Metal- Assisted Functionalization of Fluorocarbons: Alkyne Insertion versus Carbon Monoxide Substitution in Tungsten(11) Metallacycles

Jaqueline L. Kiplinger, Margaret A. King, Atta M. Arif, **and** Thomas G. Richmond'

Department of Chemistry, University of Utah, Salt Lake City, Utah *84112*

Received June *25, 1993*

 $Summary: Treatment of the tungsten (II) tetrafluor oaryl$ metallacycle *2* with electron-deficient internal alkynes results in the formation of η^2 -vinyl complexes by migratory insertion of the tetrafluoroarylgroup under mild conditions. **A** competitive reaction involving formation of four-electron-donor alkyne complexes is favored for electron-rich alkynes. The n^2 -vinyl complexes and fourelectron-donor complexes are not interconvertible species, even in the presence of carbon monoxide.

Carbon-fluorine bond activation, a fundamental step in the development of metal-based catalysts for the functionalization of fluorocarbons, has been demonstrated both by our research group¹ and by others.² However, little is known concerning the reaction chemistry of these systems which might lead to further elaboration of the C-F bond in **1.** Although pentafluoro aromatics are

susceptible to attack by strong nucleophilic reagents, the usual stereochemistry is $para$ to the unique group present.³ Transition metals have been shown to alter the site of attack to the ortho position in suitably designed ligand systems.4

An alternative strategy for the functionalization of C-F bonds could involve insertion of unsaturated organics into the metal-aryl bond formed in eq 1.5 Although metalmediated couplings of perfluoroalkenes and -alkynes are well precedented, simple insertion reactions in which the migrating group is highly fluorinated are quite rare, presumably due to the increased strength and reduced nucleophilicity of the metal-carbon bond compared to those of hydrocarbon analogues.6 In this work, we report that the metallacycle **2** undergoes a facile migratory insertion reaction with internal acetylenes to afford novel v^2 -vinyl complexes, resulting in net replacement of a C-F bond by a C-C bond (Scheme I).

Treatment of **2** with 4.5 equiv of perfluoro-2-butyne in toluene at 80 °C for 7 h gives a maroon solution of 3 (ν_{CO}) 2019,1915 cm-'1, which crystallizes **as** an air-stable green solid η^2 -vinyl product in 71% isolated yield.⁷ The identification of 3 as an n^2 -vinyl or metallacyclopropenyl complex was ascertained by diagnostic resonances in the 13C(19F) NMR spectrum (Scheme 11). The carbenoid character of C_{α} is reflected by a large downfield chemical shift, whereas the four-coordinate carbon, C_{β} , has a significant upfield chemical shift. Furthermore, the fluoride was determined8 to be cis to one CO **(6** 221.82, $^{2}J_{CF}$ = 5 Hz) and trans to the second CO (δ 221.8, $^{2}J_{CF}$ = *⁵⁵***Hz),** leaving the inserted acetylene cis to the fluoride as verified crystallographically (Figure 1, left)? The geometry around the tungsten(I1) metal center is pseudooctahedral if one considers that the n^2 -vinyl ligand occupies a single coordination site. The short W-C(3) bond distance of 1.938(5) \AA is consistent with a W=C double bond, and the W-C(4) bond distance of 2.196(5)

0 1993 American Chemical Society

^{(1) (}a) Richmond, T. G.; Osterberg, C. E.; Arif, A. M. J. Am. Chem.
Soc. 1987, 109, 8091. (b) Osterberg, C. E.; King, M. A.; Arif, A. M.;
Richmond, T. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 888. (c) Harrison,
R. G.; Ric T. G. Coord. Chem. *Rev.* **1990,105, 221.**

⁽²⁾ (a) Anderson, C. M.; Creepo, M.; Ferguson, G.; Lough, A. J.; Puddephatt, R. J. Organometallics **1992,11,1177.** (b) Belt, **S.** T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429. (c) Hoffman, P.; Unfried, G. Chem. Ber. 1992, 125, 659. (d) Watson, P. L.; Tulip, T. H.; Williams, I. Organometallics 1990, 9, 1999. (e) 136. (f) Crespo, M.; Martinez, M.; Sales, J. J. Chem. Soc., Chem. Commun. **1992,822.**

⁽³⁾ (a) Vincente, **J.;** Chicote, M. T.; Fernandez-Baeza, J.; Fernandez-Share, A.; Joneste, J., Chicotte, M. 1., Fernancez-Baeza, J.; Fernancez-
M.; Neeman, T. X.; Kwock, E. W.; Stein, S. M. J. Am. Chem. Soc. 1993,
115, 356. (c) Park, S.; Roundhill, D. M. *Inorg. Chem.* 1989, 28, 2906.

^{(4) (}a) Uson, R.; Fornies, J.; Espinet, P.; Garcia, A.; Foces-Foces, C.; Cano, F. J. Organomet. Chem. 1985, 282, C35. (b) Park, S.; Pontier-Johnson, M.; Roundhill, D. M. J. Am. Chem. Soc. 1989, 111, 3101.

⁽⁵⁾ For acetylene insertion **intoortho-manganatedtriphenylphosphite** see: Grigsby, W. J.; Lyndsay, M.; Nicholson, B. K. Organometallics **1993, 12, 397.**

^{(6) (}a) Chambers, R. D. Fluorine in Organic Chemistry; Wiley: New York, 1973; p 370. (b) Albeniz, A. C.; Espinet, P.; Jeannin, Y.; Philoche-Levisalles, M.; Mann, B. E. J. Am. Chemis. C. C.; Espinet, P.; Jeannin, Y.; Philo

Gipson, S. L.; Kneten, K. *Inorg. Chim. Acta* 1989, 157, 143.
(7) Anal. Calcd for 3, WC₁₇H₁₁N₂O₂F₁₁¹/₂C₇H₈ (*M*₇714.19): C, 34.48;
H, 2.12; N, 3.92; F, 29.26. Found: C, 33.76; H, 2.02; N, 3.80; F, 28.54

⁽⁸⁾ Osterberg, C. E. Ph.D. Dissertation, University of Utah, 1990.

(9) Crystal data for 3: WC₁₇H₁₁N₂O₂F₁₁, dark red, triclinic, PI, $a = 8.100(1)$ Å, $b = 12.111(3)$ Å, $c = 12.944(4)$ Å, $\alpha = 100.69(2)$ °, $\beta = 97$ and refinement (SDP PLUS software). Final refinement included *all* non-hydrogen atoms **as** anisotropic contributions and hydrogen atom $R = 0.021, R_w = 0.027, GOF = 0.80,$ and the highest peak in the final map was $0.48 \text{ e}/\text{\AA}$.

Kinetic Isomer

Thermodynamic Isomer

Å is in the range of a $W-C$ single bond.¹⁰ Furthermore, the C(3)-C(4) bond clearly exhibits partial double-bond character with a bond distance of 1.448(7) **A,** justifying the η^2 -vinyl structure for 3.

Ambient-temperature photolysis of **2** with 2.5 equiv of perfluoro-2-butyne in toluene for 160 min using a Pyrexfiltered Hg lamp generates a dark yellow solution with **4 as** the major species *(UCO* 2046, 1965 cm-l). Orange crystalline **4** was isolated in 50% yield following chromatography on Florisil with CH_2Cl_2 as eluent.¹¹ The tungsten(II) complex possesses the requisite η^2 -vinyl ¹³C(¹⁹F) NMR chemical shifts at δ 196.8 and 32.4 ppm coinciding with C_{α} and C_{β} , respectively. In the ¹³C{¹H} spectrum, C_{α} appears as a doublet of quartets with ²J_{CF} = 40 Hz from the CF₃ group and ²J_{CF} = 34 Hz from the fluoride. Notable are the reduced $^2J_{CF}$ coupling constants for the carbonyl ligands at δ 215.2 ($^2J_{CF}$ = 13 Hz) and δ 214.9 $(^{2}J_{CF} = 20$ Hz), which clearly demonstrate that *both* ligands are *cis* to the fluoride. Furthermore, the kinetic

 η^2 -vinyl product 4 is smoothly converted to the thermodynamic η^2 -vinyl product 3 at 60 °C, indicating that 4 is indeed an intermediate in the formation of 3 (Scheme 11). Remarkably, migration of the highly fluorinated metallacycle takes place under these mild conditions to generate the kinetic η^2 -vinyl complex 4.

Less activated acetylenes also undergo this transformation. Treatment of **2** with 1.2 equiv of diphenylacetylene in toluene under reduced pressure at 60 "C for 18 h yields a dark green solution composed of two complexes, $5 \left(\nu_{\text{CO}} 1966, 1867 \text{ cm}^{-1}\right)$ and $6 \left(\nu_{\text{CO}} 1915 \text{ cm}^{-1}\right)$, in a 3:1 ratio as quantified by ¹H and ¹⁹F NMR spectroscopy. The product ratios remained constant throughout the course of the reaction. The minor product was identified as the unstable four-electron donor complex **6,** and the major product was recognized as the insertion product **5,** which was isolated in 34% yield.12 Analogous to 3, compound **5** is the thermodynamically stable η^2 -vinyl system with resonances for the carbonyl *cis* to the fluoride at **6** 224.4 $(^{2}J_{CF} = 4$ Hz) and *trans* to the fluoride at δ 222.2 $(^{2}J_{CF} =$

(12) Anal. **Calcd for 5, WC~H~~N~O~F~.l/~CH~Cl~** *(M,* **726.76): C, 45.45; H, 3.05; N, 3.85; F, 13.07. Found C, 45.73; H, 2.96; N, 3.78; F, 12.84.**

⁽¹⁰⁾ Churchill, M. R.; Youngs, W. J. *Inorg. Chem.* 1979, 18, 2454.
(11) Anal. Calcd for 4, $WC_{17}H_{11}N_2O_2F_{11}$ (M_r 668.12): C, 30.56; H, 1.66; N, 4.19. Found: C, 30.64; H, 1.67; N, 4.13.

Figure **1.** (Left) ORTEP representation of 3. Selected bond distances **(A)** are as follows: **W-F1, 1.996(3); W-C4, 2.196(5); W-C3, 1.938(5); C3-C4, 1.448(7).** Selected bond angles (deg) are **as** follows: **F1-W-C1, 168.8(2); N1-W-C2, 160.1(2); N2- W-C3,158.2(2); N2-W-C3,159.1(2); C3-W-C4,40.4(2); W-C4-C3,60.2(3); W-C3-C4,79.4(3).** (Right) **ORTEP** representation of **7.** Selected bond distances **(A)** are **as** follows: **W-F1,2.005(5); W-C2,1.99(1); W-C3,2.00(1); C2-C3,1.30(2).** Selected bond angles (deg) are **as** follows: **Fl-W-C2,163.6(4); Fl-W-C3,158.4(4); N2-W-C4,149.3(4); Nl-W-C1,161.8(5); C2-W-C3,39.9- (4); W-C3-C2, 70.8(7); W-C2-C3, 71.3(7).**

56 Hz). The inserted acetylene, *cis* to the fluoride, has the essential resonances in the ${}^{13}C{}_{1}{}^{1}H{}_{3}$ NMR spectrum (CD_2Cl_2) at δ 230.1 and δ 25.7 corresponding to C_α and C_β , respectively.

The isolable four-electron donor complex **7** was obtained as an air-stable purple solid in **77** *7%* yield upon treatment of **2** with **2.2** equiv of 3-hexyne in toluene under reduced pressure at 70° C for 51 h $(\nu_{\rm CO} 1912 \,\rm cm^{-1})$.¹³ The acetylenic ¹³C{¹H} chemical shift values at δ 220.0 (²J_{CF} = 15 Hz) and δ 213.2 (² J_{CF} = 31 Hz) in CDCl₃ for 3 are comparable to those for other four-electron-donor alkyne ligands.14 The short W-C_{alkvne} bond distances of $1.99(1)$ and $2.00(1)$ Å and lengthened $C=$ C bond distance of 1.30(2) Å are consistent with a tightly bound four-electron-donor alkyne (Figure **1,** right).14

A two-electron-donor alkyne complex may be a common intermediate in these transformations which could either participate in the migratory insertion reaction or lose CO to afford the four-electron-donor alkyne complex. Interestingly, the four-electron-donor alkyne and n^2 -vinyl complexes are not interconvertible moieties, even in the presence of carbon monoxide. The formation of fourelectron-donor alkyne complexes is favored by electronrich acetylenes, and the formation of η^2 -vinyl complexes is favored by electron-deficient acetylenes.

Several groups have prepared η^2 -vinyl complexes by external nucleophilic addition to four-electron-donor alkyne ligands. 14 To our knowledge this work provides the first well-defined examples of alkyne insertion into a perfluoro aromatic carbon-metal bond.

Acknowledgment. This research was supported in part by the National Science Foundation through a PYI award to T.G.R. (Grant No. **CHE-895845).** T.G.R. thanks the Alfred P. Sloan Foundation for a Research Fellowship **(1991-1995).** J.L.K. thanks the University of Utah for a Graduate Research Fellowship **(1992-1993).**

Supplementary Material Available: Text and tables giving synthetic details and complete characterization data for all compounds and full crystallographic data for 3 and **7,** including tables of bond distances, bond angles, torsion angles, final positional and thermal parameters, and least-squares planes **(43** pages). Ordering information is given on any current masthead page.

OM9304319

^{(13) (}a) Anal. Calcd for 7, $WC_{18}H_{21}N_2O_2F_5$ (*M*, 576.20): C, 37.52; H, 3.67; N, 4.86; F, 16.49. Found: C, 38.87; H, 3.68; N, 4.81; F, 16.75. (b) 3.67; N, 4.86; F, 16.49. Found: C, 38.87; H, 3.68; N, 4.81; F, 16.75. (b)
Crystal data for 7: WC₁₉H₂₁N₂O₂F₅, purple, monoclinic, P2₁/c, a = 11.863-
(1) Å, b = 8.298(2) Å, c = 20.683(2) Å, β = 103.282(8)°, V = 1 $Z = 4.0$, Cu Ka_1 . Of 3747 reflections collected at ambient temperature (Enraf-Nonius CAD-4, $4^{\circ} < 2\theta < 130^{\circ}$) 3310 were unique; 2611 of these had $I > 3\sigma(I)$. Final refinement included all non-hydrogen atoms as anisotropic and hydrogen atoms as idealized isotropic contributions. For **244 parameters,** $\hat{R} = 0.084$ **,** $R_w = 0.051$ **, GOF = 1.3, and the highest peak in the final map was 1.1 e/A.**

⁽¹⁴⁾ For an excellent review see: Templeton, J. L. *Adu. Organomet. Chem.* **1989,29, 1.**