Table III. Cyclic Voltammetry Data* for the Redox Processes of the η^6 -Phosphinine Complexes 2, 9, and 10, the Carbocyclic Counterparts 12-14, and the Free Ligands 8 and 15

		$E_{1/2}(0/-)/V$	$\Delta E_{ m p}/{ m mV}$	r	$E_{1/2}(+/0)/V$	$\Delta E_{ m p}/{ m mV}$	r	$E_{\mathrm{pa}}/\mathrm{V}^{b}$
(C ₆ H ₆) ₂ V	13°	-2.71 r	74	0.93	-0.35 г	66	1.00	0.24
$(C_5H_5P_2)V$	2^d	−1.99 q	80	1.10	0.18 r	44	1.00	1.02
$[(t-Bu)_3(C_5H_2P)_2V$	9	−2.25 r	61	1.50	-0.10 r	56	1.30	0.86
(C ₆ H ₆) ₂ Cr	14 ^c	<-3.1			-0.69 r	87	0.95	0.97
$[(t-Bu)_3C_6H_3]_2C_7$	12	<-3.1			−0.69 r			0.71
$[(t-Bu)_3C_5H_2P]_2Cr$	10				−0.43 r	76	1.07	0.98
C ₅ H ₅ P	15	-2.27°	100	0.56	-1.05 f.8			-0.14 f.t
$(t-Bu)_3C_5H_2P$	8	-2.57 -2.75 h	56	0.70				

^a In DME/(n-Bu)₄NClO₄ (0.1 M) at glassy carbon vs SCE, T = -50 °C (V complexes), 25 °C (Cr complexes). ^b Peak potential of an irreversible wave. c Reference 20. Reference 7. 25 °C, partially reversible. Irreversible, see ref 7. $E_{pa}(ECE)$. T = 25 °C, irreversible.

still contained some colloidal chromium. After the solvent was stripped off and excessive ligand was removed by sublimation (60 °C, 10-3 mbar), the residue was dissolved in petroleum ether 40/60 and the filtration was repeated twice, using a 0.2- μm Teflon filter. Evaporation to dryness yielded analytically pure 10 as a greenish-brown amorphous material. Due to the extremely high solubility, attempts to grow crystals for an X-ray diffraction study were abortive. Yield: 40 mg (≈1% based on evaporated chromium); 150 °C dec before reaching mp. Anal. Calcd for $C_{34}H_{58}P_2Cr$: C, 70.31; H, 10.06. Found: C, 69.61; H, 10.93.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie (research followship to D.M.), and by the NATO Scientific Affairs Division.

OM930106L

Additions and Corrections

1993, Volume 12

Santiago Ciruelos, Tomás Cuenca, Juan Carlos Flores, Rafael Gómez, Pilar Gómez-Sal, and Pascual Royo': Monocyclopentadienyl-Type Titanium Complexes with the $[\eta^5-\eta^5-(C_5H_4)_2SiMe_2]^2$ -Ligand. X-ray $SiMe_2$]₂(μ_2 -O)₂. The First Example of a Nonplanar "Ti₄O₄" Core.

Page 945. In the first line in column 1, bridging instead of chelating should be written.