, and is an active ethylene polymerization catalyst. Reed has popularized the closo carborane anion $CB_{11}H_{12}^{-,4,5}$ which also binds weakly to metal cations via B-H-Zr bridging from the H antipodal to C.^{6,7} On the basis of structural, spectroscopic, and reactivity studies, Reed has dubbed $CB_{11}H_{12}^-$ the "least coordinating" anion. While $CB_{11}H_{12}^-$ is somewhat less synthetically accessible than $C_2B_9H_{12}^-$, it has a major advantage in the context of early metal alkyl chemistry in that it lacks acidic hydrogens. In this paper we describe the synthesis and characterization of a series of cationic Zr(IV) alkyl complexes containing the $CB_{11}H_{12}^-$ counterion and discuss in some detail the Zr-carborane interactions.⁸ The Exxon group has reported the generation and olefin polymerization activity of $(C_5R_5)_2Zr(R)(CB_{11}H_{12})$ and related species in a patent,⁹ and other weakly coordinating anions have been used in base-free $Cp_2M(R)^+$ systems.¹⁰

⁽¹⁾ Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325 and references therein.

 ⁽²⁾ For reviews see: (a) Strauss, S. H. Chem. Rev. 1993, 93, 927. (b)
 Bochmann, M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1181. (c) Beck,
 W.; Sünkel, K. Chem. Rev. 1988, 88, 1405. (d) Lawrance, G. A. Adv.
 Inorg. Chem. 1989, 34, 145. (e) Lawrance, G. A. Chem. Rev. 1986, 86, 17.
 (f) Rosenthel M. B. J. Chem. Educ. 1973, 50, 331

⁽f) Rosenthal, M. R. J. Chem. Educ. 1973, 50, 331.
(3) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728.

 ^{(4) (}a) Knoth, W. H. J. Am. Chem. Soc. 1967, 89, 1274. (b) Knoth, W.
 H. Inorg. Chem. 1971, 10, 598. (c) Plesek, J.; Jelínek, T.; Drdaková, E.;

<sup>Hermánek, S.; Stíbr, B Collect. Czech. Chem. Commun. 1984, 49, 1559.
(5) Sivaev, I. B.; Kayumov, A.; Yakushev, A. B.; Solntsev, A.; Kuznetsov,</sup> N. T. Sov. J. Coord. Chem. (Engl. Transl.) 1987, 15, 837.

^{(6) (}a) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5955. (b) Shelly, K.; Reed, C. J. Am. Chem. Soc. 1986, 108, 3117. (c) Gupta, G.; Lang, G.; Lee, Y. J.; Scheidt, W. R.; Shelly, K.; Reed, C. A. Inorg. Chem. 1987, 26, 3022. (d) Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1989, 111, 6643.

⁽⁷⁾ Liston, D. J.; Reed, C. A.; Eigenbrot, C. W.; Scheidt, W. R. Inorg. Chem. 1987, 26, 2739.

⁽⁸⁾ We recently noted the preparation of a metastable $Cp_2Ti(CH_2-Ph)(CB_{11}H_{12})$ complex: Borkowsky, S. L.; Baenziger, N. C.; Jordan, R. F. Organometallics 1993, 12, 486.

⁽⁹⁾ Turner, H. W.; Hlatky, G. G. European Patent Appl. 88300698.3, 1988.

^{1500.} (10) For examples see the following. (a) $MeB(C_6F_5)_3$ ⁻: Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623. (b) $B(C_6H_4F)_4$ ⁻: Horton, A. D.; Orpen, A. G. Organometallics 1991, 10, 3910. (c) $HB(C_6F_5)_3$ ⁻: Yang, X.; Stern, C. L.; Marks, T. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 1375. (d) $B(C_6F_5)_4$ ⁻: Turner, H. W. European Patent Appl. 88300699.1, 1988. (e) B(3,5-($CF_3)_2Ph)_4$ ⁻: Bochmann, M.; Jaggar, A. J. J. Organomet. Chem. 1992, 424, C5.

Table L. Summary of Crystallographic Data for 1-3

1 wh	Ne it Summary of Crystanograph		
	1	2	3
empirical formula	C18H20B11Zr.C7H8	$C_{14}H_{20}B_{11}Zr$	$C_{13}H_{33}B_{11}Zr$
fw	547.71	407,53	399.55
cryst size (mm)	$0.20 \times 0.35 \times 0.55$	$0.52 \times 0.63 \times 0.66$	$0.47 \times 0.51 \times 0.61$
cryst color	vellow	dark red	red
$T(\mathbf{K})$	295	295	295
space group	$P2_1/m$	Pnn2	$P2_1/c$
a(Å)	9.802(5)	13.504(2)	12.360(3)
$b(\mathbf{A})$	13.663(5)	19.432(3)	19.450(4)
$c(\mathbf{A})$	10.860(4)	7.919(1)	9.161(2)
β (deg)	92.48(4)	()	90.93(4)
$V(\tilde{A}^3)$	1453(2)	2078(1)	2202(1)
7	2	4	4
D_{c} (g/cm ³)	1.25	1.31	1.21
no. of refine: θ range (deg)	25: $16 < 2\theta < 24$	23: 20 < 2 θ < 34	25: $24 < 2\theta < 29$
λ (Mo K α radiation) (Å)	0.7107	0.7107	0.7107
scan ratio (ω/θ)	1	1	1
ω scan range (deg)	$0.7 \pm 0.35 \tan(\theta)$	$0.8 + 0.35 \tan(\theta)$	$0.8 + 0.35 \tan(\theta)$
scan speed (deg/min)	1.5-6.67	1.5-5.0	1.5-5.0
θ range (deg)	$2 < \theta < 25$	$2 \le \theta \le 30$	$2 \le \theta \le 30$
data collected			
h	-10, 10	-18.18	-2.17
k	0.14	-27, 18	-27.27
ĩ	0, 11	-11.0	-12, 12
no, of tot, refins	2567	9743	11 673
no. of unique refins	2100	3202	6363
no. of refins used, $I > 2\sigma_I$	1137	2344	4613
Rin	0.045	0.031	0.022
decay factor cor range	1.00-1.07	0.49-1.66	1.00-1.11
abs coeff (cm^{-1})	3.86	5.18	4.87
empirical abs cor range	not done	1.002-1.042	1.001-1.051
structure soln method	direct methods		direct methods
refinement ^a	all n	on-H atoms refined anisotropica	llv
	H atoms fixed isotropic	H atoms refin	ed isotropically
tot, no, of params	180	270	265
R	0.067	0.025	0.031
<i>R</i> _w	0.083	0.031	0.046
weighting coefficients: P, O^b	0.05. 0.0	0.02, 0.0	0.03, 0.0
SDOUW	1.237	0.981	1.162
max shift/esd	0.06	0.33	0.28
max density, final diff density map $(e/Å^3)$	0.49	0.53	0.49
,			

^a For 1, C-H = 0.95 Å and B-H = 1.08 Å, $B_{iso} = 1.1B_{iso}(C)$ or $1.1B_{iso}(B)$. ^b $w = (\sigma_F^2 + (PF)^2 + Q)^{-1}$. ^c Standard deviation of unit weight.

Results and Discussion

Synthesis, Structure, and Reactivity of $Cp_2Zr(\eta^2-\eta^2)$ $(CH_2Ph)(CB_{11}H_{12})$ (1). In previous work we have established that reaction of d⁰ metal alkyls with one-electron oxidants results in clean oxidative cleavage of metal-alkyl bonds, providing a useful entry to cationic species.¹¹ The benzene-soluble Ag⁺ reagent Ag[CB₁₁H₁₂] proved most useful in the present work.⁶ The reaction of $Ag[CB_{11}H_{12}]$ with $Cp_2Zr(CH_2Ph)_2$ in benzene or toluene yields Cp_2Zr - $(\eta^2$ -CH₂Ph)(CB₁₁H₁₂) (1, quantitative by ¹H NMR, 48% isolated) and bibenzyl (eq 1). Complex 1 crystallizes as a monotoluene solvate which loses the toluene under vacuum.

$$(C_{5}H_{4}R')_{2}ZrR_{2} + Ag[CB_{11}H_{12}] \rightarrow (C_{5}H_{4}R')_{2}Zr(R)(CB_{11}H_{12}) + \frac{1}{2}R-R + Ag^{0} (1)$$

1: R = η^{2} -CH₂Ph; R' = H
2: R = CH₃; R' = CH₃

The solid-state structure of 1 was determined by X-ray diffraction; crystallographic data are listed in Table I, and metrical and positional parameters listed in Tables II and III. Complex 1 adopts the normal bent metallocene structure in which the benzyl and $CB_{11}H_{12}$ ligands lie in

Table II.	Selected Bond Distances (Å) and Angles (deg) for
	Cn_Zr(n2-CH_Ph)(CR.,H.,) (1)4

Zr-C11	2.34(1)	$\overline{Zr-C}_{ring}$	2.51(3)	
Zr-C12	2.65(1)	(C-C)	1.37(1)	
Zr-C ₀	2.22	C-B	1.67(2)	
Zr-HB7	2.30	B-B	1.76(3)	
Zr-B7	3.33(2)			
C11-Zr-C ₀ C11-Zr-B7 C ₀ -Zr-B7	103.6 126.4(6) 98.6	Zr-HB7B7 Zr-C11-C12 CB2-B7-Zr	159 84.2(8) 166.0(6)	

^{*a*} C_0 = centroid of Cp ring.

the plane between the Cp ligands, as illustrated in Figures 1 and 2. A crystallographically imposed mirror plane renders the two Cp ligands equivalent and the halves of the benzyl and carborane ligands equivalent. The benzyl ligand is distorted by a Ph--Zr donor interaction which results in an acute $Zr-CH_2-C_{ipso}$ angle (84.2(8)°) and a short $Zr-C_{ipso}$ contact (2.65(1) Å). Very similar η^2 -benzyl interactions were observed for $Cp_2Zr(\eta^2-CH_2Ph)(CH_3CN)^+$ $(Zr-C-C_{ipso} = 84.9(4)^{\circ}, Zr-C_{ipso} = 2.648(6) \text{ Å})^{12}$ and (ethyl-enebis(tetrahydroindenyl)) $Zr(\eta^2-CH_2Ph)(CH_3CN)^+$ (Zr- $C-C_{ipso} = 84.4(5)^{\circ}, Zr-C_{ipso} = 2.627(9) \text{ Å}).^{13} \text{ The } CB_{11}H_{12}^{-1}$ anion is coordinated to Zr via a bridging B-H-Zr bond

^{(11) (}a) Borkowsky, S. L.; Jordan, R. F.; Hinch, G. D. Organometallics 1991, 9, 2574. (b) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041.

⁽¹²⁾ Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. D. J. Am. Chem. Soc. 1987, 109, 4111.
 (13) Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch, G. D.

Organometallics 1990, 9, 1539.

Table III.	Positional	Parame	ters for
$Cp_2Zr(\mu^2$	-CH2Ph)(C	$(B_{11}H_{12})$	(1) ^{a,b}

	- F 2 (F		1112/ (-/	
atom	x	у	Z	B (Å ²)
Zr	0.6631(1)	0.250	0.1248(1)	3.21(3)
C1	0.621(1)	0.0710(8)	0.176(1)	5.7(3)
C2	0.684(1)	0.0743(8)	0.068(1)	6.3(3)
C3	0.597(1)	0.1147(8)	-0.020(1)	6.3(3)
C4	0.480(1)	0.1402(9)	0.037(1)	6.6(3)
C5	0.495(1)	0.1162(8)	0.160(1)	5.9(3)
C11	0.697(2)	0.250	0.339(1)	5.1(4)
C12	0.845(1)	0.250	0.312(1)	4.7(4)
C13	0.917(1)	0.1635(9)	0.291(1)	6.5(3)
C14	1.055(1)	0.165(1)	0.260(1)	7.8(4)
C15	1.118(2)	0.250	0.248(2)	8.4(6)
B 1	1.162(2)	0.250	-0.195(2)	8.4(7)
CB2	1.077(1)	0.250	-0.330(1)	5.9(4)
B3	1.058(1)	0.185(1)	-0.090(1)	6.3(4)
B4	1.074(1)	0.148(1)	-0.245(1)	6.6(4)
B5	0.929(1)	0.189(1)	-0.331(1)	5.3(3)
B6	0.913(1)	0.146(1)	-0.176(1)	6.5(4)
B 7	0.905(2)	0.250	-0.081(1)	3.8(4)
B 8	0.828(2)	0.250	-0.232(2)	5.1(5)
C ₀	0.5751	0.1032	0.0844	0*

^a Asterisk indicates that atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3)]$ + $ab(\cos \gamma)B(1,2)$ + $ac(\cos \beta)B(1,3)$ + $bc(\cos \alpha)B(2,3)$]. $b C_0$ is the Cp ring centroid.

Figure 1. ORTEP view of $Cp_2Zr(\eta^2-CH_2Ph)(CB_{11}H_{12})$ (1).

involving the B-H bond opposite the cage carbon. This is consistent with the structures of $Ag[CB_{11}H_{12}]$, CpFe- $(CO)_2(CB_{11}H_{12}), (TPP)Fe(CB_{11}H_{12}) (TPP = tetraphen$ ylporphyrin), and other complexes characterized by Reed and Scheidt,⁶ and with general observations that electrophilic attack on $CB_{12}H_{12}$ is favored at this position.¹⁴ The μ -H atom was located but not refined, so a detailed discussion of the Zr-H-B bridge is not warranted. However, it is clear that the Zr-H-B angle (ca. 159°) is more linear than those in $Ag[CB_{11}H_{12}]$ (113.6, 121.0°) and $CpFe(CO)_2(CB_{11}H_{12})$ (141.1°), perhaps as a result of the rather crowded structure of this (formally) 9-coordinate species. The B-H-Fe angle in $(TPP)Fe(CB_{11}H_{12})$ is 151°. The IR spectrum of 1 (KBr) exhibits two v_{B-H} stretching bands (2559, 2287 cm⁻¹), consistent with the loss of symmetry associated with coordination of $CB_{11}H_{12}$ -to $Zr.^6$

NMR studies establish that 1 maintains the solid-state structure in hydrocarbon solution. The ¹H NMR spectrum of 1 in toluene- d_8 contains a resonance at δ 6.30 for the ortho hydrogens of the phenyl ring which is shifted considerably upfield from the corresponding resonance of $Cp_2Zr(CH_2Ph)_2$ ($\delta 6.88$), which contains undistorted benzyl ligands. The ¹³C NMR Zr-CH₂ resonance also appears at high field, and the J_{CH} is unusually large (δ 50.6, J = 140

Figure 2. Alternate view of 1.

Hz; vs δ 60.0, J = 119 Hz for Cp₂Zr(CH₂Ph)₂). These data confirm that the n^2 -benzyl structure is maintained in solution.^{12,13,15} The ¹H NMR spectrum of 1 also contains resonances for the terminal C-H (δ 2.56, s, 1H), the terminal B-H (δ 3.1-0.8, br m, ca. 10H), and the bridging B-H-Zr $(\delta - 3.15, \text{ br q}, J_{BH} = 108 \text{ Hz})$ hydrogens of the CB₁₁H₁₂ligand. The ¹¹B NMR spectrum includes three doublets at $\delta - 8.1 (1B, J_{BH} = 100 \text{ Hz}), -14.1 (5B, J_{BH} = \text{ca. } 154 \text{ Hz}),$ and -15.6 (5B, J_{BH} = ca. 160 Hz), consistent with interaction of the anion with Zr via the unique B-H bond. The $J_{\rm BH}$ value for the μ -B-H closely matches that observed in the ¹H NMR spectrum and is significantly reduced from the values for the terminal B-H's, indicating some B-H bond weakening upon bridging to Zr. The chemical shift difference of the two upfield ¹¹B resonances ($\Delta \delta = 1.5$) is much smaller than that observed for free $CB_{11}B_{12}^{-}$ (e.g. $\Delta\delta$ = 3.1 for Cs[CB₁₁H₁₂] in acetone- d_6^{16} and $\Delta \delta = 0$ for $Ag[CB_{11}H_{12}]$ in benzene), which is also consistent with coordination of the anion in solution.

The reaction of 1 with CH₃CN results in displacement of the $CB_{11}H_{12}$ -ligand and formation of the known CH_3CN complex Cp₂Zr(CH₂Ph)(CH₃CN)⁺ and free CB₁₁H₁₂^{-,12} The ¹¹B NMR spectrum of a solution of $[Cp_2Zr(\eta^2 -$ CH₂Ph)(CH₃CN)][CB₁₁H₁₂] in CD₃CN contains three doublets (δ -6.29 (1H), -12.60 (5H), -15.4 (5H)) with a normal $J_{\rm BH}$ value (135 Hz) for the unique boron atom. This spectrum is very similar to that of $Cs[CB_{11}H_{12}]$ in acetone- d_6 , i.e. to that for free CB₁₁H₁₂⁻. Solutions of complex 1 in toluene polymerize ethylene above 0 °C (ca. 1 atm). Low-temperature ¹H NMR monitoring of this reaction reveals no change in the spectrum of 1 below ca. 0 °C. Above this temperature several new resonances are observed, one of which (δ 5.40 (Cp)) may be due to a new $Cp_2Zr(CH_2CH_2R)(CB_{11}H_{12})$ alkyl species; no evidence for a stable ethylene adduct is observed. Significant polyethylene forms before the resonances for 1 disappear, consistent with slow initial insertion.¹²

Synthesis, Structure, and Reactivity of Cp'₂Zr- $(CH_3)(CB_{11}H_{12})$ (2). The reaction of $Cp'_2Zr(CH_3)_2$ (Cp' = C_5H_4Me) with Ag[CB₁₁H₁₂] in toluene or benzene yields $Cp'_{2}Zr(CH_{3})(CB_{11}H_{12})$ (2, 95% NMR, 37% isolated) and

^{(14) (}a) Halogens: Jelínek, T.; Plesek, J.; Hermánek, S.; Stíbr, B. Collect. Czech. Chem. Commun. 1986, 51, 819. (b) H⁺: Jelínek, T.; Plesek, J.; Mares, F.; Hermánek, S.; Stíbr, B. Polyhedron 1987, 6, 1981.

⁽¹⁵⁾ Leading references: (a) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I. P.; Huffman, J. C. Organometallics 1985, 4, 902. (b) Scholz, J.; Schlegel, M.; Thiele, K. H. *Chem. Ber.* 1987, *120*, 1369. (c) Scholz, J.; Rehbaum, F.; Thiele, K.-H.; Goddard, R.; Betz, P.; Krüger, C. J. Organomet. Chem. 1993, 443, 93. (16) See Experimental Section and: Wiersema, R.; Hawthorne, M. F.

Inorg. Chem. 1973, 12, 785.

Figure 3. ORTEP view of $Cp'_2Zr(CH_3)(CB_{11}H_{12})$ (2).

Table IV. Selected Bond Distances (Å) and Bond Angles (deg) for Cp'₂Zr(CH₃)(CB₁₁H₁₂) (2)^a

(408	/ 101 00 2011(0	······································	
Zr-C13	2.270(3)	Zr-Cring	2.50(4)
Zr-B3	2.881(3)	$\overline{Zr-C_{ring2}}$	2.51(3)
Zr-C ₀	2.209	C-C _{ring1}	1.38(3)
Zr-C ₀₀	2.208	$\overline{C-C}_{ring2}$	1.39(2)
Zr-HB3	2.06(3)	B-B	1.77(2)
B3-HB3	1.19(5)	C-B	1.71(3)
C1-C6	1.500(6)	B-H	1.11(5)
C7–C12	1.504(5)		
C13-Zr-B3	105.6(1)	B3ZrC ₀₀	106.1
C13–Zr–C ₀	104.9	$C_{0}-Zr-C_{00}$	128.1
C13-Zr-C ₀₀	103.7	Zr-HB3-B3	123(2)
B3-Zr-C ₀	107.1	Zr-B3-C14	144.5(2)

 $^a\,C_0$ = centroid of C1–C5 Cp' ring; C_{00} = centroid of C7–C11 Cp' ring.

ethane, as indicated in eq 1. Manipulation of 2 was hindered by thermal decomposition which appears to yield several products and was not studied in detail. Complex 2 is also formed by reaction of $Cp'_2Zr(CH_3)_2$ with $[Cp'_2Fe][CB_{11}H_{12}]$, although this reaction is not as clean as the Ag $[CB_{11}H_{12}]$ reaction.

The molecular structure of 2 as determined by a singlecrystal X-ray diffraction study is shown in Figure 3. Metrical and positional parameters are listed in Tables IV and V. The structure of 2 consists of an unexceptional bent metallocene $Cp'_2Zr(CH_3)^+$ fragment to which the $CB_{11}H_{12}$ - anion is coordinated via a single B-H-Zr bridge. As for 1, the B-H bond opposite the CH of the cage bridges to Zr. The bridging H atom was located and isotropically refined. The $Zr-\mu$ -H-B angle (123°) is considerably smaller and the Zr-B distance shorter than the values estimated for 1, indicating a stronger Zr-carborane interaction.¹⁷ The Zr-H-B angle is more in line with what has been observed for other M-H-B systems.⁶ The CH₃-Zr-HB angle (105.4°) is somewhat larger than generally observed for d⁰ Cp₂MX₂ complexes (94-97°),¹⁸ perhaps as a result of the bulky CB₁₁H₁₂-, although this structure is clearly less crowded than 1.

NMR studies of 2 indicate that the $CB_{12}H_{12}^{-1}$ ligand is highly labile. The ¹H NMR spectrum of a toluene- d_8 solution of 2 at 25 °C contains only two multiplets for the C_5H_4 Me hydrogens, and the ¹³C NMR spectrum contains only two Cp' CH resonances. These data indicate that

Table V. Positional Parameters for Cp'_2Zr(CH_3)(CB_{11}H_{12}) (2)"

atom	x	У	2	B (Å ²)
Zr	0.40901(1)	0.21530(1)	0.523	2.766(3)
C1	0.4919(3)	0.3013(2)	0.3218(5)	5.03(7)
C2	0.5599(2)	0.2802(2)	0.4401(6)	4.38(7)
C3	0.5801(2)	0.2105(2)	0.4186(6)	4.81(8)
C4	0.5240(3)	0.1871(2)	0.2879(5)	5.22(7)
C5	0.4693(3)	0.2405(2)	0.2286(5)	6.28(9)
C6	0.4589(4)	0.3739(2)	0.291(1)	10.9(2)
C7	0.4707(2)	0.1674(2)	0.8024(4)	3.87(6)
C8	0.3671(3)	0.1669(2)	0.8100(5)	4.38(6)
C9	0.3341(2)	0.2360(2)	0.8062(5)	4.89(7)
C10	0.4164(2)	0.2778(2)	0.7944(6)	4.26(7)
C11	0.4989(2)	0.2364(2)	0.7955(5)	4.12(6)
C12	0.5371(3)	0.1054(2)	0.8116(6)	6.43(9)
C13	0.2812(2)	0.2872(1)	0.4637(6)	4.76(8)
B 1	0.2341(3)	-0.0454(2)	0.4213(7)	5.0(1)
B2	0.2737(3)	0.0205(2)	0.5601(5)	4.24(9)
B 3	0.3408(2)	0.0797(2)	0.4328(5)	3.61(7)
B4	0.3517(2)	-0.0088(2)	0.3940(6)	4.03(8)
B5	0.1515(2)	0.0204(2)	0.4774(7)	4.8(1)
B6	0.2168(2)	0.0987(2)	0.4916(8)	5.1(1)
B 8	0.2765(3)	-0.0263(2)	0.2207(7)	5.01(9)
B9	0.3444(3)	0.0499(2)	0.2209(6)	4.50(8)
B 10	0.2608(3)	0.1168(2)	0.2804(7)	4.83(9)
B 11	0.2206(3)	0.0491(2)	0.1474(7)	5.7(1)
B12	0.1431(3)	0.0798(2)	0.3133(9)	5.5(1)
C14	0.1564(3)	-0.0071(2)	0.2780(9)	6.8(1)
C ₀	0.5250	0.2439	0.3393	4*
C ₀₀	0.4174	0.2168	0.8017	4*

^a See footnote a, Table III.

the sides of the Cp' ligands are equivalent and establish that rapid site exchange of the Zr-CH₃ and Zr-carborane ligands is occurring. An upfield ¹H NMR Zr-H-B resonance is not observed in this case; presumably it is broadened by exchange. The {¹H}¹¹B NMR spectrum is similar to that for 1. Addition of THF to 2 yields the known THF adduct Cp'₂Zr(CH₃)(THF)⁺.¹⁹ Complex 2 catalyzes the oligomerization of propene to primarily 2-methyl-1-pentene and 2,4-dimethyl-1-heptene (toluened₈, 23 °C, <1 atm), via an insertion/ β -H elimination process.

Attempts to extend the synthesis of 2 to other zirconocene-methyl systems met with only minimal success due in part to the thermal instability of the products. We were able, however, to isolate the parent system Cp₂Zr-(CH₃)(CB₁₁H₁₂), which has been characterized spectroscopically and exhibits properties similar to those of 2. Cp₂Zr(CH₃)(CB₁₁H₁₂) reacts with CH₃CN to give the known Cp₂Zr(CH₃(CH₃CN)₂⁺;^{11b} this complex is also formed directly via reaction of [Cp'₂Fe][CB₁₁H₁₂] with Cp₂Zr(CH₃)₂ in CH₃CN. Cp₂Zr(CH₃)(CB₁₁H₁₂) also oligomerizes propene (to predominantly 2-methyl-1-pentene, <1 atm, 23 °C, benzene-d₆).

Reaction of Cp'_2ZrCl_2 and Ag[CB_{11}H_{12}]. One question of long-standing interest is whether the Ag⁺ cleavage of Zr–R bonds in eq 1 and related reactions involves alkyl group abstraction to yield intermediate [AgR] species (which decompose to R₂) or proceeds via electron transfer yielding the R radical and Ag⁰ directly.^{1,11,12,20} The former seems unlikely, given the low nucleophilicity of CB₁₁H₁₂⁻ and the expected poor leaving-group ability of CH₃⁻. Reed has commented previously on the unfavorability of X⁻

⁽¹⁷⁾ See Discussion in: Bau, R.; Teller, R. G.; Kirtly, S. W.; Koetzle, T. F. Acc. Chem. Res. **1979**, *12*, 176.

T. F. Acc. Chem. Res. 1979, 12, 176. (18) (a) Prout, K.; Cameron, T. S.; Forder, R. A.; Critchley, S. R.; Denton, B.; Rees, G. V. Acta Crystallogr., Sect. B. 1974, B30, 2290. (b) Cardin, D. J.; Lappert, M. F.; Raston, C. L. Chemistry of Organo-Zirconium and -Hafnium Compounds; Ellis Horwood, Ltd.: Chichester, U.K., 1986; Chapter 4.

⁽¹⁹⁾ Wang, Y.; Jordan, R. F.; Echols, S. F.; Borkowsky, S. L.; Bradley, P. K. Organometallics 1991, 10, 1406.

^{(20) (}a) Burk, M. R.; Tumas, W.; Ward, M. D.; Wheeler, D. R. J. Am. Chem. Soc. 1990, 112, 6133. (b) See also: Seligson, A. L; Trogler, W. C. J. Am. Chem. Soc. 1992, 114, 7085.

"abstraction" or transfer reactions in the absence of nucleophilic solvents, ligands, or anions.^{6d,7} To probe this question, we briefly investigated the reaction of Cp'_2ZrCl_2 with Ag[$CB_{11}H_{12}$], in which electron-transfer pathways should be much less accessible. In fact, when this reaction is monitored by ¹H NMR, very small but reproducible shifts in the resonances of the reactants are observed, suggesting some adduct formation (eq 2). However, there

$$C_{P_2Zr} \begin{pmatrix} C_1 \\ C_1 \end{pmatrix} + Ag[CB_{11}H_{12}] \longrightarrow C_{P_2Zr} \begin{pmatrix} C_1 \\ C_1 \end{pmatrix} Ag[CB_{11}H_{12}]$$
(2)

is no evidence for the formation of AgCl and $Cp'_2ZrCl-(CB_{11}H_{12})$,²¹ even after heating to 50 °C. These results strongly suggest that electron transfer from a Zr-R bond to Ag⁺ (probably after initial adduct formation) is the key step in these oxidative cleavage reactions.

Synthesis, Structure, and Reactivity of Cp*Zr-(CH₃)₂(CB₁₁H₁₂) (3). Ten-electron, d⁰ cations of general form CpMR₂⁺ are of interest because of the high electrophilicity/reactivity which is expected to result from the high coordinative unsaturation. Cations of this type are possible active species in CpMX₃-based syndiospecific styrene polymerization catalysts.²² We previously described a series of Cp*Zr(CH₃)₂L_n⁺ complexes (L = THF, phosphine), which due the presence of stabilizing ligands L are relatively unreactive.²³ The lability of the CB₁₁H₁₂⁻ ligands of 1 and 2 suggested that Cp*Zr(CH₃)₂(CB₁₁H₁₂) (3) might be more reactive, and we therefore explored the synthesis of this complex.

The reaction of $Cp*Zr(CH_3)_3$ with $Ag[CB_{11}H_{12}]$ yields $Cp*Zr(CH_3)_2(CB_{11}H_{12})$ (3, quantitative by ¹H NMR, 40% isolated) and ethane (eq 3). Complex 3 is isolated as a

Cp*Zr(CH₃)₃ + Ag[CB₁₁H₁₂] →
Cp*Zr(CH₃)₂(CB₁₁H₁₂) +
$$^{1}/_{2}$$
CH₃CH₃ + Ag⁰ (3)
3

yellow crystalline solid and is considerably more thermally stable than 1 and 2. It is stable below 70 °C in toluene for hours but reacts above 80 °C to yield as yet uncharacterized products.

The molecular structure of 3, as determined by X-ray diffraction, is shown in Figure 4. Metrical and positional parameters are listed in Tables VI and VII. The hydrogen atoms were located and refined isotropically. The $CB_{11}H_{12}^{-1}$ anion is coordinated to the $Cp*Zr(CH_3)_2^+$ fragment in a tridentate fashion via three B-H-Zr bridges involving the B-H bonds on a triangular face opposite the carborane carbon. This is a new coordination mode for $CB_{11}H_{12}^{-1}$ and can be ascribed to the high electrophilicity and uncrowded structure of the $Cp*Zr(CH_3)_2^+$ cation. This structure is reminiscent of the tridentate coordination (via three B-H-Mn bridges) of $B_3H_8^-$ and the $B_8H_{13}^-$ fragment to "Mn(CO)₃" in Mn(CO)₃(B_3H_8) and Mn(CO)₃(B_8H_{13}).²⁴

Figure 4. ORTEP view of $Cp*Zr(CH_3)_2(CB_{11}H_{12})$ (3).

Table VI. Selected Bond Distances (Å) and Angles (deg) for Cp*Zr(CH₃)₂(CB₁₁H₁₂) (3)^a

Zr-C11	2.245(2)	B1-HB1	1.18(2)
Zr-C12	2.236(2)	B2–HB2	1.09(2)
ZrC0	2.200	B3–HB3	0.97(2)
Zr-B ₀	2.536	ZrC _{ring}	2.505(6)
Zr-B1	2.720(2)	(C–C) _{ring}	1.41(1)
Zr-B2	2.751(2)	$\overline{C_{ring}} - C_{Me}$	1.51(1)
Zr-B3	2.717(3)	BB	1.75(2)
Zr-HB1	2.24(2)	C-B	1.71(2)
Zr-HB2	2.40(2)	B-H	1.04(3)
Zr-HB3	2.32(2)	$\overline{C_{Me}}$ -H	0.97(7)
C11-Zr-C12	99.6(1)	C ₀ -Zr-HB1	100.7
$C11-Zr-C_0$	107.6	C ₀ -Zr-HB2	174.9
$C12-Zr-C_0$	107.9	C ₀ -Zr-HB3	104.6
C11–Zr–HB1	79.7(6)	C11-Zr-B ₀	101.2
C11–Zr–HB2	77.2(5)	$C12-Zr-B_0$	105.0
C11–Zr–HB3	142.6(6)	$C_0 - Zr - B_0$	104(2)
C12-Zr-HB1	150.0(6)	Zr-HB1-B1	101(1)
C12-Zr-HB2	72.8(5)	Zr–HB2–B2	97(1)
C12-Zr-HB3	87.9(6)	Zr-HB3-B3	104(2)

^{*a*} C_0 and B_0 = centroids of the Cp ring and the B1-B2-B3 face.

centers with triangular faces of boron hydride cluster species were observed in $[Cp*_2Th(CH_3)][(C_2B_9H_{11})_2Fe)]^{25}$ and invoked to explain the fluxional behavior of lanthanide carborane species.²⁶ The Zr-Cp* and Zr-CH₃ distances are comparable to those in Cp*Zr(CH₃)₂(THF)₂⁺.²³

NMR spectral data do not provide detailed information about the solution structure of 3, although it is likely that the η 3-coordination mode is retained. The ¹H NMR spectrum contains the expected Cp*, Zr–CH₃, and carborane C–H resonances and broad terminal B–H resonances; resonances assignable to the μ -H hydrogens are not observed. The {¹H}¹¹B NMR spectrum contains two signals (integrating for 1B and 10B) and is similar to but shifted from that of Ag[CB₁₁H₁₂]. The ¹H and ¹¹B NMR spectra remain essentially unchanged down to 208 K.²⁷ It is likely that the Cp*Zr(CH₃)₂+ fragment undergoes rapid migration around the five equivalent triangular faces opposite the carbon of the CB₁₁H₁₂⁻ cluster.

⁽²¹⁾ For $\operatorname{Cp}_2\operatorname{Zr}(X)L_n^+$ complexes see: Jordan, R. F.; Echols, S. F. Inorg. Chem. 1987, 26, 383.

⁽²²⁾ For leading references and discussions of possible active species in these catalyst systems see: (a) Ishihara, N.; Kuramoto, M.; Uoi, M. Macromolecules 1988, 21, 3356. (b) Zambelli, A.; Pellecchia, C.; Oliva, L.; Longo, P.; Grassi, A. Makromol. Chem. 1991, 192, 223. (c) Chien, J. C. W.; Salajka, Z.; Dong, S. Macromolecules 1992, 25, 3199. (d) Pellecchia, C.; Longo, P.; Proto, A.; Zambelli, A. Makromol. Chem., Rap. Commun. 1992, 13, 265. (e) Campbell, R. E. European Patent Appl. 90310495.8, 1990.

⁽²³⁾ Crowther, D. J.; Jordan, R. F.; Baenziger, N. C. Organometallics 1990, 9, 2574.

^{(24) (}a) Gaines, D. F.; Hildebrandt, S. J. Inorg. Chem. 1978, 17, 794.
(b) Calabrese, J. C.; Fischer, M. B.; Gaines, D. F.; Lott, J. W. J. Am. Chem. Soc. 1974, 96, 6318.

⁽²⁵⁾ See ref 11 in: Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10, 840.

⁽²⁶⁾ Manning, M. J.; Knobler, C. B.; Khattar, R.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 2009.

⁽²⁷⁾¹H-coupled spectra were obtained, but it was not possible to reliably determine J_{BH} values due to overlapping resonances.

Table VII. Positional Parameters for Cp*Zr(CH₃)₂(CB₁₁H₁₂) (3)^a

atom	x	у	Ζ	B (Å ²)
Zr	0.69352(1)	0.06838(1)	0.30090(2)	3.104(3)
C 1	0.7510(2)	0.1872(1)	0.2266(2)	4.30(4)
C2	0.6427(2)	0.1784(1)	0.1766(3)	4.85(5)
C3	0.6432(2)	0.1269(1)	0.0662(3)	4.86(4)
C4	0.7502(2)	0.1044(1)	0.0514(2)	4.45(4)
C5	0.8154(2)	0.1413(1)	0.1495(2)	4.14(4)
C6	0.7927(3)	0.2432(1)	0.3261(4)	7.15(8)
C7	0.5498(3)	0.2213(2)	0.2247(5)	9.4(1)
C8	0.5494(3)	0.1052(2)	-0.0296(4)	9.62(8)
C9	0.7886(4)	0.0557(2)	-0.0653(3)	7.75(9)
C10	0.9380(2)	0.1379(2)	0.1591(4)	6.89(7)
C11	0.5148(2)	0.0484(2)	0.3083(3)	5.83(6)
C12	0.7182(3)	0.1169(2)	0.5201(3)	7.43(8)
B 1	0.7323(2)	-0.0653(1)	0.2321(3)	4.28(5)
B2	0.7290(2)	-0.0592(1)	0.4221(3)	3.85(4)
B3	0.8441(2)	-0.0327(1)	0.3300(4)	4.83(5)
B 4	0.8633(3)	-0.0896(2)	0.1820(4)	8.39(8)
B5	0.7582(4)	-0.1511(2)	0.1862(4)	8.6(1)
B6	0.6744(3)	-0.1318(2)	0.3358(4)	5.88(6)
B 7	0.7532(3)	-0.1409(1)	0.4978(4)	5.63(6)
B8	0.8591(3)	-0.0787(2)	0.4949(4)	5.78(6)
B9	0.9421(3)	-0.0983(2)	0.3469(6)	8.1(1)
B10	0.8849(4)	-0.1697(2)	0.2593(5)	8.44(9)
B11	0.8839(3)	-0.1636(2)	0.4457(4)	6.27(7)
C13	0.7754(3)	-0.1932(2)	0.3505(4)	8.17(9)
C ₀	0.7204	0.1476	0.1340	4*

^a See footnote a, Table III.

Complex 3 is much less reactive than 1 or 2. It does not react at an appreciable rate with propene (23 °C), 2-butyne (23 °C), or styrene (75 °C). This is presumably due to the inability of these hydrocarbon substrates to displace the η^3 -carborane ligand. Complex 3 does react with THF to yield the known Cp*Zr(CH₃)₂(THF)₃⁺ and free CB₁₁H₁₂⁻.

Summary

The reaction of Ag[CB₁₁H₁₂] with Zr(IV) alkyls provides a route to soluble ion pairs in which CB₁₁H₁₂-bonds to the metal cation via one or three B-H-Zr bridges. The Cp₂Zr(R)(η^{1} -CB₁₁H₁₂) species 1 and 2 are highly reactive due to the lability of the monodentate carborane ligand and catalyze the polymerization of ethylene and the oligomerization of propene. In contrast, Cp*Zr(CH₃)₂(η^{3} -CB₁₁H₁₂) is relatively unreactive with unsaturated hydrocarbons under comparable conditions, probably because the tridentate carborane ligand is not as easily displaced. Thus the "least coordinating" anion has met its match in "Cp*Zr(CH₃)₂+". In our future work we hope to learn more about the advantages and disadvantages of CB₁₁H₁₂-versus other weakly coordinating anions in early metal systems.^{1,3,10}

Experimental Section

General procedures used in our laboratories have been described in detail in previous publications.²⁸ ¹¹B NMR spectra are referenced to BF₃·OEt₂. Cp₂Zr(CH₃)₂,²⁹ Cp'₂Zr(CH₃)₂,³⁰ Cp₂Zr(CH₂Ph)₂,³¹ and Cp*Zr(CH₃)₃,³² were prepared by literature methods. Cs[CB₁₁H₁₂] was prepared by Reed's modification of the literature procedure ({¹H}¹¹B NMR (acetone-d₆) δ –6.1 (1B),

(28) Leading reference: Uhrhammer, R.; Crowther, D. J.; Olson, J. D.; Swenson, D. C.; Jordan, R. F. Organometallics 1992, 11, 3098. -12.55 (5B), -15.63 (5B)).^{6a} Ag[CB₁₁H₁₂] was prepared via metathesis of the Cs⁺ salt according to Reed's procedure^{6a} (¹H NMR (C₆D₆) δ 2.62 (CH); {¹H}¹³C NMR (C₆D₆) δ 55.5 (CH); {¹H}¹¹B NMR (C₆D₆) δ -11.27 (1B), -14.95 (10B)).

[Cp'₂Fe][CB₁₁H₁₂]. A mixture of Cp'₂Fe (1.55 g, 7.25 mmol) in 85% H₂SO₄ (20 mL) was stirred at 25 °C for 40 min. The reaction mixture was poured into 600 mL of H₂O/ice, and the resultant mixture was filtered to yield a clear blue filtrate. The filtrate was added to an aqueous solution (400 mL) of Cs[CB₁₁H₁₂] (2.0 g, 7.25 mmol). A light blue solid formed immediately and was collected by filtration and dried under high vacuum for 12 h (1.60 g, 16.5%). This compound is only sparingly soluble in benzene or toluene but very soluble in acetone. {¹H}¹¹B NMR (75/25 benzene-d₆/acetone-d₆): δ -16.5 (1B), -21.5 (5B), -22.3 (5B). Anal. Calcd for C₁₃H₂₆B₁₁Fe: C, 43.72; H, 7.34. Found: C, 43.37; H, 7.65.

 $Cp_2Zr(CH_2Ph)(CH_{11}H_{12})$ (1). A slurry of $Cp_2Zr(CH_2Ph)_2$ (0.256 g, 0.634 mmol) and Ag[CB₁₁H₁₂] (0.164 g, 0.653 mmol) in toluene (25 mL) was prepared at -78 °C. The reaction mixture was warmed to 23 °C, and a black precipitate formed. The reaction mixture was stirred for 3.5 h and centrifuged to remove most of the Ag⁰, and the supernate was filtered to remove the remaining Ag⁰. The filtrate was evaporated to dryness under vacuum, benzene (25 mL) was added, and the solution was stirred for 12 h. The solvent volume was reduced to 15 mL, producing a crystalline solid, which was collected by filtration and dried for 15 h under high vacuum, yielding 0.140 g (48%) of bright yellow $Cp_2Zr(CH_2Ph)(CB_{11}H_{12})$. Crystals of 1 were obtained by slow evaporation of a toluene solution. They were coated with solventsaturated Apiezon H grease to minimize solvent loss and mounted in 0.5-mm capillaries under N₂. ¹H NMR (toluene- d_8): δ 7.24 (t, J = 7.6 Hz, 2H, m-H), 6.30 (d, J = 7.5 Hz, 2H, o-H), 5.42 (s, 10H, Cp), 3.1-0.8 (br m, ca. 10H, HCB₁₁ H_{10}), 2.56 (br s, 1H, carborane CH), 2.21 (s, 2H, ZrCH₂), -3.15 (br q, $J_{BH} = 108$ Hz, 1H, μ -H); p-H obscured by solvent. ¹¹B NMR (toluene- d_8): δ -8.1 (d, J_{BH} = 100 Hz, 1B), -14.1 (d, J_{BH} = ca. 154 Hz, 5B), -15.6 (d, J_{BH} = 160 Hz, 5B). $^{13}\mathrm{C}$ NMR (benzene- $d_6);$ δ 132.0 (d of d, $^1\!J_{\mathrm{CH}}$ = 162 Hz, ${}^{3}J_{CH} = 8.2$ Hz, o- or m-C), 125.6 (d of t, ${}^{1}J_{CH} = 155$ Hz, ${}^{3}J_{CH}$ = 6.3 Hz, p-C), 111.6 (d, J_{CH} = 176 Hz, Cp), 53.2 (d, J_{CH} = 168 Hz, carborane CH), 50.6 (t, J_{CH} = 140 Hz, $ZrCH_2$); remaining aryl resonance obscured by solvent. Anal. Calcd for C₁₈H₂₉B₁₁Zr: C, 47.46; H, 6.41; Zr, 20.02. Found: C, 47.16; H, 6.39; Zr, 19.94.

Cp'₂Zr(CH₃)(CB₁₁H₁₂) (2). Solid Ag[CB₁₁H₁₂] (0.85 g, 0.34 mmol) was added to a solution of Cp'₂Zr(CH₃)₂ (0.97 g, 0.35 mmol) in 20 mL of toluene. The reaction mixture was stirred for 12 h at 23 °C and filtered through Celite. The yellow filtrate was reduced to ca. 5 mL under vacuum. Addition of hexane (20 mL) and cooling to -35 °C resulted in the precipitation of a yellow solid, which was collected by filtration and dried under vacuum; yield 0.51 g, 37%. Attempts to purify this compound further were unsuccessful due to thermal decomposition. Crystals for the X-ray diffraction study were obtained by slow cooling of the original toluene filtrate and mounted in capillaries under N₂. ¹H NMR (toluene- d_8): $\delta 5.54$ (m, 4H, C₅H₄Me), 5.25 (m, 4H, C₅H₄Me), 2.50 (s, 1H, carborane CH), 1.65 (s, 6H, C₅H₄Me), 0.39 (s, 3H, ZrCH₃). {¹H}¹³C NMR (toluene- d_8): δ 126.4 (Cp' ipso), 113.9 (Cp'), 110.7 (Cp'), 53.7 (carborane C), 38.3 (ZrCH₃), 15.2 (Cp' CH₃). {¹H} ¹¹B NMR (toluene- d_8): -8.4 (1B), -13.8 (5B), -15.0 (5B).

 $Cp_2Zr(CH_3)(CB_{11}H_{12})$. A solution of $AgCB_{11}H_{12}$ (0.15 g, 0.60 mmol) in 5 mL of toluene was added to a solution of Cp_2ZrMe_2 (0.15 g, 0.59 mmol) in toluene (7 mL), resulting in the immediate formation of a black precipitate. After 10 min, the reaction mixture was filtered through Celite to yield an orange-yellow filtrate. Evaporation of the filtrate under high vacuum yielded an orange solid (0.21 g, 92%). Attempts to further purify this product were thwarted by the thermal decomposition. ¹H NMR (benzene-d₆): δ 5.40 (s, 10H, Cp), 2.60 (s, 1H, CHB₁₁H₁₁), 0.45 (s, 3H, ZrMe). {¹H}¹¹B NMR (toluene-d₈): δ -9.4 (ca. 1B), -13.9 (10B).

Reaction of Cp'_2ZrCl_2 with Ag[CB₁₁H₁₂]. A solution of Cp'_2ZrCl_2 (12 mg, 0.037 mmol) and Ag[CB₁₁H₁₂] (9.4 mg, 0.037

 ⁽²⁹⁾ Samuel, E.; Rausch, M. J. Am. Chem. Soc. 1973, 95, 6263.
 (30) Couturier, S.; Tainturier, G.; Gautheron, B. J. Organomet. Chem.
 1980, 195, 291.

 ⁽³¹⁾ Alelyunas, Y. W.; Jordan, R. F.; Echols, S. F.; Borkowsky, S. L.;
 Bradley, P. K. Organometallics 1991, 10, 1406 and references therein.
 (32) Wolczanski, P. T.; Bercaw, J. E. Organometallics 1982, 1, 793.

Coordination of $CB_{11}H_{12}$ to Cationic Zr(IV) Complexes

mmol) in toluene- d_8 was prepared and monitored by ¹H NMR. Slight but reproducible shifts in the resonances for both reactants were observed, indicating adduct formation. There was no further change after 24 h at 23 °C nor after heating to 50 °C for 18 h. Cp'_2ZrCl_2 + Ag[CB₁₁H₁₂]: ¹H NMR (benzene- d_6) δ 5.78 (t, J =3 Hz, 4H), 5.69 (t, J = 3 Hz, 4H), 2.67 (s, 1H, carborane CH), 2.07 (s, 6H); ¹³C NMR δ 129.3, 117.6, 112.6, 55.2 (carborane CH), 15.5. Cp'_2ZrCl_2: ¹H NMR (benzene- d_6) δ 5.77 (t, J = 3 Hz, 4H), 5.65 (t, J = 3 Hz, 4H), 2.10 (s, 6H); ¹³C NMR (benzene- d_6) δ 129.9, 117.4, 112.0, 15.5.

Cp*Zr(CH₃)₂(CB₁₁H₁₂) (3). A solution of Cp*Zr(CH₃)₃ (0.95 g, 3.5 mmol) and Ag[CB₁₁H₁₂] (0.97 g, 3.9 mmol) in hexane (50 mL) was prepared at -78 °C and warmed to 23 °C with stirring. After 2 h, the reaction mixture was filtered, leaving a black solid and a yellow filtrate. The filtrate was evaporated to dryness under vacuum and the resulting yellow solid washed with hexane and dried under vacuum; yield 0.56 g, 40%. The product may be recrystallized from toluene/hexane. X-ray crystals were grown by cooling a toluene/hexane solution to -35 °C and mounted in capillaries under N₂. ¹H NMR (toluene-d₈): δ 2.49 (2, 1H, carborane CH), 1.64 (s, 15H, Cp*), 0.32 (s, 6H, ZrCH₃). {¹H}¹³C NMR (toluene-d₈): δ 124.0 (C₅Me₅), 59.0 (carborane C), 47.2 (ZrCH₃), 11.9 (C₅Me₅). {¹H}¹¹B NMR (toluene): δ -11.3 (1B),

-12.8 (10B). Anal. Calcd for $C_{13}H_{33}B_{11}Zr$: C, 39.08; H, 8.32; Zr, 22.83. Found: C, 39.05; H, 8.37; Zr, 23.19.

X-ray Crystallography. X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer system, and the crystallographic calculations were performed by using the SDP package for that system.³³ Details are summarized in the tables.

Acknowledgment. This work was supported by NSF Grant CHE-9022700. We thank Professor Cris Reed for an initial sample of $Ag[CB_{11}H_{12}]$, several helpful discussions, and his general enthusiasm for this project.

Supplementary Material Available: Tables of bond distances and angles, anisotropic thermal parameters, and H atom positions for 1-3, positional parameters (including disordered solvent molecule) for 1, and H atom bond distances and angles for 2 and 3 (27 pages). Ordering information is given on any current masthead page.

OM9301602

⁽³³⁾ Frenz, B. A. The Enraf-Nonius CAD4 SDP System. In *Computing in Crystallography*; Schenk, H., Olthof-Hazekamp, R., Van Koningsveld, H., Bassi, G. C., Eds.; Delft University Press: Delft, Holland, 1978; p 64.