Architecture of the Organometallic Ion Exchangers $[(Me_3Sn^{IV})_4M^{II}(CN)_6]_{\infty}$ (M = Fe, Ru, Os): A Combined Multinuclear Solid-State Magnetic Resonance and Infrared/ **Raman Spectroscopic Study**

Stefan Eller, Peter Schwarz, Abdul K. Brimah, and R. Dieter Fischer*

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, FRG

David C. Apperley, Nicola A. Davies, and Robin K. Harris*

Industrial Research Laboratory and Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.

Received December 29, 1992

With extensive use of the ¹⁵N isotopomer, 1a, of the organotin polymer $[(Me_3Sn)_4Fe(CN)_6]_{\infty}$ (1) and of variable-temperature solid-state ¹³C NMR studies, the CP MAS ¹³C, ¹⁵N, and ¹¹⁹Sn NMR spectra of the coordination polymers $[(Me_3Sn^{IV})_4M^{II}(CN)_6]_{\infty}$ with M = Fe (1), Ru (2), and Os (3) have been fully determined and optimally assessed. According to these measurements, the asymmetric unit involves three equally-abundant, nonequivalent CN ligands and two equallyabundant, nonequivalent Me₃Sn groups with six crystallographically different methyl C atoms. A structural model is proposed in which one type of N atom is bonded to two Sn atoms. Below -20 °C, each of the six CH₃ groups gives rise to an individual, sharp ¹³C signal, while above room temperature rapid rotation of both Me₃Sn groups leads to two resonances. The vibrational spectra in the $\nu(SnC)$ and $\nu(CN)$ absorption ranges suggest the exclusive presence of trigonal planar Me₃Sn fragments and one significantly distorted (from O_h), albeit still centrosymmetric, $M(CN)_6$ unit (local symmetry: D_{4h} from IR/Ra: D_{2h} from NMR). From all spectroscopic findings, a three-dimensional network reminiscent of that of the polymeric acid $[H_4Fe(CN)_6]_{\infty}$ may be deduced. The preferred architecture, which also involves three-coordinate cyanide N atoms, $-CNSn_2$, contrasts with the known structures of polymeric $[(R_3Sn)_2CO_3]_{\circ}$ systems wherein both penta- and tetracoordinated Sn atoms coexist.

Introduction

In three preceding papers¹⁻³ we have demonstrated that high-resolution solid-state NMR spectroscopy is an exceedingly powerful tool for exploring structural details of novel polymeric organotin and -lead polymers of the general composition $[(R_3E)_n M(CN)_m \cdot pG \cdot qG']_{\infty}$, where R is an alkyl or aryl group, E = Sn or Pb, M is a group 8–10 transition metal, and G or G' an occasionally present, uncharged or cationic, guest compound. While m is usually twice as large as n because each R_3E^+ cation tends to coordinate two cyanide N atoms of different $[M(CN)_m]^{q-1}$ counteranions, m is smaller than 2n in the class of guestfree 3D polymers: $[(Me_3Sn^{IV})_4M^{II}(CN)_6]$ with Me = CH₃ and M = Fe, Ru, and Os (1-3).³⁻⁵ Hence, the six cyanide N atoms of 1-3 may not straightforwardly be capable of creating trigonal bipyramidal (tbp) Me₃Sn(NC)₂ units with all four Me₃Sn⁺ ions. Nevertheless, all members of the $[(Me_3Sn)_4M^{II}(Cn)_6]$ family are, like those of the type $[(Me_3-$ Sn)₃M^{III}(CN)₆],^{6a} thermally stable up to 350 °C and insoluble both in water (at $pH \le 7$) and in numerous organic solvents, typical exceptions being only exceedingly strong Lewis bases like dimethyl sulfoxide, dimethylformamide, etc.

The most outstanding chemical property of all [(Me₃- $Sn_4M(CN)_6$] systems is their facile readiness to ion exchange:4-6

$$[(Me_{3}Sn)_{4}M(CN)_{6}] \xrightarrow[(H_{2}O)]{G^{+}} \\ [(G^{+})(Me_{3}Sn)_{3}M(CN)_{6}] + [Me_{3}Sn(aq)]^{+} (1)$$

Thus numerous, mainly organic or organometallic guest cations G^+ may be introduced quantitatively, and often within minutes, into suitable cavities of a negativelycharged host network by releasing at most one Me₃Sn⁺ ion. This mode of heterogeneous ion exchange has, inter alia, led to host-guest systems involving electron receptors like [methylviologen]^{2+ 5} and photosensitizers like [Ru-(bpy)3]^{2-.6b}

One of the driving forces of eq 1 is probably the 2n =m rule which is fulfilled by almost all resulting host-guest systems. Thus, according to our first solid-state NMR study,¹ only the $[(Me_3Sn)_4M(CN)_6]$ polymers (M = Fe, Ru) display, apart from one "well-behaved" (i.e. in view

⁽¹⁾ Apperley, D. C.; Davies, N. A.; Harris, R. K., Brimah, A. K.; Eller, S.; Fischer, R. D. Organometallics 1990, 9, 2672.

<sup>S.; Fischer, R. D. Organometalics 1990, 9, 2672.
(2) Behrens, U.; Brimah, A. K.; Soliman, T. M.; Fischer, R. D.; Apperley, D. C.; Davies, N. A.; Harris, R. K. Organometallics 1992, 11, 1718.
(3) Apperley, D. C.; Davies, N. A.; Harris, R. K.; Eller, S.; Schwarz, P.; Fischer, R. D. Chem. Commun. 1992, 740.
(4) Eller, S.; Brandt, P.; Brimah, A. K.; Schwarz, P.; Fischer, R. D. Angew Chem. 1989, 101, 1274; Angew. Chem., Int. Ed. Engl. 1989, 28, 1000</sup>

¹²⁶³

⁽⁵⁾ Eller, S.; Adam. M.; Fischer, R. D. Angew. Chem. 1990, 102, 1157; Angew. Chem. Int. Ed. Engl. 1990, 29, 1126.

^{(6) (}a) with M = Co, Rh, Ir: Eller, S.; Siebel, E.; Schwarz, P.; Fischer, R.D. Unpublished results. (b) Eller, S. Doctoral Dissertation, Universität Hamburg, 1992.

$[(Me_3Sn^{IV})_4M^{II}(CN)_6]_{\infty}$ (M = Fe, Ru, Os) Ion Exchangers

of tbp-configured Me₃Sn(NC)₂ fragments) ¹¹⁹Sn resonance at $\delta < -90$ ppm, a second ¹¹⁹Sn resonance at $\delta > +25$ ppm which has been ascribed to one less-tightly anchored, and hence more readily exchangeable, Me₃Sn⁺ ion.⁷ So far, however, no satisfactory description of the supramolecular architecture of the three isostructural (as suggested by their practically superimposable X-ray powder diffractograms) homologues with M = Fe, Ru, and Os has been presented. All attempts to grow single crystals suitable for X-ray studies have so far ended up either with the formation of microcrystalline powders of the expected chemical composition or-in the presence of several Lewis bases inhibiting spontaneous precipitation-with the generation of well-crystallizing, but initially unexpected, host-guest derivatives, $[(Me_3Sn)_4Fe^{II}(CN)_6\cdot 2H_2O\cdot qG']$. According to successful single-crystal X-ray studies of the products with G' = dioxane $(q = 1)^8$ and water $(q = 2)^9$, two H_2O molecules may play the role of missing cyanide N atoms in establishing (pseudo-)tbp-configured {Me₃- $Sn(NC)OH_2$ units. A corresponding situation has, moreover, been found in the case of two G'-free (i.e. q = 0) organolead polymers, $[(Me_3Pb)_4M(CN)_6\cdot 2H_2O]$ (M = Fe, Ru).10

Most recently, we have noted briefly³ that the methyl ¹³C NMR spectra of polycrystalline, anhydrous [(Me₃-Sn)₄M(CN)₆]_{*} undergo dramatic changes with temperature. This observation, along with the results of a 2D-EXSY experiment has encouraged us to aim (even without ancillary X-ray data) at a more satisfactory description of the nature of the 3D network by making optimal use of the results of multinuclear solid-state magnetic resonance and vibrational (infrared and Raman) spectroscopy. The present study is devoted to this task. Of particular value has been the preparation of a highly ¹⁵N-enriched isotopomer of 1. This sample (1a) was expected to circumvent the usual difficulties resulting from the predominance of the strongly quadrupolar ¹⁴N nuclei in natural nitrogen.

Solid-State NMR Spectroscopy of 1-3

Methyl ¹³C NMR. A careful reexamination of the CP MAS 13 C NMR spectra of the two previously studied [(Me₃- $Sn_4M(CN)_6$] systems with M = Fe (1) and Ru (2)¹ including now the highly ¹⁵N-enriched "isotopomer" 1a of 1, as well as the Os homologue 3 of 1 and 2, has unambiguously confirmed that above ca. 20 °C no more than two comparatively broad, and practically equally intense, singlets appear in the methyl carbon resonance region. Yet, in strong contrast to the polymers $[(Me_3E)_3M$ - $(CN)_6]_{\infty}$ fulfilling the 2n = m rule, ^{2,6a} the ¹³C NMR spectra of 1-3 change their appearance strongly, and reversibly, on cooling, displaying between -40 and -60 °C six rather sharp, and practically equally intense, singlets in the region $-5 < \delta(^{13}C) < +10$ ppm (Figure 1b). The conclusion that the lattices of 1-3 involve no more than two nonequivalent Me₃Sn units whose six crystallographically different methyl groups become setwise equivalent around room temperature owing to (on the NMR time scale) rapid

Figure 1. Carbon-13 CP MAS NMR spectra at 75.4 MHz of $[(Me_3Sn)_4Os(CN)_6]_{\infty}$ (methyl region only): (a) at 40 °C (300 transients, spin rate 4.18 kHz); (b) at -40 °C (650 transients, spin rate 4.09 kHz). In each case the contact time was 1 ms and the recycle delay 2 s. The line width of the signal at $\delta = 9.3$ ppm in (b) is 37 ± 5 Hz. Some ¹¹⁹Sn satellites are clearly visible in (b).

Table I. Solid-State NMR Data (13C and 119Sn) for 1-3

	δ(¹³ C)/ppm; ¹	δ(¹¹⁹ Sn)/ppm	
sample	60 °C⁴	+40 °C ^b	room temp
1	+ 8.9 ; 590 +3.8	+4.3; 550ef (+4.3)	-108
	+2.8 +1.5°	+1.2; 430 ^{ef}	+46
2	-2.5; 410 + 9.2 ; 570 +4.4	(+1.0) +4.3; 470° (+4.5)	-97
	+2.8 +2.4 +1.4	+1.4; 440 ^e	+32
-	-2.1; 440	(+1.6)	
3	+9.2; 550 ² +4.6 + 2.8	+4.4; 560° (+4.4)	-94
	+2.5 +1.2	+1.7; 440e	+26
	-2.2; 430 ^d	(+1.6)	

^a Boldfaced: one of the two Me₃Sn groups (for 1 confirmed by 2D NMR spectrum³). ^b In parentheses arithmetic means of the two low-temperature triplets (first column). ^e Resolved by 2D NMR³ into resonances at +1.7 and +1.3 ppm). ^d Determined at -40 °C. ^e Determined from deconvoluted 40 °C spectra. ^f Better-quality spectra of the dioxane derivative **1b** than obtained previously¹ enable us to determine the value of $|J(1^{19}Sn, ^{13}C)|$ for both resonances as 570 Hz for the high-frequency signal and 520 Hz for the lower-frequency resonance.

rotation about their individual trigonal axes has been fully substantiated by a recent 2D-EXSY experiment³ on a sample of 1. Thus three low-temperature ¹³C singlets could be distinctly assigned to each of the two Me₃Sn units. In Table I the individual low-temperature shifts of 1-3 are listed along with the calculated averages of the two respective δ (¹³C) triplets for the case of rapid site exchange. A rather satisfactory correlation of the calculated averages (for -60 °C) and the dynamically averaged values (at +40 °C) is obtained. As there is no degeneracy of two lowtemperature ¹³C lines (of either set), crystallographic mirror planes bisecting an Sn atom and just one of its methyl C atoms can be ruled out.

⁽⁷⁾ R_3Sn derivatives with a formal coordination number (of Sn) of 3 are, however, likely to give rise to ¹¹⁹Sn chemical shifts between +150 and +360 ppm: Lambert, J. B.; Kuhlmann, B. *Chem. Commun.* 1992, 931.

⁽⁸⁾ Adam, M.; Brimah, A. K.; Fischer, R. D.; Li, X.-F. Inorg. Chem.
1990, 29, 1595.
(9) Behrens, U.; Brimah, A. K.; Fischer, R. D. J. Organomet. Chem.

 ⁽¹⁰⁾ Brimah, A. K. Doctoral Dissertation, Universität Hamburg,

⁽¹⁰⁾ Briman, A. K. Doctoral Dissertation, Universität Hamburg, Germany, 1991.

Figure 2. Tin-119 CP MAS NMR spectrum at 111.9 MHz of $[(Me_3Sn)_4Os(CN)_6]_{\infty}$, with the centerband signals indicated by vertical arrows; spin rate 10.26 kHz, 15 800 transients. The contact time was 3 ms and the recycle delay 1 s. The line width of the signal at $\delta = 26$ ppm is 930 ± 50 Hz.

In contrast to a previous view,¹ the measurement of a strict 1:1 proportion of the two nonequivalent Me₃Sn units in 1–3 now rules out any structural model based upon a 1:3 proportion of only one, comparatively mobile, and chemically exchangeable,^{4,5} Me₃Sn⁺ "guest" cation.⁷ Thus, in spite of the remarkable ion exchange properties of 1–3 (involving Me₃Sn⁺ ions), NMR spectroscopy is not consistent with any translatory mobility of Me₃Sn⁺ ions along the internal, probably channel-like² cavities of the network. Correspondingly, the electric conductivity of 1 at room temperature has been found¹¹ to be lower than 10⁻¹⁰ S·cm⁻¹.

¹¹⁹Sn NMR. Room-temperature CP MAS ¹¹⁹Sn NMR spectroscopy of 1a has resulted in the same two-centerband feature as already described¹ for 1 (Table I). A corresponding ¹¹⁹Sn spectrum is, moreover, displayed by the so-far-unreported polymer 3 (M = Os) and illustrated in Figure 2. The line widths of 1a remain almost as broad as for 1-3, suggesting that the nuclear quadrupole moment of ¹⁴N is not responsible for the actual line broadening. Even in the case of 1a the signals remain too broad to reveal any multiplet patterns due to ¹¹⁹Sn-¹⁵N coupling. The high-frequency signals are in each case substantially broader than those at low frequency, suggesting an unusual environment for Sn for the former. Careful variation of the spectrometer conditions for these systems shows that the intensity ratio of the two resonances (integrated over the relevant spinning sidebands) lies close to 1:1. While the high-frequency resonances of 1-3 remain difficult to interpret unambiguously (vide infra), one clear result of the ¹¹⁹Sn spectra in total is that the number of ¹¹⁹Sn centerbands agrees perfectly with the number of nonequivalent Me₃Sn units as reflected by the methyl ¹³C NMR spectra.

According to the methyl ¹³C NMR results, the two Me₃-Sn units differ also essentially in their ¹¹⁹Sn–¹³C coupling parameters (Table I). The higher J values (of >500 Hz) should be ascribed to the Me₃Sn units with the negative δ (¹¹⁹Sn) shift, indicating clearly tbp-configured Me₃Sn-(NC)₂ fragments. A combination of the lower coupling constant |¹J(¹¹⁹Sn,¹³C)| (of ca. 430 Hz) with the positive ¹¹⁹Sn shift would not rule out that 1–3 involve nonbridging, pseudotetrahedral (pth) Me₃SnNC units. The presence of both tbp- and pth-configured R₃SnO_n (n = 2 or 1) units has been confirmed by crystallography and by CP MAS

 Table II.
 Solid-State NMR Data (¹¹⁹Sn Only) of Several

 Derivatives of 1 and 2 and One Example with Oxygen Atoms

 Instead of Nitrogen

compound	solid-	ref		
$[(Me_{3}Sn)_{4}Fe^{II}(CN)_{6}]$ (1a) $[(Me_{3}Sn)_{4}Fe^{II}(CN)_{6}\cdot 2H_{2}O\cdot$		-108 (1) -136 (1)	+46 (1) -73 (1)	1, 4ª 1, 8ª
$\begin{array}{l} C_{4}H_{8}O_{2}] \ (1b) \\ [(Et_{4}N^{+})(Me_{3}Sn)_{3}Fe^{II}(CN)_{6}] \\ [\{(C_{5}H_{5})_{2}Co^{+}\}(Me_{3}Sn)_{3}Fe^{II} \\ \end{array}$	-181 (1) -189 (1)	-158 (2) -139 (2)		4ª 6aª
(CN)6] [(MV ²⁺)0.5(Me ₃ Sn)3Ru ^{II} - (CN)6]	-173 (1)	-144 (1)	-104 (1)	5ª
$[(Me_3Sn)_2MoO_4]$			+47.5	13b ^{a,b}

^a Approximate relative intensity in parentheses; all signals are devoid of satellites and multiplet splitting, respectively. ${}^{b} {}^{1}J({}^{119}\text{Sn},{}^{13}\text{C}) = 488$ Hz.

NMR for two 1D polymeric carbonates, $[(R_3Sn)_2CO_3]_{\infty}^{12a}$ (R = Me and Buⁱ), which do not obey the 2n = m rule either. However, while in the lattices of the carbonates the pth-configured Sn atom can hardly approach any oxygen atom of the polymeric backbone, we have demonstrated previously that, e.g., the 3D network of $[(Me_3-Sn)_3Co(CN)_6]_{\infty}$ contains pairs of N atoms (of different chains) that would appear spatially suitable to trap an additional Me₃Sn unit.² In this paper, a number of additional arguments in favor of structural alternatives in which *all* Me₃Sn groups of 1–3 would be tbp- or at least quasi-tbp-configured will be discussed.

The data of Table II (apart from the δ (¹¹⁹Sn) values of **1b**, none of these data has been published earlier) demonstrate that the δ (¹¹⁹Sn) values of all Me₃Sn units reflect an increased shielding both when Lewis-basic guest molecules are present in 1 and occasionally when one of the four Me₃Sn⁺ ions of 1 or 2 is substituted by a noncovalently encapsulated guest cation. Most of the δ values of the derivatives of 1 (and 2) are notably more negative than those of the polymers $[(R_3Sn)_3Co(CN)_6]_{\infty}$ with R = Me, Et, and Buⁿ.² On the other hand, numerous examples of clearly tbp-configured R₃Sn derivatives with oxygen atoms in the axial positions have become known whose δ (¹¹⁹Sn) values are strongly positive.^{13a}

¹⁵N NMR. The quality of the ¹⁵N NMR spectrum of 1 is improved considerably by ¹⁵N enrichment (Figure 3). Thus three centerbands of equal intensity are found in the spectrum of 1a, suggesting, in view of the appearance of likewise three cyanide ¹³C centerbands (vide infra), the presence of three crystallographically different CN groups. One of the three ¹⁵N signals (signal N(1)) differs notably from the other two by its substantially increased ¹⁵N shielding and line width. This is also the case for compounds 2 and 3 (Table III), though the shifts move to lower frequency for these systems, as expected from the data for K₄[M(CN)₆].

Table III presents a survey of the $\delta(^{15}N)$ values of some selected complexes involving cyanide ligands of terminal and/or bridging functionality. Cyanide ^{15}N shifts more negative than ca.-140 ppm (relative to solid NH₄NO₃), depending on the metal, have been observed for isocyanides and metal-coordinated isothiocyanate ligands and, more recently, also for some samples involving MCN...H...NCM

^{(12) (}a) Kümmerlen, J.; Sebald, A.; Reuter, H. J. Organomet. Chem.
1992, 427, 309. (b) The polymer [(Et₃Sn)₂CO₃]. displays a more pronounced temperature dependence between +30 and -40 °C: Haupt, E. T. K.; Kaphahn, M. Unpublished results.

^{(13) (}a) see: Kümmerlen, J.; Sebald, A. J. Am. Chem. Soc. 1993, 115,
1134. (b) Behrens, U.; Brimah, A. K.; Yünlü, K.; Fischer, R. D. Angew.
Chem. 1993, 105, 117; Angew. Chem., Int. Ed. Engl. 1993, 32, 82.

Figure 3. Nitrogen-15 CP MAS NMR spectra at 30.4 MHz of $[(Me_3Sn)_4Fe(CN)_6]_{\infty}$: (a) with natural-abundance ¹⁵N (contact time 3 ms, recycle delay 1 s, spin rate 4.85 kHz, 70 000 transients); (b) with isotopically-enriched ¹⁵N (contact time 8 ms, recycle delay 5 s, spin rate 2.54 kHz, 800 transients). The inset in (b) gives the centerband region in expanded scale to show the ¹¹⁹Sn satellites. The widths of the two high-frequency resonances are 35 ± 2 Hz whereas that of the low-frequency signal is 67 ± 2 Hz.

and MCN-HOH bridges. The 3D polymers [(Me₃Pb)₄M- $(CN)_{6}$ $2H_{2}O$ (4a and 4b) have been found to contain the latter type of hydrogen bridges, too,¹⁰ but tend to transform (possibly as a result of rapid sample spinning), into partially "anhydrous" derivatives.¹⁴ This suggestion is based on the appearance of δ ⁽¹⁵N) values more negative than -140 ppm: According to our present experience, terminal cyanide ligands usually give rise to δ ⁽¹⁵N) values more positive than -110 ppm, while the $\delta(^{15}N)$ of polymeric $[MCN - ER_3 - NC -]_n$ chains (with two-coordinate N atoms) appear between -110 and -140 ppm.² Cyanide ¹⁵N shifts between ca. -140 and -170 ppm might be more characteristic of three-coordinate N atoms in multiple-bridging cyanide groups than of, e.g., isocyanide ligands. Following this hypothesis, resonance N(1) in the ¹⁵N spectrum of 1a could be tentatively assigned to fragments involving threecoordinate N atoms of the type

$$-Fe-C \equiv N \begin{pmatrix} E \\ E \\ E \end{pmatrix} (E: Sn or Pb)$$
(2)

As expected, the (natural-abundance) ¹⁵N NMR spectrum of the thermally quite stable, and structurally wellunderstood,⁸ derivative of 1, $[(Me_3Sn)_4Fe(CN)_6\cdot 2H_2O\cdot$ $C_4H_8O_2]$ (1b), which contains essentially two-coordinate N atoms (ignoring here any potential O-H...N bonding), is devoid of any low-frequency signals beyond -130 ppm (Table III): Two signals are seen, the high-frequency one being twice the intensity of the other. The crystal structure predicts three nonequivalent cyanide groups, so it would seem there is some accidental degeneracy. The cyanide ¹³C spectrum of **1b** bears this out (see below).

The two coupling parameters, $|{}^{1}J({}^{119}Sn, {}^{15}N)|$ deduced from the satellites of the signals N(2) and N(3) of 1a (of 121 and 166 Hz) match in magnitude the data reported recently² for [(R₃Sn)₃Co(CN)₆]_∞ systems with R = Me, Et, and Buⁿ (Table IV). While corresponding $|{}^{1}J({}^{119}Sn,$ ${}^{15}N|$ values of dissolved (i.e. nonpolymer R₃SnNCS (R = alkyl)) seem to be even larger, the known^{16a-d} ${}^{1}J({}^{119}Sn,$ ${}^{15}N|$ values of various, probably pth-configured Me₃Sn amides are surprisingly small (ranging from +9.5 to -41.4 Hz). The ${}^{1}J({}^{119}Sn, {}^{15}N)$ values of several triorganotin(IV) oxinates and thioxinates are, moreover, discussed in ref 16e. Resolution problems do not allow the clear observation of any satellite lines for the N(1) signal at -161 ppm.

Cyanide ¹³C NMR. The cyanide ¹³C NMR spectrum of 1 is also strongly improved by the almost quantitative ¹⁵N enrichment in sample 1a. Thus three equally intense cyanide centerbands appear as clean singlets in the spectrum of 1a, while the spectrum of 1 displays essentially three 2:1 doublets characteristic of second-order effects originating from the quadrupolar ¹⁴N nucleus owing to internuclear ¹³C-¹⁴N coupling (Figure 4). The weighted average positions of the doublets of 1 (Table V) correlate well with the peaks of the three singlets of 1a. Moreover, the (natural-abundance) ¹³C NMR spectrum of solid [(Me₃- $Sn_4Fe(CN)_6 \cdot 2H_2O \cdot C_4H_8O_2$, 1b, which is expected from the known crystal structure to display three cyanide carbon resonances,8 gives rise to three multiplets strongly reminiscent of those of 1. The cyanide ¹³C chemical shifts of 1-3 relate sensibly to the δ ⁽¹³C) values reported for the corresponding $[M(CN)_6]^{4-}$ anions dissolved in D_2O^{18} (Table V), being in the order $\delta(1) > \delta(2) > \delta(3)$. The possibly "alloyed" solid 5 (vide infra) gives rise to essentially four, somewhat broader, center bands whose maxima could be matched with those of 1 and/or 2. None of the ^{13}C signals for 1a is observably split due to coupling with their adjacent ¹⁵N nuclei ($|^{1}J(^{15}N,^{13}C)|$ of K₄[Fe($^{13}C^{15}N)_{6}$]: 6.8 Hz¹⁷).

NMR of Some Derivatives of 1 and 2

One potential "derivative" of 1 and 2 is the polymer $[(Me_3Sn)_4Fe_{0.5}Ru_{0.5}(CN)_6]$,⁵5, which may have an alloyed nature. Its X-ray powder diagram and vibrational spectra in the $\nu(CN)$ absorption range (Table VI) would, however, also admit the assumption of a simple 1:1 mixture of polycrystalline 1 and 2. Arguments in favor of an alloyed

⁽¹⁴⁾ For instance, a sample of 4b has displayed more than four 15 N resonances (Table III) although the asymmetric unit involves only three different N atoms¹⁰ (Harris, R. K.; et al. Unpublished results).

^{(15) (}a) Bär, E.; Fuchs, J.; Rieger, D.; Aguilar-Parrilla, F.; Limbach, H.-H.; Fehlhammer, W. P. Angew. Chem. 1991, 103, 88; Angew. Chem., Int. Ed. Engl. 1991, 30, 88. (b) Witanowski, M.; Stefaniack, L.; Webb G. A. Ann. Rep. NMR Spectrosc. 1981, 11B, 72 (Table 108).
(16) (a) Wharf, I. Inorg. Chim. Acta 1989, 159, 41. (b) Molloy, K. C.; Quill, K.; Blunden, S. J.; Hill, R. J. Chem. Soc., Dalton Trans. 1986, 875.

^{(16) (}a) Wharf, I. Inorg. Chim. Acta 1989, 159, 41. (b) Molloy, K. C.;
Quill, K.; Blunden, S. J.; Hill, R. J. Chem. Soc., Datton Trans. 1986, 875.
(c) Blunden, S. J.; Cusack, P. A.; Gillies, D. G. J. Magn. Reson. 1984, 60, 114. (d) Wrackmeyer, B.; Horchler, K. Annu. Rep. NMR Spectrosc. 1990, 22, 249. (e) Lycka, A.; Holecek, J.; Schneider, B.; Straka, J. J. Organomet. Chem. 1990, 389, 29.

⁽¹⁷⁾ Sano, M.; Yoshikawa, Y.; Yamatera, H. Inorg. Chem. 1982, 21, 2521.

⁽¹⁸⁾ Pesek, J. J.; Mason, W. R. Inorg. Chem. 1979, 18, 924.

Table III.	Survey of $\delta(^{15}N)$	Values of Various	Systems Involving	g Terminal and	Bridging CN	Units [Data from	Solid-State Spectra
	-	Unles	s Denoted by Foo	tnote c (and fo	r Pr ⁿ NC)]		-

sample	δ(¹⁵ N)/ppm				ref
$[\Pr_4 N][Cr(CN)(CO)_5]^{a,b}$		83			15a
$[Et_4N]_1[Co(CN)_6]$		-89.8			2
$K_4[Fe(CN)_6]^{a,c}$		-95.9			17
$K_4[Ru(CN)_6]^{a,c}$		-105			17
$K_4[Os(CN)_6]^{a,c}$		-117			17
$[(Me_3Sn)_3Co(CN)_6]_{\infty}^d$	-116	-119	-123		2
$[(Bu^n_3Sn)_3Co(CN)_6]_{\infty}$		-118			2
$[(Me_3Pb)_3Co(CN)_6]_{m}^d$		-124			2
$[H_3C_0(CN)_6]_m^d$			-134		2
$[(Me_3Sn)_4Fe(CN)_6\cdot 2H_2O\cdot C_4H_8O_2]_{\infty}$	-116 ^g	-125			present paper, 1, 8
$[{(C_5H_5)_2C_0}(Me_3S_n)_3Fe(CN)_6]^{a,d}$	-112	-121	-123		present paper
$[(Me_3Sn)_4Fe(CN)_6]_{\infty}^a$	-109	-124		-161.2/	present paper
$[(Me_3Sn)_4Ru(CN)_6]_{\infty}$	-118	-136		-166/	present paper
$[(Me_3Sn)_4Os(CN)_6]_{\infty}$	-126	-144		-172	present paper
$[(Me_3Pb)_4Fe(CN)_6\cdot 2H_2O]_{\infty}^d$	-119	-132	-146		14
$[(Me_3Pb)_4Ru(CN)_6\cdot 2H_2O]_{\infty}^{d,e}$	-127	-131		-158	14
$[Ph_4As][{(CO)_5Cr(CN)}_2H]^{a,b,d}$				-163	15a
Pr ⁿ NC				ca200	15b
$(Bu^{n}_{4}N)_{2}[Zn(NCS)_{4}]$				ca217	1 5b
$(CO)_5Cr(CNH)^{a,b}$				-221	15a

 a^{15} N-enriched sample. $b \delta(^{15}N)$ readjusted from data with NH₄Cl as standard. c Solution (D₂O) spectrum; standard NaNO₃. d X-ray structure available. c Four weaker resonances appear between -129 and -164 ppm. f Resonance denoted as N(1) in the text. s Double the intensity of the other peak.

Table IV. Survey of Data for the Nuclear Coupling Constant $|{}^{1}J({}^{15}N,{}^{119}Sn)|$ of Solid or Dissolved Samples Involving CN Groups

sample	¹ J(¹¹⁹ Sn, ¹⁵ N) /Hz	ref
$[(Me_3Sn)_4Fe(CN)_6]_{\infty}^{a,c}$	120, ^{d,g} 170 ^{d,h}	present paper
$[{(C_5H_5)_2C_0}(Me_3S_n)_3Fe(CN)_6]^{a-d}$	143, 171, 187	present paper
$[(Bu_{3}Sn)_{3}Co(CN)_{6}]_{\infty}^{a}$	150	2
$[(Et_3Sn)_3Co(CN)_6]_{\infty}^a$	180e	1
$[(Me_3Sn)_3Co(CN)_6]_{\omega}^a$	ca. 160e	1
$(C_6H_{11})_3$ SnNCS ^b	190.6 ^e	15b
Bun ₃ SnNCS ^b	307 ^d	ftn 1 of ref 15c
-		

^{*a*} Solid sample (values given to ± 5 Hz). ^{*b*} Solution spectra. ^{*c*} ¹⁵Nenriched. ^{*d*} From ¹⁵N spectrum only. ^{*c*} From ¹¹⁹Sn spectrum (recalculated from $|{}^{1}J({}^{119}Sn, {}^{14}N)|$). ^{*f*} From ¹⁴N spectrum, also. ^{*s*} Signal N(2) (see the text). ^{*h*} Signal N(3) (see the text).

nature have so far been based on the visible absorption spectrum of the polymeric charge-transfer ion-"pair": $[(MV^{2+})_{0.5}(Me_3Sn)_3Fe_{0.5}Ru_{0.5}(CN)_6]$ (MV = methylviologen), obtained from 5 by ion exchange (i.e. replacement of one Me₃Sn⁺ by 0.5 MV²⁺ according to eq 1).⁵ For a statistical distribution of Fe and Ru atoms, each of the two nonequivalent Me₃Sn units (vide supra) should reside in one of the *three* environments I–III. Ideally, resolved

$$-Fe-CN\cdotsSn\cdotsNC-Fe- -Ru-CN\cdotsSn\cdotsNC-Ru-$$
I
I
$$-Fe-CN\cdotsSn\cdotsNC-Ru-$$
II
(3)

low-temperature ¹³C NMR spectra of 5 would thus display twelve methyl carbon resonances practically coincident with those of pure 1 and 2 and, in addition, two extra sets of three signals, A(III) and B(III), attributable to Me₃Sn units in the alloyed environment III. In view of the proximity of most methyl carbon resonances (cf. Table I), however, numerous signals are expected to overlap. So far only the relatively isolated resonance around -2.3 ppm (cf. Table I) could in the spectrum of 5 be resolved into two lines (-60 °C: -2.7 and -2.2 ppm) while all other bands are just significantly more broadened. The two lines mentioned can be reasonably ascribed to I and II, respectively. The ¹⁵N spectrum clearly shows six lines of approximately equal intensity at the positions expected

Figure 4. Carbon-13 CP MAS NMR spectra (cyanide region only) at 75.4 MHz of $[(Me_3Sn)_4M^{II}(CN)_6]_{\infty}$ with (top-tobottom) M = Fe (CT 3 ms, RD 2 s, SR 4.6 kHz, NT 28 320), M = Fe (compound isotopically enriched in ¹⁵N, CT 8 ms, RD 2 s, SR 4.9 kHz, NT 4600), M = Ru (CT 2.5 ms, RD 1 s, SR 5.0 kHz, NT 52 800), M = Os (CT 7 ms, RD 1 s, SR 5.03 kHz, NT 52 400). For the isotopically-enriched compound the line widths (high to low frequency) are 86, 157, and 102 ± 5 Hz. [CT = contact time: RD = recycle delay: SR = spin rate: NT = number of transients.]

for the NC-Ru and NC-Fe environments. For ¹⁵N III is not expected to give signals at positions significantly different from those of I and II. The spectroscopic findings thus favor the admittedly surprising assumption that microcrystallites of pure 1 and 2 have resulted simply on addition of Me₃SnCl to a K₄[Fe(CN)₆]/K₄[Ru(CN)₆] solution.

For a satisfactory CP MAS NMR study, the extremely labile host-guest system $[(Me_3Sn)_4Fe(CN)_6\cdot 4H_2O]$ (G and G' = H₂O), whose crystal structure could only be determined⁹ in selecting a pristine, undried crystal, had to be dried extremely carefully.¹ While the elemental analysis of this homogeneously powdered material (1c) had sug-

Table V. Chemical Shifts of the Cyanide Carbon (¹³C) Atoms of 1-3 and Several Related Systems

sample	δ(¹³ C)/ppm			
$K_4[Fe(CN)_6]^a$		17	7.2	
$[(Me_3Sn)_4Fe(CN)_6]^d$	178.4	174	4.8	169.1
$[(Me_3Sn)_4Fe(CN)_6]^b$	178.9	17:	5.2	169.6
$[(Me_3Sn)_4Fe(CN)_6\cdot 2H_2O\cdot C_4H_8O_2]^d$	177.1	172	2.6	167.5
$[{(C_5H_5)_2C_0}(Me_3S_n)_3Fe(CN)_6]^b$	179.5	17:	5.0	166.4
$K_4[Ru(CN)_6]^a$		162	2.3	
$[(Me_3Sn)_4Ru(CN)_6]^d$	165.8	16	3.1	158.8
$K_4[Os(CN)_6]^a$		14:	2.5	
$[(Me_3Sn)_4Os(CN)_6]^d$	147.1	142	2.4	139.2
$[(Me_3Sn)_4Fe_{0.5}Ru_{0.5}(CN)_6]^{c,e}$	177.4	168.8	162.6	158.0

^a ¹³C-enriched sample, dissolved in D₂O.¹⁸ ^b ¹⁵N-enriched sample (1a). ^c Potentially "alloyed" sample 5. ^d Data given are the weighted averages of the 2:1 doublets caused by second-order effects of coupling to ¹⁴N. ^e Peak maxima given since the effects of ¹⁴N are unclear.

Table VI. Vibrational Frequencies (in cm⁻¹) of all v(CN) and v(SnC) Bands Observed in the Infrared (Boldfaced Numbers) and Raman Spectra of 1-3, 1a, and 5

	1	12	2	3	5
ν(CN)	2045 (s) 2067 (m) 2073 (s) 2088 (s) 2128 (s)	2021 (s) ^{<i>a</i>} 2039 (m) 2044 (s) ^{<i>b</i>} 2060 (s) 2101 (s)	2055 (s) 2070 (m) 2090 (s) 2145 (s)	2035 (s) 2066 (m) 2073 (s) 2096 (s) 2150 (s)	2045, 2055 2065, 2070 2075, 2090 2089, 2101 2130, 2145
$ u(SnC)_{sym} $ $ u(SnC)_{as} $	520 (s) 552 (m) 553 (m)	521 (s) 550 (m) 552 (m)	518 (s) 548 (m) 553 (m)	518 (s) 553 (m, br) ^c 554 (m, br)	518 (s) 554 (m, br) 555 (m, br)

^a Calculated (see the text): 2019 cm⁻¹. ^b Calculated (see the text): 2043 cm⁻¹. ^c See also Figure 5.

gested the composition $(Me_3Sn)_4Fe(CN)_6\cdot 2H_2O$ which would match with that of the crystallographically confirmed organolead homologues $[(Me_3Pb)_4M(CN)_6\cdot 2H_2O]$ with M = Fe (4a) and Ru (4b), the major signals in the ¹¹⁹Sn, ¹³C, and ¹⁵N spectra of 1c (including the methyl ¹³C resonances down to -60 °C) all matched those of the anhydrous compound 1. Lower-intensity resonances (e.g. at -30 and -138 ppm in the ¹¹⁹Sn spectrum) probably indicate the presence of a true hydrate (assumed to be the tetrahydrate revealed by X-ray studies).

These findings suggest that modest drying, along with rapid sample spinning, triggers the loss of incorporated water. Correspondingly, attempts to convert pure 1-3 into isolable "adducts" involving H_2O , NH_3 , or $NCCH_3$ molecules as extra ligands (or "guests") have so far been unsuccessful, suggesting that all five coordination sites of the "excess" Me_3Sn^+ ions in 1 appear to be "satisfied".

Surprisingly, the main ¹¹⁹Sn and (natural-abundance) ¹⁵N NMR spectra of another, apparently even crystalline, derivative of 1 (sample 1d) grown from Me₃SnCl and $K_4[Fe(CN)_6]$ in aqueous solution in the presence of D-(+)glucose (which compound was, in its cyclic form, initially expected to mimic the dioxane of $1b^8$ as a corresponding guest) turn out again to be identical with the ¹¹⁹Sn and ¹⁵N spectra of 1. Although the ¹³C spectrum of 1d does display several comparatively weak resonances typical of glucose, the notably more intense methyl carbon resonances of 1d are similar to those of pure 1. The elemental analysis of 1d agrees better with a composition corresponding to that of 1, although the ¹¹⁹Sn spectrum contains weak spinning patterns centered at -30 and -138 ppm, i.e. as found for the hydrate component of 1c. Solid-state NMR monitoring may thus eventually even be helpful in detecting viable routes to prepare crystalline guest-free 1 of sufficient X-ray quality.

Vibrational Spectroscopy

The relative wealth of information available from the solid-state NMR results contrasts with the rather limited information to be drawn from the ^{119m}Sn and ⁵⁷Fe Mössbauer spectra of 1¹⁹ which are essentially in favor of tbp-configured Me₃Sn derivatives. More valuable insights are based on vibrational (i.e. IR and Ra) spectroscopy, mainly in the absorption ranges of the $\nu(SnC)$ and $\nu(CN)$ vibrations (i.e. around 500-600 and 2000-2200 cm⁻¹, respectively). The strict absence of the symmetric vibration, $\nu(SnC)_{sym}$, in the IR spectra (Table VI), and the relatively low intensity of the asymmetric vibration, $\nu(SnC)_{as}$, in the Ra spectra, advocate an exclusive presence of trigonal planar Me₃Sn units (local symmetry: D_{3h}), plausibly owing to their axial anchoring to two cvanide N atoms. In the presence of terminal CNSnMe₃ ligands with pth configuration around the Sn atoms, at least one $\nu(SnC)_{sym}$ vibration should be observable both in the Ra and the IR spectrum. This is apparently not the case, nor do the spectra offer any convincing evidence of two chemically nonequivalent tbp-configured Me₃SnN₂ units, although the IR and Ra bands of the asymmetric (i.e. doubly degenerate in D_{3h}) $\nu(SnC)_{as}$ vibration tend to look like a doublet (Figure 5). As the exclusively Ra-active band of the nondegenerate $\nu(SnC)_{sym}$ vibration shows no evidence of splitting, the doubling of the asymmetric vibration may rather be due to the actual nonequivalence of the three methyl groups of each Sn atom (vide supra), thus reflecting departure from 3-fold symmetry. The Me₃Sn groups of the alloyed polymer 5 do not reveal any more complex a nature by an increased number of $\nu(SnC)$ bands.

As a general consequence of essentially covalent $M \rightarrow C \equiv N \rightarrow M'$ bridging, the $\nu(CN)$ bands of 1-3 (Table VI) occur usually at higher wavenumbers than the bands of genuine salts of the corresponding $[M^{II}(CN)_6]^4$ anions (cf. Table VII). The experimental wavenumbers of the $\nu(C^{15}N)$ bands of 1a compare well with the corresponding calculated data, making use of the wavenumbers of 1 and of the standard equation of the diatomic oscillator. The alloyed polymer 5 displays two sets of $\nu(CN)$ bands, each of which is reminiscent of a "pure" $M(CN)_6$ unit with M = Fe or Ru (Table VI).

Interestingly, there is no coincidence in wavenumber of any pair of IR- and Ra-active $\nu(CN)$ bands, suggesting local centrosymmetry for all M(CNSn...)₆ fragments of 1-3 and 5. The more intense IR band even tends to split into two close-lying components (Figure 6). From the three centrosymmetric subgroups of O_h to be in question, D_{4h} , D_{3d} , and D_{2h} , the first two would not corroborate the IR/ Ra results (see Figure 6) and the unequivocal NMR spectroscopic evidence of three nonequivalent CN ligands. The combination of NMR and vibrational evidence is required to reach the conclusion that in each M(CNSn...)₆ unit the pairwise equivalent cyanide groups occupy mutually trans orientations.

Interestingly, the spectra of the crystallographically well explored²¹ ion exchange product with $Bu^{n_4} N^+$, [$(Bu^{n_4}N)_{0.5^-}$ (Me₃Sn)_{3.5}Fe(CN)₆·H₂O]_{∞} (6), give rise to five IR- and six

⁽¹⁹⁾ See footnote 16 of ref 4. Unlike for, e.g., $[(Ph_3Sn)_3Fe^{II}(CN)_6]^{20a}$ and $[H_4Fe^{II}(CN)_6]_{,20b}^{20b}$ the absence of any quadrupole splitting of the ⁵⁷Fe Mössbauer signal of 1 suggests the presence of six comparatively similar ligands.

^{(20) (}a) Bonardi, A.; Carini, C.; Pelizzi, C.; Pelizzi, G.; Predieri, G.; Tarasconi, P.; Zoroddu, M. A.; Molloy, K. C. J. Organomet. Chem. 1991, 401, 283. (b) Garg, A. N.; Goel, P. S. J. Inorg. Nucl. Chem. 1969, 31, 697.

Figure 5. Raman spectrum of polymer 3 in the Sn-C stretching region.

Ra-active bands, pairwise coinciding in wavenumber (Table VII). The crystallographic results actually confirm the presence of only one Fe(CNSn...)₆ unit with six nonequivalent CNSn... ligands. In view of this agreement the IR and Ra data for 1-3 and 5 are also likely to reflect essential symmetry-related information. For fragments involving genuine isocyanide ligands, Me₃Sn-N==C-Fe-C==N-SnMe₃, imaginable in view of the positive δ ⁽¹¹⁹Sn) value and a comparatively small coupling constant, $|^{1}J(^{119}Sn, ^{13}C)|$ (of 1, vide supra), ν (CN) values >2110 cm⁻¹ might be expected.²²

The knowledge of absorptions attributable to $\nu(\text{SnN})$ vibrations would be particularly valuable for a closer specification of the actual anchoring of the "excess" Me₃Sn units. However, such bands could so far not be identified with certainty.²³ Nevertheless, some interesting features have become apparent in the usual absorption range of the $\nu(\text{MC})$ and $\delta(\text{MCN})$ vibrations (i.e. ca. 300–500 cm⁻¹) and are currently being investigated in more detail.

Architecture of the 3D Polymers 1-3

The spectroscopic findings of major relevance for a more detailed understanding of the potential 3D network of 1-3 can be summarized as follows: (a) Each $M(CN)_6$ unit involves three nonequivalent CN ligands whose spatial arrangement corresponds to local D_{2h} symmetry. (b) Each formula unit contains two equally abundant sets of probably tbp-configured Me₃Sn units. (c) Two of the six N atoms of each $M(CN)_6$ unit are likely to adopt the coordination number 3, suggesting an anchoring of two not necessarily equal Me₃Sn units to each of these N atoms. Statement c appears to deserve a special comment since it deprives priority from construction patterns involving one nonbridging fragment Me₃SnN≡C- $Fe-C \equiv N-SnMe_3$. Interestingly, the well-confirmed (both by X-ray^{24a} and neutron^{24b} diffraction) crystal structure of the polymers $(H_4Fe^{II}(CN)_6]_{\infty}$ and $[D_4Fe^{II} (CN)_{6}$ where the four Me₃Sn⁺ ions of 1-3 are formally substituted by four H⁺ and D⁺ ions, respectively, fulfills all of the spectroscopically deduced structural essentials of 1-3 (Figure 7). Thus each Fe(CN)₆ octahedron involves three crystallographically different N atoms that reside pairwise in trans positions (in Figure 7: $N(1)/\bar{N}(1)$, $N(2)/\bar{N}(1)$ $\overline{N}(2)$, and $N(3)/\overline{N}(3)$). The atoms N(1) and $\overline{N}(1)$ of each $Fe(CN)_6$ unit function as bridgeheads of two hydrogen bridges, while all other N atoms are involved in just one ordinary N-H...N' linkage. In analogy to our postulate of two different Me₃Sn bridges in 1-3, no more than two nonequivalent hydrogen bridges (1:1) exist in [H₄Fe- $(CN)_{6}$, which differ considerably both in "shape" and in their overall N····N' distances:²⁴

bridge 1: N(1)-H(1), 1.45; H(1)-N(3'), 1.23 Å; N(1)-H(1)-N(3'), 173°

bridge 2: N(1)-H(2), 1.81; H2-N(2'), 1.11 Å; N(1)-H(2)-N(2'), 148° (4)

All Me₃Sn units would thus have in common that they were anchored to one two- and one three-coordinate N atom. Alternatively, a model could be envisioned in which half of the Me₃Sn units would interact exclusively with three-coordinate N atoms and the other half with twocoordinate N atoms only. The actual structure of $[H_4Fe(CN)_6]$ would make this polymer a suitable model for the 3D network of 1–3, provided that (a) one cyanide N atom might also be capable of coordinating two different Me₃Sn units and (b) that the resulting -CN-Sn...NC bridges would differ appreciably in strength and symmetry to account for the two rather different $\delta(^{119}Sn)$ values.

Vahrenkamp et al. have demonstrated in 1990²⁵ that two separate d transition metal atoms may actually be bonded to one cyanide nitrogen atom of a given ^dM-C N functionality. We are, moreover, aware of two structures in which a nitrogen atom belonging to a cyanide-like unit is linked with *two* Me₃Sn groups. One is the polymeric cyanamide, $[(Me_3Sn)_2N_2C]_{\infty}$, whose N atoms are exclusively three-coordinate, leading to a 3D network (a) with symmetrical bridges throughout (N-Sn = 2.48 Å²⁶). The second example is the polymer [Me₃SnNCO·Me₃SnOH]_∞

⁽²¹⁾ Schwarz, P.; Eller, S.; Soliman, T. M.; Fischer, R. D.; Davies, N. A.; Apperley, D. C.; Harris, R. K. To be published.

 ⁽²²⁾ Bär, É.; Fehlhammer, W. P. J. Organomet. Chem. 1988, 353, 197.
 (23) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; J. Wiley: New York, 1986; pp 272-282.

^{(24) (}a) Pierrot, M.; Kern, R.; Weiss, R. Acta Crystallogr. 1966, 20, 425. (b) Pierrot, M.; Kern, R. Acta Crystallogr. 1969, B25, 1685.

⁽²⁵⁾ Oswald, B.; Powell, A. K.; Rashwan, F.; Heinze, J.; Vahrenkamp, H. Chem. Ber. 1990, 123, 243.

⁽²⁶⁾ Forder, R. A.; Sheldrick, G. M. Chem. Commun. 1970, 1023.

Table VII. Comparison of the ν (CN) Vibrations (IR and Ra, in cm⁻¹) of Four Different Compounds Containing a M^{II}(CN)₆ Fragment

Figure 6. Infrared and Raman spectra of 2 in the $\nu(CN)$ range (the reproducible, weak splitting of one of the IR bands has not been considered in Table VI).

which involves zigzag chains of the type (b) with strongly alternating Sn–N bond lengths (i.e. of 2.43(5) and 2.75(5) Å²⁷). The latter value represents the longest Sn–N distance so far reported and contrasts drastically with the Sn–N distance of 2.15(6) Å in the likewise polymeric solid Me₃SnNCS.²⁸ Sn–N distances of ca. 2.5 Å are, however, not uncommon.²⁹ In view of an estimated Sn…N van der Waals distance²⁷ of 3.7 Å but in contrast to an (early) assumption of essentially ionic Me₃Sn⁺ and CN⁻ components in polymeric [Me₃SnCN]_∞ (Sn–N and Sn–C, 2.49 Å³⁰),³¹ rather long, still "bonding" Sn–N distances may in fact be expected.

displaying Sn-N distances of 2.529(6) and 2.546(6) Å.^{32a} Two (of the three observed) ¹¹⁹Sn resonances have values of -33.5 and -42.3 ppm.^{32b} The aforementioned polymer 6 shows one ¹¹⁹Sn resonance at +6 ppm, due probably to a very unsymmetrical CN-Sn-OH₂ bridge with an unusually long Sn-O distance (Sn-N; 2.187 Å; Sn-O, 2.664 Å).²¹ Thus, even positive δ ⁽¹¹⁹Sn) values could in fact be envisaged for (psuedo-)tbp-configured -CN-Sn-NCbridges involving one long (≥ 2.5 Å) and one only slightly shorter $(\geq 2.3 \text{ Å})$ Sn...N bond. While further experimental experience is undoubtedly highly desirable, we wish to point out in concluding that the well-confirmed evidence of two equally-abundant Me₃Sn units in the title compounds advocates, simply for topological reasons, a supramolecular architecture involving all its Me₃Sn groups in bridging positions. Infinitely weak Sn(2)...N(1) interactions cannot, however, be strictly ruled out.³⁶

⁽²⁷⁾ Hall, J. B.; Britton, B. Acta Crystallogr. 1972, B28, 2133.
(28) Forder, R. A.; Sheldrick, G. M. J. Organomet. Chem. 1970, 21, 115.

 ⁽²⁹⁾ See: Basseth, C.; Bajue, S. A.; Bramwell, F. B. Abstr. Pap.—Am.
 Chem. Soc. 1992, 203rd, INORG 536; Abstr. Pap.—Am. Chem. Soc. 1992, 204th, INOR 254.

 ⁽³⁰⁾ Schlemper, E. O.; Britton, D. Inorg. Chem. 1966, 5, 507.
 (31) We have found a δ(¹¹⁹Sn) value of -144 ppm (not reported earlier)

⁽³¹⁾ We have found a $\delta^{(119}$ Sn) value of -144 ppm (not reported earlier) which appears to be fully consistent with the usual behavior of nonionic, tbp-configured Me₃Sn derivatives.

^{(32) (}a) Soliman, T. M.; Etaiw, S. E. H.; Fendesak, G.; Fischer, R. D. J. Organomet. Chem. 1991, 415, C1. (b) Third $\delta^{(119}$ Sn) value -67.6 ppm: Harris, R. K.; Apperley, D. C.; Davies, N. A.; Kopf, J.; Fischer, R. D. Manuscript in preparation.

Experimental Section

The earlier-reported organotin polymers $[(Me_3Sn)_4M(CN)_6]$ with M = Fe and Ru(1, 2), including the potentially alloyed species $[(Me_3Sn)_4Fe_{0.5}Ru_{0.5}(CN)_6]$ (5), as well as the water/dioxane adduct of 1. $[(Me_3Sn)_4Fe(CN)_6\cdot 2H_2O\cdot C_4H_8O_2]$ (1b), were prepared according to refs 4, 5, 8, and 31. Anal. Calcd for 1/2 =C18H36N6MSn4 (M: Fe/Ru): C, 24.93/23.69; H, 4.18/3.98; N, 9.69/ 9.21; Sn, 53.64/52.04. Found: C, 24.81/23.64; H, 4.01/3.93; N, 9.86/9.13; Sn, 52.82/50.68. $^{15}N\text{-enriched}\ K_4[Fe(CN)_6]\cdot 3H_2O\ was$ obtained by refluxing 0.20 g (2.23 mmol) of green $Fe(OH)_2^{32}$ with 1.1 g (16.64 mmol) of KC¹⁵N (99% Medgenix GmbH Germany) in ca. 35 mL of N₂-conditioned H₂O for 2 h. After filtration and addition of ca. 30 mL of EtOH to the filtrate, a light precipitate was isolated, subsequently redissolved in H₂O, and precipitated once more by adding EtOH. After washing with small portions of cold $H_2O/EtOH$ (1:1) and drying in vacuo, 0.35 g of pure K4[Fe(C¹⁵N)₆]·3H₂O (yield: 36.7%) was obtained. A 0.2-g (0.47mmol) amount of this product was dissolved in 30 mL of H₂O; this solution was united with a solution of 0.583 g (2.92 mmol) of Me₃SnCl (Merck-Schuchardt) in 30 mL of H₂O. The white precipitate of 1a (0.35 g; yield: 86%) was dried in vacuo after filtration. Anal. Calcd for C₁₈H₃₆¹⁵N₆FeSn₄: C, 24.76; H, 4.16; N, 10.31. Found: C, 24.61; H, 4.17; N, 9.69. The polymer $[(Me_3Sn)_4Os(CN)_6]$ (3) was prepared by adding a solution of 0.43 g (2.15 mmol) of Me₃SnCl in 10 mL of H₂O to a solution of 0.30 g (0.54 mmol) of K₄[Os(CN)₆]·3H₂O (prepared according to ref 33) in 10 mL of H_2O . After filtration, washing with cold H_2O , and drying in vacuo (3 h), 0.49 g of pure 3 (yield: 91%; dec temp >360 °C) was obtained. Anal. Calcd for C₁₈H₃₆N₆OsSn₄: C, 21.59; H, 3.62; N, 8.39; Sn, 47.41. Found: C, 21.06; H, 3.60; N, 7.99; Sn, 46.38. Compounds 1 and 2 (and, for comparison, 4a and 6), were also analyzed for oxygen; while the absence of O (and hence of H_2O) in 1 and 2 was indicated. Samples 4a and 6 each contained oxygen corresponding to one H₂O molecule per Fe atom. Spontaneous precipitation of 1 was inhibited by mixing the solutions of 0.27 g (0.63 mmol) of $K_4[Fe(CN)_6]$ in 30 mL of H_2O and of 10 g (55.5 mmol) of D-(+)-glucose in 50 mL of H_2O . A solution of 0.5 g (2.5 mmol) of Me₃SnCl in 30 mL of H₂O was added dropwise to the stirred $K_4[Fe(CN)_6]/glucose$ solution, avoiding any early turbidness. After 2 days, at a temperature of ca. 4 °C, ca. 0.46 g of colorless crystals was obtained (corresponding to a yield of the initially expected 1:1 adduct with glucose of 70%). Anal. Calcd for $[(Me_3Sn)_4Fe(CN)_6 \cdot glucose] =$

(33) Yünlü, K. Doctoral Dissertation, Universität Hamburg, Germany, 1983; p 109.

(34) Prepared by adding solid KOH to a solution of $Fe^{II}SO_4$ in N₂conditioned H₂O, filtration, washing (H₂O), and drying in vacuo. (35) Krauss, F.; Schrader, G. J. Prakt. Chem. 1928, 119, 282.

(36) Note added in proof: Another new polymer violating the 2n = mrule, but devoid of ion-exchanging properties, is the recently studied species $[(Me_3Sn)_6[Fe(CN)_5]_2(\mu-L)]$ (L = pyrazole), with $\delta(^{119}Sn) = -153.5$ and +71.5 ppm.6b

C₂₄H₄₈N₆O₆FeSn₄: C, 27.53; H, 4.62; N, 8.03. Found: C, 24.81; H, 4.44; N, 8.89. IR v(CN): 2060, 2080; Ra 2064, 2087, 2126. ν (SnC): IR 555; Ra 519, 553 cm⁻¹. The NMR sample originating after extremely careful drying from authentic [(Me₃Sn)₄- $Fe(CN)_{6} H_{2}O]^{9}$ was identical with that mentioned in ref 1.

Infrared spectroscopic measurements were carried out mainly on the Perkin-Elmer (PE) FT-IR-1720 instrument, with occasional use of the PE spectrometers 325 and 577. Raman spectra were run on the Ramanov U-1000 spectrometer of Jobin Yvon. Debye Scherrer X-ray diffraction studies (e.g. of 1-3 and 5) were carried out on the Philips powder diffractometer PW 1050 (Cu, $K\alpha$, Ni filter). All four polymers turned out to be isostructural.

The ¹⁵N, ¹³C, and ¹¹⁹Sn solid-state NMR spectra were obtained at 30.4, 75.4, and 111.9 MHz, respectively, using a Varian VXR 300 spectrometer in the cross-polarization mode with Doty scientific probes and high-power proton decoupling. For ¹⁵N and ¹³C 7-mm-o.d. rotors were employed, with typical MAS speeds in the range 4-5 kHz, whereas for ¹¹⁹Sn 5-mm-o.d. rotors with MAS rates of 10-13 kHz were generally used. For the crosspolarization stage, contact times in the range 1-10 ms and relaxation delays of 1-2 s were found to be appropriate. Some ¹¹⁹Sn spectra were obtained without cross-polarization. In general, many transients (10 000-60 000) were acquired for each spectrum, though for ¹³C this was only necessary to obtain good sensitivity for the cyanide carbon signals. Such sensitivity also required relatively high contact times. Centerbands for ¹¹⁹Sn were determined by recording spectra at two different spinning speeds (see Figure 2). Chemical shifts are reported with the high-frequency-positive convention, in ppm with respect to the signals for solid NH₄NO₃ (nitrate line), SiMe₄, and SnMe₄ for ¹⁵N, ¹³C, and ¹¹⁹Sn, respectively.

The ambient probe temperature is ca. 23 °C. CP MAS spectra above room temperature were obtained using heated dry air as the spin gas. Below room temperature nitrogen gas was used, cooled using liquid nitrogen and subsequently heated to maintain a controlled temperature. A thermocouple situated close to the sample measured the temperature, which was stable to ± 1 °C. Temperatures quoted are nominal (i.e. uncalibrated).

Acknowledgment. We thank the U.K. Science and Engineering Council for access to the Varian VXR 300 spectrometer under the national solid-state NMR service arrangements. We are also grateful for financial support from the British Council and the DAAD (Bonn) under the ARC Programme, which enables the international collaboration to take place. Dr. K. B. Dillon is thanked for a number of helpful discussions. A.K.B. and (in part) P.S. and S.E. wish to thank the Deutsche Forschungsgemeinschaft, Bonn, for financial support. The Fonds der Chemischen Industrie, Frankfurt/M., has enabled us to purchase the ¹⁵N-enriched KCN.

OM920831G