Agostic Interaction and Hydrogen Exchange in Coordinatively Unsaturated Ruthenium Complexes

Masamichi Ogasawara, Ko Aoyagi, and Masahiko Saburi*

Department of Industrial Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received December 1, 1992

Summary: The agostic interaction in coordinatively unsaturated ruthenium complexes $[RuH(P-P)_2]PF_6$ (P-P = 1,4-bis(diphenylphosphino)butane (dppb) and 2,3-Oisopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane (diop)) was investigated by ¹H NMR studies. The hydrogen exchange between the agostic hydrogen in the phosphine ligand and the terminal hydride in each of complexes is reported.

The coordination of $C-H\sigma$ bonds to the transition metal centers, i.e. agostic interactions,¹ has attracted considerable attention in recent years.² It was proposed that the "agostic" M+H-C bonds are similar in bonding character to η^2 -type coordination of a dihydrogen ligand to a transition metal (three-center 2-electron bond). It was demonstrated recently that some coordinatively unsatured 16-electron complexes, which are the precursors of molecular hydrogen complexes, involve agostic interactions.^{3,4} Although agostic interactions are considered as intermediates on the way to oxidative additions of hydrocarbons, few cases are known as the examples of actual C-H bond activation, especially of aliphatic C-H groups.

We report herein that, in the formally five-coordinate complexes $[RuH(dppb)_2]PF_{6^5}(1)$ and $[RuH(diop)_2]PF_{6^6}(2)$, the interaction between an aliphatic C-H group of the phosphine ligand and the ruthenium center is detected at low temperatures and that the agostic hydrogen exchanges with the terminal hydride (Ru-H) at a considerable rate even at a temperature as low as -60 °C.

The high field region of variable temperature ¹H NMR spectra of 1 is shown in Figure 1. At 0 °C, a single broad peak was observed in the hydride region. In contrast, two distinct peaks emerged at -30 °C, and as the temperature is decreased further, they turn into two sharp resonances with equal intensities. The average chemical shift of the two resonances observed at -30 °C (ca. δ -8.8) is considerably shifted from that of the single peak found at 0 °C (δ -14.7). This may suggest that an intrinsic structural change occurs between 0 and -30 °C. The behavior of complex 1 above 0 °C will be reported separately.⁷ The signal at δ -10.6, which reveals the clear couplings with

(6) (a) Saburi, M.; Aoyagi, K.; Takeuchi, H.; Takahashi, T.; Uchida, Y. Chem. Lett. 1990, 991. (b) Saburi, M.; Takeuchi, H.; Ogasawara, M.; Tsukahara, T.; Ishii, Y.; Ikariya, T.; Takahashi, T.; Uchida, Y. J. Organomet. Chem. 1992, 428, 155.

(7) Ogasawara, M.; Saburi, M. To be submitted.

four phosphorus nuclei (dq, $J_{\rm PH} = 25$, 77 Hz) at -90 °C, is ascribed to the terminal hydride (Ru-H), while the other at δ -7.0, showing no coupling with phosphorus at the same temperature, is assigned to the hydrogen in a C-H moiety interacting with the ruthenium center (agostic interaction). The ³¹P NMR spectrum of 1 at -90 °C showed the presence of four inequivalent phosphorus nuclei in 1,⁸ suggesting a nonsymmetrical structure of the complex. Consistent with this assumption, the ¹³C NMR spectrum of 1 has eight resonances in the methylene region.⁹ These NMR characteristics indicate that the agostic hydrogen occupies the coordination site adjacent to the terminal hydride.

There are two possible C–H hydrogens in a dppb ligand that interact with the ruthenium center in 1; an o-hydrogen of the phenyl group and a methylene proton. We assumed that the agostic hydrogen would present spin couplings with some other hydrogens such as the *m*-hydrogen or neighboring methylene protons. Thus, these two possibilities of agostic C-H could be distinguished on the basis of the chemical shift and the number of cross peaks in the ¹H-¹H COSY spectrum of 1. The ¹H-¹H COSY spectrum of 1 at -90 °C (Figure 2) reveals three distinct cross peaks between the agostic C-H resonance (δ -7.0) and the methylene signals of a coordinating dppb (ca. δ 0.8, 1.2, and 3.1). These facts strongly support that the agostic hydrogen should be ascribed to an α -methylene proton of dppb, which shows spin couplings with a geminal hydrogen and two inequivalent adjacent β -methylene hydrogens. It is demonstrated, therefore, that complex 1 involves the coordination of an α -methylene C-H moiety, not an ortho

⁽¹⁾ Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.

^{(2) (}a) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1. (b) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299.

^{(3) (}a) Kubas, G. J.; Ryan, R. R.; Wrobleski, D. A. J. Am. Chem. Soc. 1986, 108, 1339. (b) Sato, M.; Tatsumi, T.; Kodama, T.; Hidai, M.; Uchida, T.; Uchida, Y. J. Am. Chem. Soc. 1978, 100, 4447.

⁽⁴⁾ Wasserman, H. J.; Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1986, 108, 2294.

^{(5) (}a) Ashworth, T. V.; Singleton, E. J. Chem. Soc., Chem. Commun. 1976, 705. (b) Saburi, M.; Aoyagi, K.; Takahashi, T.; Uchida, Y. Chem. Lett. 1990, 601.

^{(8) &}lt;sup>31</sup>P{¹H} NMR of 1 at -90 °C [CD₂Cl₂, H₃PO₄ (85%) as external standard]: δ -13.4 (t, 1 P, J = 30 Hz), 37.9 (m, 2 P), 79.1 (t, 1 P, J = 10 Hz). This ³¹P NMR spectrum is explained as an ABMX pattern. (9) ¹³C NMR of 1 in the methylene region at -90 °C [CD₂Cl₂, CD₂Cl₂ (1 CD₂Cl₂), 10 Hz) (1 CD₂Cl₂) (1 CD₂Cl₂)

^{(9) &}lt;sup>18</sup>C NMR of 1 in the methylene region at -90 °C [CD₂Cl₂, CD₂Cl₂ (δ 53.7) as internal standard]: δ 22.3 ($J_{C-H} = 131$ Hz), 23.7 ($J_{C-H} = 128$ Hz), 24.2 ($J_{C-H} = 127$ Hz), 27.9 ($J_{C-H} = 119$ Hz), 30.0 ($J_{C-H} = 128$ Hz), 36.2 ($J_{C-H} = 127$ Hz), 40.0 ($J_{C-H} = 128$ Hz), 46.6 ($J_{C-H} = 129$ Hz).

Figure 2. ${}^{1}H{-}^{1}H COSY$ spectrum of $[RuH(dppb)_{2}]PF_{6}(1)$ at -90 °C in $CD_{2}Cl_{2}$ at 400 MHz.

Figure 3. Two possible structures for the complex 1 at -90 °C.

Π

phenyl proton, of dppb at the sixth coordination site of the ruthenium center to give rise to the agostic interaction at low temperatures. The two possible structures I and II for complex 1 are shown in Figure 3.

Among the ¹³C NMR signals of the CH₂ groups of 1,⁹ the resonance at δ 27.9 showed a smaller value of $J_{\rm CH}$ and was assigned to the signal of the agostic carbon, consistent with the coordination of the methylene C-H group in 1. Although two hydrogens of each methylene group of dppb are inequivalent in either structure I or II, the protoncoupled ¹³C NMR spectrum of 1 reveals eight pseudotriplets, instead of eight dd signals, in the methylene region. This is probably due to the broadening of the signals resulting from the coupling with ³¹P nuclei and/or the similarity between the two geminal J_{CH} values. It is noteworthy that, in the ¹³C NMR spectrum of 1 obtained under selective decoupling at the agostic hydrogen (δ -7.0), only the one resonance at δ 27.9 turned into a doublet. This observation confirms the above-mentioned assignment.

All these NMR characteristics were observed for the tetraphenylborate analogue $[RuH(dppb)_2]BPh_4$. This fact indicates that the anions, PF_6^- in 1 and BPh_4^- in $[RuH(dppb)_2]BPh_4$, have no interaction with the ruthenium center.

Similar ¹H and ³¹P NMR characteristics were observed for the diop complex 2. As expected, the ¹H-¹H COSY spectrum of 2 showed two cross peaks between the agostic C-H signal (δ -4.1) and the aliphatic signals of a coordi-

Figure 4. ¹H NMR (400-MHz) spectra of 1 in the high field region at -45 °C in CD₂Cl₂: (a) nonirradiated conditions; (b) irradiated at the agostic hydrogen (ca. δ -7); (c) irradiated at the α -hydrogen in the methylene group (ca. δ 1).

nating diop ligand (ca. δ 3.1 and 3.4). In contrast, no agostic interaction could be detected for analogous five-coordinate complexes of dppe, ^{5a,b,10} dppp, ^{5a,b,11} dpbp, ¹² and binap. ^{6b,13} In the case of the dppe and dppp complexes, the smaller size of the chelate rings prevents a C-H bond in a methylene unit from coordinating to the ruthenium center, whereas dppb and diop ligands provide a flexible sevenmembered chelate upon coordination. As to the complexes of dpbp and binap, the ligands have no aliphatic C-H groups in themselves, although these diphosphines form seven-membered chelate rings.

As shown in Figure 1, the Ru-H resonance no longer showed the coupling with phosphorus atoms above -60 °C and coalesced with the signal of the terminal hydride at -30 °C. This suggests a possibility of an exchange between agostic hydrogen and the hydride. Indeed, a spin saturation transfer was observed among the Ru-H, C-H (agostic at δ -7.0), and C-H (methylene at δ ca. 1) groups. At -45 °C, the signal at ca. δ -12 (Ru-H) almost disappeared upon irradiation of the agostic hydrogen at ca. δ -7. Further, the irradiation of the α -hydrogen in the methylene group at ca. δ 1 resulted in the complete disappearance of the signal due to the agostic C-H group and a considerable reduction of signal intensity for the Ru-H resonance (see Figure 4). These observations indicate the occurrence of rapid hydrogen exchanges among the Ru-H, agostic C-H, and noncoordinating methylene protons of dppb ligands even at -45 °C. The exchange rate between the agostic hydrogen and the terminal hydride was measured in the temperature range -55 to -65 °C by the spin saturation transfer method.^{14,15} It was revealed that under these temperatures, the exchange proceeds once every 2-3 s.

The hydrogen exchanges between the terminal hydride and the C–H groups of the ligand in some transition metal

⁽¹⁰⁾ dppe = 1,2-bis(diphenylphosphino)ethane.

⁽¹¹⁾ dppp = 1,3-bis(diphenylphosphino)propane

^{(12) (}a) dpbp = 2,2'-bis(diphenylphosphino)-1,1'-biphenyl. (b) Ogasawara, M.; Saburi, M. Unpublished results.

^{(13) (}a) binap = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl. (b) Tsukahara, T.; Kawano, H.; Ishii, Y.; Takahashi, T.; Saburi, M.; Uchida, Y.; Akutagawa, S. Chem. Lett. 1988, 2055.

⁽¹⁴⁾ Sandström, J. Dynamic NMR Spectroscopy; Academic: New York, 1982.

Communications

complexes were observed in several cases using deuterium as the probe.^{2b,16} Crabtree and co-workers reported either dissociative or nondissociative interaction of a C-H moiety in quinoline derivatives with iridium complexes and suggested the relationship between these hydrogen exchanges and agostic interactions.¹⁷ However, there has been no direct evidence of the agostic interaction participating in C-H activation. Our results are the first example of the observation of the intramolecular hydrogen exchange involving the agostic hydrogen. **Experimental Section.** the following complexes were prepared by literature methods: $[RuH(dppb)_2]PF_{6}$,^{5a} $[RuH(diop)_2]PF_{6}$.^{6b} Preparation of NMR samples was carried out under argon (not dinitrogen) atmosphere using air-free CD₂Cl₂ as a solvent. ¹H (400-MHz), ¹³C (101-MHz), and ³¹P (162-MHz) NMR spectra were recorded on a JEOL JNM-GX400 spectrometer. The T_1 experiments were performed with a 180°- τ -90° pulse sequence by the inversion-recovery method.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (No. 03453098). We are grateful to Dr. Makoto Koike for helpful discussions concerning NMR.

Supplementary Material Available: ¹³C NMR spectra of 1 (¹H coupled, decoupled, and selective decoupled with the agostic hydrogen), variable temperature ¹H NMR spectra of 2, ¹H-¹H COSY spectrum of 2, and ³¹P NMR data for 2 (2 pages). Ordering information is given on any current masthead page.

OM920761D

⁽¹⁵⁾ The exchange rate k between these two resonances was calculated from T_1 (of terminal hydride), I (signal intensity of Ru-H under the nonirradiated conditions), and I' (signal intensity of Ru-H under the conditions irradiated at agostic resonance) according to the following equation; $1/k = T_1I'(I-I')$. At -55 °C, $T_1 = 120$ ms, k = 0.67 s⁻¹; at -60 °C, $T_1 = 147$ ms, k = 0.37 s⁻¹; at -65 °C, $T_1 = 171$ ms, k = 0.29 s⁻¹. (16) General reviews of C-H activation in a transition metal complex:

⁽¹⁶⁾ General reviews of C-H activation in a transition metal complex:
(a) Parshall, G. W. Acc. Chem. Res. 1975, 8, 113.
(b) Webster, D. E. Adv. Organomet. Chem. 1977, 15, 147.
(c) Crabtree, R. H. Chem. Rev. 1985, 85, 245.
(d) Ryabov, A. D. Chem. Rev. 1990, 90, 403.

 ^{(17) (}a) Crabtree, R. H.; Holt, E. M.; Lavin, M.; Morehouse, S. M.
 Inorg. Chem. 1985, 24, 1986. (b) Lavin, M.; Holt, E. M.; Crabtree, R. H.
 Organometallics 1989, 8, 99.