Synthesis, Characterization, and Reactivity of Alkoxo Complexes Containing $Cp^*M(NO)$ Groups $(M = Mo, W)^1$

Peter Legzdins,* Penelope J. Lundmark, and Steven J. Rettig

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Received February 19, 1993®

Stepwise treatment of $Cp^*M(NO)Cl_2$ [$Cp^* = \eta^5 \cdot C_5Me_5$; M = Mo, W] in THF at low temperatures with 2 equiv of alkoxide anion affords first Cp*M(NO)(OR)Cl complexes and then the bis-(alkoxo) compounds $Cp*M(NO)(OR)_2$ [M = Mo, R = CMe₃; M = W, R = CMe₃, Ph, CH₂Ph], both types of complexes being isolable in reasonable yields. Alkoxo alkyl complexes are preparable from the corresponding alkyl chloro precursors by similar metathesis process. Single-crystal X-ray crystallographic analyses have been performed on $Cp*W(NO)(OCMe_3)_2$ and Cp*W(NO)-(OCH₂Ph)₂ as representative members of the bis(alkoxide) class of compounds. Crystal data for Cp*W(NO)(OCMe₃)₂ (2): a = 23.627(3) Å, b = 15.862(2) Å, c = 11.009(3) Å, V = 4125.7(11)Å³, Z = 8, space group Pbca (No. 61); $R_F = 0.032$, $R_{wF} = 0.035$ for 2473 reflections with $I \ge 3\sigma(I)$. Crystal data for Cp*W(NO)(CH₂Ph)₂ (4): a = 8.758(2) Å, b = 15.7617(13) Å, c = 16.352(2) Å, V = 2257.3(8) Å³, Z = 4, space group *Pnma* (No. 62); $R_F = 0.031$, $R_{wF} = 0.034$ for 1807 reflections with $I \ge 3\sigma(I)$. Complexes 2 and 4 both have normal three-legged piano-stool molecular structures whose intramolecular dimensions are consistent with the existence of some degree of W-O multiple bonding. The IR spectra and electrochemical properties of both types of alkoxide complexes indicate that their metal centers are more electron-rich than those in comparable $Cp'M(NO)R_2$ complexes [R = alkyl, aryl; $Cp' = Cp(\eta^5-C_5H_5)$, Cp^* ; M = Mo, W]. Representative reactions of selected complexes with O_2 , H_2O , CNCMe₃, and HCl are presented. The outcomes of these reactions establish the relative Lewis acidities of these complexes as well as the polarities of their M-R and M-OR linkages.

Introduction

Previous work in these laboratories has established that the monomeric, 16-valence-electron $Cp'M(NO)R_2$ complexes $[Cp' = Cp(\eta^5 - C_5H_5), Cp^*(\eta^5 - C_5Me_5); M = Mo, W;$ R = alkyl, aryl] have varied and interesting chemistries.² A logical extension of this work is the investigation of related compounds containing metal-heteroatom linkages such as metal-alkoxide or metal-amide in place of metalalkyl or -aryl linkages. These complexes should possess greater metal-ligand bond polarity than their dialkyl or diaryl congeners and thus should exhibit increased reactivity with polar substrates. Furthermore, they should be weaker Lewis acids at the metal centers than the Cp'M- $(NO)R_2$ systems since the electronic requirements of the metal centers may be satisfied to some extent by the existence of a degree of M-O or M-N multiple bonding. Consequently, we have decided to effect this extension of our previous research efforts, and in this paper we describe the results of our investigations with the oxygen-containing systems. Specifically, this paper summarizes the synthesis, characterization, and some characteristic chemistry of representative alkoxo and bis(alkoxo) complexes having the compositions Cp*M(NO)(OR)Cl, Cp*M(NO)(R')(OR), and $Cp*M(NO)(OR)_2$ (R,R' = alkyl or aryl). Our related studies with isoelectronic amido complexes have been presented in a separate paper.³

Experimental Section

All reactions and subsequent manipulations involving organometallic reagents were performed under anhydrous conditions in an atmosphere of prepurified dinitrogen. General procedures routinely employed in these laboratories have been outlined elsewhere.⁴ The reagents Cp*M(NO)Cl₂,⁵ Cp*M(NO)(CH₂Ph)-Cl,⁶ and (Me₃SiCH₂)₂Mg·X(dioxane)⁶ were synthesized by published procedures. [LiOCMe₃]_x was prepared by reaction of *n*-BuLi with HOCMe₃ in diethyl ether,^{7,8} and NaOR [R = Ph, CH₂Ph, Me] reagents were prepared by treating sodium metal in THF with the appropriate alcohol.⁸ CNCMe₃ (Aldrich) and O₂ (Medigas, 99.5%) were used without any further purification.

The numbering scheme, colors, yields and elemental analysis data for complexes 1-13 are collected in Table I. The mass spectral and IR data for these compounds are compiled in Table II, and their ¹H and ¹³C{¹H} NMR data are presented in Table III.

Preparation of $Cp^*M(NO)(OR)_2$ Complexes [M = Mo, R = CMe₃ (1); M = W, R = CMe₃ (2), Ph (3), CH₂Ph (4)]. All these complexes were synthesized similarly. The preparation of Cp*W(NO)(OCMe₃)₂ (2) is described as a representative example.

A THF solution (20 mL) of LiOCMe₃ (0.58 g, 7.2 mmol) was added slowly via an addition funnel to a stirred THF solution

[•] Abstract published in Advance ACS Abstracts, August 15, 1993.

⁽¹⁾ Presented in part at the 73rd Canadian Chemical Conference, Halifax, Nova Scotia, Canada, July 1990 (see Abstract 637), and at the 201st National Meeting of the American Chemical Society, Atlanta, GA, April 1991 (see Abstract INOR 127).

⁽²⁾ Legzdins, P.; Veltheer, J. E. Acc. Chem. Res. 1993, 26, 41; see also references cited therein.

⁽³⁾ Legzdins, P.; Rettig, S. J.; Ross, K. J. Organometallics 1993, 12, 2103.

⁽⁴⁾ Dryden, N. H.; Legzdins, P.; Rettig, S. J.; Veltheer, J. E. Organometallics 1992, 11, 2583.
(5) Dryden, N. H.; Legzdins, P.; Batchelor, R. J.; Einstein, F. W. B.

⁽⁵⁾ Dryden, N. H.; Legzdins, P.; Batchelor, R. J.; Einstein, F. W. B. Organometallics 1991, 10, 2077.

⁽⁶⁾ Dryden, N. H.; Legzdins, P.; Trotter, J.; Yee, V. C. Organometallics 1991, 10, 2857.

 ⁽⁷⁾ Cetinkaya, B.; Gümrükcü, I.; Lappert, M. F.; Atwood, J. L.; Shakir,
 R. J. Am. Chem. Soc. 1980, 102, 2086.

⁽⁸⁾ The compositions of the solids with respect to their active alkoxide equivalents were established by hydrolysis of weighed solid samples and titration of the resulting solutions with 0.100 N HCl using phenolphthalein as the indicator.

			ana	al., % found (calcd)	
complex	compd. no.	color (yield, %)	С	Н	N
Cp*Mo(NO)(OCMe ₃) ₂	1	orange (67)	53.31 (53.07)	8.17 (8.16)	3.35 (3.44)
$Cp^*W(NO)(OCMe_3)_2$	2	orange (32)	43.59 (43.65)	6.66 (6.72)	2.84 (2.83)
$Cp^*W(NO)(OPh)_2$	3	red (20)	49.23 (49.36)	4.80 (4.71)	2.50 (2.62)
$Cp^*W(NO)(OCH_2Ph)_2$	4	red (22)	51.06 (51.17)	5.24 (5.19)	2.45 (2.49)
Cp*Mo(NO)(OCMe ₃)Cl	5	purple (25)	45.09 (45.48)	6.45 (6.54)	3.78 (3.78)
Cp*W(NO)(OCMe ₃)Cl	6	purple-black (37)	36.81 (36.74)	5.40 (5.29)	3.00 (3.06)
Cp*W(NO)(OPh)Cl	7	red-black (44)	40.21 (40.23)	4.40 (4.22)	2.70 (2.93)
$Cp^*Mo(NO)(CH_2Ph)(OCMe_3)$	8	red (56)	59.49 (59.29)	7.52 (7.34)	3.31 (3.29)
$Cp^*Mo(NO)(CH_2Ph)(OPh)$	9	red (39)	62.22 (62.02)	6.03 (6.11)	3.29 (3.14)
$Cp^*W(NO)(CH_2Ph)(OCMe_3)$	10	red (45)	49.05 (49.14)	6.05 (6.09)	2.70 (2.73)
$Cp^*W(NO)(CH_2SiMe_3)(OCMe_3)$	11	red oil (≈30)	41.41 (42.44) ^a	6.73 (6.92)	2.87 (2.75)
$Cp^*W(NO)(CH_2SiMe_3)(OPh)$	12	purple (66)	45.58 (45.38)	5.89 (5.90)	2.57 (2.65)
$Cp^*W(NO)(CH_2SiMe_3)(OMe)$	13	red (26)	38.68 (38.55)	6.29 (6.25)	2.90 (3.00)

^a The elemental analysis of C is expected to be low because of incomplete burning. Addition of V_2O_5 to this oil did not correct this problem.

Table II. Mass Spectral and Infrared Data for Complexes

		1-15		
			IR: <i>v</i> _{NO} , cm ⁻¹	
compd. no.	MS, m/z^a	temp, ^b °C	THF	Nujol
1	409 [P+]	80	1589	1601
2	495 [P+]	80	1557	1550
3	535 [P+]	100	1 593	1566
4	563 [P+]	80	1556	1557
5	371 [P+]	100	1622	1613
6	457 [P+]	100	1593	1578
7	477 [P+]	80	1595	1589
8	427 [P+]	120	1601, 1593 ^{c,e}	1596, 1586 ^e
9	447 [P+]	120	1613, 1588 ^{c,e}	1595, 1578e
10	513 [P+]	100	1568	1593, 1557e
11	509 [P+]	120	1572 ^d	1563
12	529 [P+]	100	1597, 1586 ^{d,e}	1584, 1545e
13	467 [P+]	80	1584 ^d	1578

^a m/z values are for the highest intensity peak of the calculated isotopic cluster, i.e. ⁹⁸Mo and ¹⁸⁴W. ^b Probe temperatures. ^c Et₂O. ^d pentane. ^e ν_{C-C} are also observed in this region.

(20 mL) of Cp*W(NO)Cl₂ (1.5 g, 3.6 mmol), and the progress of the reaction was monitored by IR spectroscopy. The reaction proceeded in a straightforward manner with the initial diminution of the starting nitrosyl absorption band at 1630 cm⁻¹ occurring concomitantly with the appearance and growth of a new band at 1593 cm⁻¹. As the addition of LiOCMe₃ continued, a second nitrosyl absorption band at 1557 cm⁻¹ appeared at the expense of the band at 1593 cm⁻¹. During this time the reaction mixture changed from green to purple to deep orange-red. The solvent was removed from the final reaction mixture in vacuo, and the residue was extracted with hexanes $(2 \times 50 \text{ mL})$ which were filtered through Celite $(3 \times 6 \text{ cm})$ supported on a sintered-glass frit. The filtrate was concentrated in vacuo until incipient crystallization, and the mixture was then cooled at -30 °C overnight. The orange crystals of Cp*W(NO)(OCMe₃)₂ (0.57 g, 32% yield) thus formed were isolated by removal of the supernatant solution by cannulation and drying of the crystals in vacuo.

Preparation of Cp*M(NO)(OR)Cl Complexes $[M = Mo, R = CMe_3(5); M = W, R = CMe_3(6), Ph(7)]$. Since the synthetic approaches to these complexes are similar, their syntheses are presented in the next paragraph in a generalized manner.

Cp*M(NO)Cl₂ (1.00 mmol) and the appropriate alkoxide salt (1.00 mmol) were intimately mixed in a Schlenk tube contained in a glovebox. The tube was removed from the box, and THF (25 mL) was vacuum-transferred onto the solids at -196 °C. The stirred reaction mixture was then allowed to warm slowly to 0 °C, whereupon the color changed from red (M = Mo) or green (M = W) to purple and ν_{NO} diminished by approximately 35 cm⁻¹ in the mixture's IR spectrum. The solvent was removed in vacuo, the purple residues were extracted with pentane, and the extracts were filtered through Celite (2 × 5 cm) supported on a sinteredglass frit. The filtrate was concentrated in vacuo until the first signs of crystallization were evident. Additional crystallization occurred upon storing these concentrated solutions at -30 °C overnight. Finally, the desired alkoxo chloro complexes were isolated by removal of the supernatant solution by cannulation and drying of the remaining black to purple needlelike crystals in vacuo.

Preparation of $Cp^*M(NO)(CH_2Ph)(OR)$ Complexes [M = Mo, R = CMe₃ (8), Ph (9); M = W, R = CMe₃ (10)]. Again, all of these complexes were prepared similarly. The synthesis of Cp*W(NO)(CH₂Ph)(OCMe₃) (10) is described in detail as a representative example.

In a Schlenk tube contained in a glovebox, $Cp^*W(NO)(CH_2-Ph)Cl (0.31 g, 0.65 mmol)$ and $LiOCMe_3 (0.050 g, 0.65 mmol)$ were intimately mixed. The tube was removed from the glovebox, and $Et_2O (20 mL)$ was transferred to the tube via syringe. The orange-red reaction mixture was stirred overnight with no apparent color change occurring. The solvent was then removed in vacuo, the remaining red residue was extracted with hexanes $(2 \times 20 mL)$, and the extracts were filtered through Celite $(2 \times 5 m)$ supported on a medium-porosity glass frit. The filtered solution was concentrated and cooled at -30 °C overnight to induce the precipitation of $Cp^*W(NO)(CH_2Ph)(OCMe_3) (0.33 g, 45\% yield)$ as red needles, which were collected by filtration.

Preparation of Cp*W(NO)(CH₂SiMe₃)(OR) Complexes [**R** = CMe₃ (11), Ph (12), Me (13)]. A THF solution (30 mL) of Cp*W(NO)(CH₂SiMe₃)Cl⁹ was generated from Cp*W(NO)Cl₂ (1.3 g, 3.0 mmol) and (Me₃SiCH₂)₂Mg·X(dioxane) (3.0 mmol CH₂SiMe₃⁻) in a Schlenk tube.¹⁰ The THF was removed from the blue reaction mixture in vacuo, and the blue residue was extracted with pentane (2 × 30 mL). The extracts were filtered through Celite (2 × 5 cm) supported on a sintered-glass frit. The filtrate was divided equally into three Schlenk tubes.

To each of the blue pentane solutions ($\nu_{NO} = 1616 \text{ cm}^{-1}$) was added the appropriate alkoxide salt (LiOCMe₃, NaOPh, or NaOMe; 1.0 mmol each, slight excess). The mixtures were stirred for 2 h and became red for R = CMe₃ ($\nu_{NO} = 1572 \text{ cm}^{-1}$) and Me ($\nu_{NO} = 1584 \text{ cm}^{-1}$) and purple for R = Ph($\nu_{NO} = 1597, 1586 \text{ cm}^{-1}$). The final mixtures were filtered through Celite (2 × 5 cm) supported on sintered-glass frits. The filtered solutions were then concentrated and cooled at -30 °C overnight to induce the deposition of the desired organometallic product complexes. Cp*W(NO)(CH₂SiMe₃)(OCMe₃) (\approx 30% yield) was thus isolated as a red oil, whereas Cp*W(NO)(CH₂SiMe₃)(OPh) (0.35 g, 66% yield) and Cp*W(NO)(CH₂SiMe₃)(OMe) (0.12g, 26% yield) were obtained as purple and red crystals, respectively.

Reactions of $Cp*W(NO)(OCMe_3)_2$ (2), $Cp*W(NO)(OCMe_3)Cl$ (6), $Cp*W(NO)(CH_2Ph)(OCMe_3)$ (10), and $Cp*W(NO)(CH_2SiMe_3)(OPh)$ (12) with HCl. Et₂O solutions of complexes 2, 6, 10, and 12 were treated with 1 equiv of HCl (1.4 M in Et₂O). The workup of the final reaction mixtures involved

⁽⁹⁾ Debad, J. D.; Legzdins, P.; Batchelor, R. J.; Einstein, F. W. B. Organometallics 1992, 11, 6.

⁽¹⁰⁾ Debad, J. D.; Legzdins, P.; Batchelor, R. J.; Einstein, F. W. B. Organometallics 1993, 12, 2094.

Table III. ¹H and ¹³C{¹H} NMR Data for Complexes 1-13 in C₆D₆

	+00	
omnd		BOUHLNMP.
ompa		
no.	'Η NMR: δ, ppm	ð, ppm
	102 (1511 ((011))	11(2(0)011))
1	1./3 (s, 15H, C ₅ (CH ₃) ₅)	110.3 (C3(CH3)5)
	1.40 (s, 18H, $OC(CH_3)_3$)	$81.3 (OC(CH_3)_3)$
		33.5 (OC(CH))
		10.0 (C (CH))
_		$10.0 (C_{5}(CH_{3})_{5})$
2	1.80 (s, 15H, $C_5(CH_3)_5$)	$114.6 (C_5(CH_3)_5)$
	$1.40 (s 18H OC(CH_{2})_{2})$	813 (OC(CHJ))
	1.40 (s, 1011, OC(CI13)3)	
		$33.4(OC(CH_3)_3)$
		$10.0 (C_{5}(CH_{3})_{5})$
1	7.30-6.85 (m. 10H. OC(H))	
5	(0.00, 0.0	
	$1.00(s, 15H, C_5(CH_3)_5)$	
4	7.00–7.60 (m, 10H, OCH ₂ C ₆ H ₅)	142.7. 129.1. 128.6.
	SAS (e AH OCH CH)	127 5 (OCH-C-H-)
		127.5 (OCH2C6115)
	1.60 (s, 15H, $C_5(CH_3)_5$)	114.7 (C ₅ (CH ₃) ₅)
		84.2 (OCH2C4H2)
		0.4/(C/(CH))
_		9.4 (CS(CH3)5)
- 5	$1.67 (s, 15H, C_5(CH_3)_5)$	$118.4 (C_5(CH_3)_5)$
	$1.47 (s. 9H OC(CH_{2}))$	32.8 (00)(04))4
	1.47(3, 311, OC(OII3)3)	52.8 (OC(CII3)3)*
		$10.1 (C_5(CH_3)_5)$
6	1.71 (s. 15H, C ₆ (CH ₂) ₆)	$116.0 (C_4 (CH_3)_4)$
•	1 42 (- 011 0C(CH))	
	1.42 (S, 9H, OC(CH ₃) ₃)	$80.0 (UC(CH_3)_3)$
		$32.7 (OC(CH_3)_3)$
		99(C.(CH.))
-		9.9 (Cs(C113)s)
1	$7.22-0.85 (m, 5H, OC_6H_5)$	129.6, 123.7, 122.5,
		118.9 (OC ₆ H ₅)
	1.65 (n 15H C.(CH.).)	1167 (C.(CH.).)
	$1.05(s, 15n, C_{5}(Cn_{3})_{5})$	110.7 (Cs(Ch3)5)
		9.7 (C ₅ (CH ₃) ₅)
8	7.42 (d. 2H. ρ -H. ² Juu = 8.4 Hz)	147.3.129.8.128.4
•	$7.15 (+.211) + H.2L_{m} = 12.0 Hz)$	124 2 (CH CH)
	$7.13(1, 2\Pi, m-\Pi, ^{2}J_{\rm HH} = 12.0 {\rm Hz})$	$124.2 (CH_2C_6H_5)$
	6.98 (t, 1H, p -H, $^{2}J_{HH} = 10.2$ Hz)	$112.8 (C_5(CH_3)_5)$
	$2.86 (d. 1H. CH. CH. ^{2}J_{HH} = 8.4 Hz)$	83.0 (OC(CH ₂) ₂)
	$2.00 (d, 111, 011_{011}, 0_{HH} = 0.4 11_{01})$	
	2.77 (d, 1H, CH _a CH _b , $J_{HH} = 8.4$ HZ)	$50.0(CH_2C_6H_5)$
	1.59 (s, 15H, $C_5(CH_3)_5$)	$32.0 (OC(CH_3)_3)$
	1 10 (OH OC CHAN)	97 (C. (CH.).)
•	7.10(3, 711, 00(013)3)	
9	7.3-0.8 (m, 10H, Ar H)	16/.6, 134.1, 130.2,
	$3.42 (d, CH_{a}CH_{b}, {}^{2}J_{HH} = 6.0 \text{ Hz})$	128.9, 128.8, 119.9,
	2.59 (d 1H CH CH 2 Jun = 6.0 Hz)	1186 (Ar C)
	$1.69 (-1.611 \cap (OU))$	
	$1.58(s, 15H, C_5(CH_3)_5)$	$112.3 (C_5(CH_3)_5)$
		53.9 (CH ₂ C ₄ H ₄)
		98(C.(CH.).)
10		J.0 (C3(C113)5)
10	$/.4/(d, 2H, 0-H, J_{HH} = 8./HZ)$	147.4, 129.6, 128.0,
	7.20 (t, 2H, m -H, $^{2}J_{HH} = 7.5$ Hz)	124.0 (CH ₂ C ₆ H ₅)
	$6.98(t)1H'n_H'2L_{m} = 7.2 H_{7})$	1118 (C.(CH.).)
	0.36(1, 11, p-11, -5)	111.0 (CS(CH3)5)
	2.76 (d, 1H, CH_aCH_b , $J_{HH} = 11.2$ Hz)	83.7 (OC(CH ₃) ₃)
	2.64 (d. 1H. CH. CH. $^{2}J_{WW} = 11.2 Hz$)	$46.0 (CH_2C_4H_4)$
	$1(2(a, 15U \cap (CU)))$	21.9(OC(CII))
	$1.02(8, 15H, C_5(CH_3)_5)$	51.8 (OC(CH3)3)
	$1.08 (s, 9H, OC(CH_3)_3)$	$9.6 (C_5(CH_3)_5)$
11	$1.65 (s, 15H, C_{\ell}(CH_{0}))$	112.5 (C(CH))
	$1 \downarrow 0 \downarrow $	
	1.40 (s, 9H, $OC(CH_3)_3$)	$83.2(OC(CH_3)_3)$
	0.81 (d, 1H, CH _a CH _b , ${}^{2}J_{HH} = 12.9$ Hz)	$33.0 (OC(CH_3)_3)$
	0 49 (e OH SICH)	27 4 (CH)
	-0.24 (d, 1H, CH _a CH _b ,	9.9 (C ₅ (CH ₃) ₅)
	$^{2}J_{HH} = 12.9 \text{ Hz}$	
	- 1111	$3.1(S(CH_{1}))$
		5.1 (SI(CI13)3)
12	7.28 (d, 2H, o -H, $J_{HH} = 7.5$ Hz)	129.5, 123.0, 118.2,
	7.18 (t. 2H, m -H, $^{2}J_{HH} = 8.4$ Hz)	$100.3 (OC_{e}H_{s})$
	$6.94 (+ 1U - U^2) = 6.0 U_{-})$	1110(C(CH))
	$(1, 1\pi, p - \pi, -3 HH = 0.3 \pi Z)$	111.7 (C5(CT3)5)
	1.60 (s, 15H, $C_5(CH_3)_5$)	44.4 (CH ₂)
	$1.56 (d. 2H, CH, H_{1}, 2J_{mrr} = 11.4 H_7)$	9.9 (C. (CH.))
	1.00 (3, 211, 0.13 gird), 0 HH = 11.7 112)	
	1.59 ($u, 2n, Cn_an_b, J_{HH} = 11.4 HZ$)	$2.0(SI(CH_3)_3)$
	$0.25 (s, 9H, Si(CH_3)_3)$	
12	470 (13H OCH)	1117 (C(CH_))
10	150 (0, 154 (0 (04)))	
	1.37 (3, 130, 05(0/13)5)	/0.4 (OCH3)
	0.92 (d, 1H, CH _a CH _b , $J_{HH} = 12.0$ Hz)	35.5 (CH ₂)
	0.84 (d, 1H, CH _a CH _b , ² J _{HH} = 12.0 Hz)	$9.5 (C_{5}(CH_{2})_{5})$
	$0.35 (s \text{ QH Si}(CH_{a}))$	2.2 (S(CH.).)
	0.00 (0, 711, 01(0113)3)	2.2 (OI(CII3)3)

^a The resonance attributable to $OC(CH_3)_3$ was not observed.

removing the solvent in vacuo, extracting the residues with Et₂O, pentane, or CH₂Cl₂, and cooling the combined extracts at -30 °C to obtain crystalline precipitates (80–90% yields) of the product complexes. Comparisons with authentic spectral data confirmed that the organometallic products of these reactions were Cp*W-(NO)(OCMe₃)Cl, Cp*W(NO)Cl₂,⁵ Cp*W(NO)(CH₂Ph)Cl,⁶ and Cp*W(NO)(CH₂SiMe₃)Cl,⁹ respectively.

Reaction of Cp*Mo(NO)(CH₂Ph)(OCMe₃) (8) with O₂. Treatment of complex 8 in Et₂O (10 mL) with O₂ (1 atm) resulted in a color change from purple to yellow over the course of several hours at room temperature. The solvent was removed in vacuo, the residue was extracted with Et₂O (4×20 mL), and the extracts were filtered through Celite (2×5 cm). The filtrate was concentrated in vacuo and cooled at -30 °C overnight to induce the precipitation of small amounts of [Cp*Mo(O)₂]₂(μ -O).¹¹

Reactions of Cp*W(NO)(CH₂Ph)(OCMe₃) (10) and Cp*W-(NO)(CH₂SiMe₃)(OPh) (12) with O₂ or H₂O. Stirred Et₂O solutions (10 mL) of complexes 10 and 12 (1 mmol each) were exposed to O₂ (1 atm) or H₂O (50 μ L). The colors of the reaction mixtures immediately turned from red (10) or purple (12) to yellow. The final reaction mixtures were taken to dryness in vacuo, the residues were extracted with Et₂O (2 × 10 mL), and the extracts were filtered through Celite (2 × 5 cm). The filtrates were concentrated in vacuo and cooled at -30 °C to induce the deposition of colorless crystals of the dioxo alkyl complexes Cp*W-(O)₂(CH₂Ph) and Cp*W(O)₂(CH₂SiMe₃),¹² respectively, in virtually quantitative yields.

Reaction of Cp*Mo(NO)(OCMe₃)Cl (5) with H₂O. A solution of 5 (0.33 g, 1.0 mmol) in Et₂O (20 mL) was treated with an excess of deaerated H₂O (50μ L). The stirred reaction mixture turned red-black immediately and was stirred for a further 2.5 h at room temperature. After this time, the mixture was taken to dryness in vacuo, and the residue was redissolved in Et₂O (20 mL). The black Et₂O solution was filtered through Celite (2 × 5 cm) supported on a medium-porosity frit. Concentration of this filtrate and cooling at -30 °C afforded black crystals (0.11 g, 35% yield) of a complex formulated as [Cp*Mo(NO)(OH)-Cl]₂.

Anal. Calcd for $C_{10}H_{16}NO_2ClMo$: C, 38.30; H, 5.14; N, 4.47. Found: C, 38.57; H, 5.13; N, 4.50. IR (Nujol mull): ν_{OH} 3642, 3631; ν_{NO} 1613 br cm⁻¹. ¹H NMR (C_6D_6): δ 1.75 (s, 15H, C_5 -(CH_3)₅), 1.63 (s, 1H, OH). ¹³C{¹H} NMR (C_6D_6): δ 119.0 (C_5 -(CH_3)₅), 10.2 ($C_5(CH_3)_5$). Low-resolution mass spectrum (probe temperature 80 °C): m/z 608 [P⁺ – H₂O].

Reaction of Cp*W(NO)(OCMe₃)Cl (6) with H₂O. A stirred Et₂O solution (15 mL) of 6 (0.23 g, 0.50 mmol) was treated with an excess of deaerated H₂O (50 μ L). The reaction mixture turned brown immediately. The brown mixture was taken to dryness in vacuo, and Et₂O (20 mL) was added to the brown residue. The resulting mixture was filtered through Celite (2 × 5 cm) supported on a glass frit. The filtrate was concentrated under reduced pressure to incipient crystallization and was cooled to -30 °C overnight to obtain brown crystals (0.070 g, 35% yield) of a solid formulated as [Cp*W(NO)(OH)Cl]₂, which were isolated by filtration.

Anal. Calcd for C₁₀H₁₆NO₂ClW: C, 29.91; H, 4.02; N, 3.49. Found: C, 29.72; H, 4.20; N, 3.30. IR (Nujol mull): ν_{OH} 3641, 3626; ν_{NO} 1588 br cm⁻¹. ¹H NMR (C₆D₆): δ 1.94 (s, 15H, C₅-(CH₃)₅), 1.75 (s, 15H, C₅(CH₃)₅), 1.44 (s, 2H, OH). Low-resolution mass spectrum (probe temperature 120 °C): m/z 768 [P⁺ - Cl].

Reaction of Cp*W(NO)(CH₂SiMe₃)(OPh) (12) with CNC-Me₃. Complex 12 (0.10 g, 0.19 mmol) was dissolved in CNCMe₃ (0.20 mL, excess). The purple solid turned yellow as it dissolved. The excess CNCMe₃ was then removed in vacuo to afford a yellow oil. This oil was dissolved in pentane (20 mL), and the resulting yellow solution was filtered through Celite (2×5 cm). The yellow filtrates were collected and concentrated in vacuo. Maintaining the concentrated solution at -30 °C resulted in the deposition of 0.092 g (80% yield) of Cp*W(NO)(η^2 -C{NCMe₃}CH₂SiMe₃)-(OPh) as yellow nuggets.

Anal. Calcd for C₂₅H₄₀N₂O₂SiW₂: C, 49.02; H, 6.58; N, 4.57. Found: C, 49.19; H, 6.59; N, 4.49. IR (Nujol mull): ν_{CN} 1670, ν_{NO} 1585 cm⁻¹. ¹H NMR (C₆D₆): δ 7.32–7.24 (m, 4H, Ar H), 6.87–6.74 (m, 1H, Ar H), 2.94 (d, 2H, J_{HH} = 11 Hz, CH_AH_B), 2.45 (d, 2H,

^{(11) (}a) Faller, J. W.; Ma, Y. J. Organomet. Chem. 1988, 340, 59. (b) Legzdins, P.; Lundmark, P. J.; Phillips, E. C.; Rettig, S. J.; Veltheer, J. E. Organometallics 1992, 11, 2991.

⁽¹²⁾ Legzdins, P.; Phillips, E. C.; Sánchez, L. Organometallics 1989, 8, 940.

Table IV. Crystallographic and Experimental Data⁴ for the Complexes Cp⁺W(NO)(OCMe₃)₂ (2) and Cp⁺W(NO)(OCH₂Ph)₂ (4)

complex	2	4
color	orange	orange
formula	C ₁₈ H ₃₃ NO ₃ W	$C_{24}H_{29}NO_3W$
fw	495.31	563.35
crystal system	orthorhombic	orthorhombic
space group	Pbca (No. 61)	<i>Pnma</i> (No. 62)
a, A	23.627(3)	8.758(2)
b, Å	15.862(2)	15.7617(13)
c, Å	11.009(3)	16.352(2)
V, Å ³	4125.7(11)	2257.3(8)
Ź	8	4
$d_{\rm calcd}$, Mg/m ⁻³	1.595	1.658
F(000)	1968	1112
μ (Mo K α), cm ⁻¹	57.31	52.48
T.K	293	293
cryst dimens, mm ³	$0.250 \times 0.300 \times 0.500$	$0.200 \times 0.300 \times 0.350$
transm factors	0.74-1.00	0.87-1.00
scan type	$\omega - 2\theta$	$\omega - 2\theta$
scan range, deg	$0.94 \pm 0.35 \tan \theta$	$1.00 + 0.35 \tan \theta$
scan speed, deg/min	16.0	16.0
2θ limits, deg	$0 \le 2\theta \le 55.0$	$0 \le 2\theta \le 60.0$
data collected	$+h,+k,\pm l$	$+h,+k,\pm l$
no. of unique refins	5292	3717
no. of refins with $I > 3\sigma(I)$	2473	1807
no. of variables	208	140
R _F b	0.032	0.031
R _{wF^{c,d}}	0.035	0.034
goodness of fite	1.29	1.21
max Δ/σ (final cycle)	0.03	0.01
residual density, e/Å ³	-1.04 to +2.51	-0.89 to +1.00

^{*a*} Rigaku AFCF6 diffractometer, Mo K α radiation, graphite monochromator. ^{*b*} $R_F = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^{*c*} $R_{wF} = [\sum w(|F_0| - |F_c|)^2 / \sum F_o^2]^{1/2}$. ^{*d*} $w = 4F_o^2 / \sigma^2 (F_o^2)$. ^{*c*} GOF = $[\sum w(|F_0| - |F_c|)^2 / (\text{no. of degrees of freedom})]^{1/2}$.

 $J_{\text{HH}} = 11 \text{ Hz}, \text{CH}_{A}H_{B}$, 1.73 (s, 15H, $C_{5}(CH_{3})_{5}$), 1.18 (s, 9H, NC-(CH₃)₃), 0.21 (s, 9H, Si(CH₃)₃). ¹³{}^{1}\text{H} NMR ($C_{6}D_{6}$): δ 216.9 (CNCMe₃), 168.3, 129.5, 120.7, 117.1 (Ar C), 110.9 ($C_{5}(CH_{3})_{5}$), 29.8 (C(CH₃)₃), 27.4 (CH₂), 9.8 ($C_{5}(CH_{3})_{5}$), 0.5 (Si(CH₃)₃). Lowresolution mass spectrum (probe temperature 200 °C): m/z 612 [P⁺].

X-ray Crystallographic Analyses of Cp*W(NO)(OCMe₃)₂ (2) and Cp*W(NO)(OCH₂Ph)₂ (4). Crystallographic data for 2 and 4 appear in Table IV. The final unit-cell parameters were obtained by least-squares procedures using the setting angles for 25 reflections with $2\theta = 25.8-35.4^{\circ}$ for 2 and 24.0-30.2° for 4. The intensities of three standard reflections, measured every 200 reflections throughout the data collections, remained constant for 2 and decreased uniformly by 3.5% for 4. The data were processed¹³ and corrected for Lorentz and polarization effects, linear decay (for 4), and absorption (empirical, based on azimuthal scans for three reflections).

Both structures were solved by heavy-atom methods, the coordinates of the tungsten atoms being determined from the Patterson functions and those of the remaining non-hydrogen atoms from subsequent difference Fourier syntheses. Molecules of 4 are situated on a crystallographic mirror plane that passes through the metal atom, the NO ligand, and atoms C(2) and C(4) of the Cp* ligand. All non-hydrogen atoms of both complexes were refined with anisotropic thermal parameters. Hydrogen atoms were fixed in idealized positions [C-H = 0.98 Å, B(H) = 1.2B(bonded atom), methyl group orientations based on difference map positions]. A correction for secondary extinction was applied for 4, the final value of the extinction coefficient being

Table V. Final Atomic Coordinates (Fractional) and B_{eq} Values (\mathring{A}^2) for Complex 2

				······································
atom	<i>x</i>	У	2	B_{eq}^{a}
W(1)	0.368044(12)	0.45572(2)	0.31072(3)	2.28(1)
O (1)	0.3888(2)	0.5539(3)	0.2241(5)	3.0(2)
O(2)	0.4128(2)	0.4465(3)	0.4538(5)	3.2(3)
O(3)	0.2506(3)	0.4902(5)	0.3942(6)	5.8(4)
N(1)	0.3010(3)	0.4829(4)	0.3681(6)	3.4(3)
C(1)	0.3451(4)	0.3145(5)	0.2761(8)	3.0(4)
C(2)	0.3272(3)	0.3619(5)	0.1715(7)	2.6(3)
C(3)	0.3764(4)	0.3911(5)	0.1128(7)	3.0(4)
C(4)	0.4245(3)	0.3629(6)	0.1772(8)	3.3(4)
C(5)	0.4036(4)	0.3142(5)	0.2793(8)	3.3(4)
C(6)	0.3052(4)	0.2683(6)	0.3617(9)	4.4(5)
C(7)	0.2667(4)	0.3722(6)	0.1322(8)	3.8(4)
C(8)	0.3776(4)	0.4412(5)	-0.0053(7)	4.0(5)
C(9)	0.4850(4)	0.3787(7)	0.1442(9)	5.2(5)
C(10)	0.4411(4)	0.2715(6)	0.3700(10)	5.4(6)
C(11)	0.3648(4)	0.6381(6)	0.2055(9)	4.3(4)
C(12)	0.3618(6)	0.6842(6)	0.3278(11)	8.6(8)
C(13)	0.4032(6)	0.6808(7)	0.1146(13)	8.9(9)
C(14)	0.3063(5)	0.6303(7)	0.1518(12)	6.9(7)
C(15)	0.4037(4)	0.4608(7)	0.5832(7)	3.9(4)
C(16)	0.4587(5)	0.4331(7)	0.6451(9)	5.5(6)
C(17)	0.3925(5)	0.5531(7)	0.6052(9)	6.3(6)
C(18)	0.3555(5)	0.4057(9)	0.6260(10)	6.8(7)

 ${}^{a}B_{eq} = (8/3)\pi^{2}\sum U_{ij}a_{i}^{*}a_{j}^{*}(\mathbf{a}_{i}\cdot\mathbf{a}_{j}).$

Table VI. Selected Bond Lengths (Å) and Bond Angles (deg) with Esd's in Parentheses for 2^a

W(1)-O(1)	1.890(5)	O(1)-W(1)-O(2)	109.7(2)
W(1) - O(2)	1.903(5)	O(1)-W(1)-N(1)	102.3(3)
W(1) - N(1)	1.758(7)	O(1)-W(1)-Cp	111.4(2)
W(1) - C(1)	2.337(8)	O(2)-W(1)-N(1)	102.8(3)
W(1) - C(2)	2.345(7)	O(2)–W(1)–Cp	111.3(2)
W(1) - C(3)	2.416(7)	N(1)-W(1)-Cp	118.7(2)
W(1) - C(4)	2.471(8)	W(1)-O(1)-C(11)	136.2(5)
W(1) - C(5)	2.422(8)	W(1)-O(2)-C(15)	135.6(5)
W(1)-Cp	2.073(4)	W(1)-N(1)-O(3)	168.1(7)
O(1)-C(11)	1.465(10)	O(2)-C(15)-C(16)	105.3(7)
O(2)-C(15)	1.458(9)	O(2)-C(15)-C(17)	109.5(8)
O(3)–N(1)	1.232(8)	O(2)-C(15)-C(18)	109.1(8)

^a Here and elsewhere Cp refers to the centroid of the pentamethylcyclopentadienyl ring.

 $2.6(1) \times 10^{-7}$. Neutral-atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from ref 14. Final atomic coordinates and equivalent isotropic thermal parameters for complexes 2 and 4 are given in Tables V and VII, respectively. Selected bond lengths and angles for the two compounds appear in Tables VI and VIII. Views of the solid-state molecular structures of 2 and 4 are shown in Figure 1. Hydrogen atom parameters, anisotropic thermal parameters, complete bond lengths and bond angles, torsion angles, intermolecular contacts, and least-squares planes are included as supplementary material.

Results and Discussion

Synthesis and Characteristic Properties of the Bis-(alkoxo) Complexes $Cp*M(NO)(OR)_2$. Bis(alkoxo) nitrosyl complexes of the type $Cp*M(NO)(OR)_2$ [R = alkyl, aryl] are preparable by treating $Cp*M(NO)Cl_2$ with 2 equiv of alkoxide salts such as LiOCMe₃ or NaOR [R = Ph, CH₂Ph], i.e. eq 1. The four Cp*M(NO)(OR)₂ complexes synthesized during this work (1-4) are isolable as red to orange crystalline solids in 20-67% yields. They are very soluble in common organic solvents. As solids, the bis-

⁽¹³⁾ TEXSAN/TEXRAY structure analysis package which includes versions of the following: MITHRIL, integrated direct methods, by C. J. Gilmore; DIRDIF, direct methods for difference structures, by P. T. Beurskens; ORFLS, full-matrix least-squares, and ORFFE, functions and errors, by W. R. Busing, K. O. Martin, and H. A. Levy; ORTEP II, illustrations, by C. K. Johnson.

⁽¹⁴⁾ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, Tables 2.2B and 2.3.1.

Table VII. Final Atomic Coordinates (Fractional) and B_{eq} Values (Å²) for Complex 4

atom	x	у	Z	$B_{eq}{}^a$
W(1)	0.22295(4)	1/4	0.07576(2)	2.82(1)
O(1)	0.3078(8)	1/4	0.2513(4)	5.3(3)
O(2)	0.0958(5)	0.3478(2)	0.0650(3)	4.0(2)
N(1)	0.2590(8)	1/4	0.1816(4)	3.7(3)
C(1)	0.3189(10)	1/4	-0.0640(5)	3.5(4)
C(2)	0.3786(6)	0.3226(4)	-0.0240(4)	3.4(3)
C(3)	0.4689(6)	0.2960(3)	0.0436(4)	3.1(2)
C(4)	0.2210(13)	1/4	-0.1399(6)	5.7(5)
C(5)	0.3500(8)	0.4137(4)	0.0475(4)	4.7(3)
C(6)	0.5623(8)	0.3505(4)	0.0992(5)	5.1(4)
C(8)	0.0313(8)	0.3998(4)	0.1290(4)	4.8(3)
C(9)	0.1244(7)	0.4773(4)	0.1424(4)	3.9(3)
C(10)	0.1000(9)	0.5495(5)	0.0967(4)	5.0(4)
C(11)	0.1886(10)	0.6212(5)	0.1067(5)	6.1(4)
C(12)	0.3044(10)	0.6211(5)	0.1643(6)	6.3(5)
C(13)	0.3265(10)	0.5500(6)	0.2093(5)	6.4(5)
C(14)	0.2383(9)	0.4784(5)	0.1992(4)	5.0(4)

^a $B_{\text{eq}} = (8/3)\pi^2 \sum U_{ij} a_i^* a_j^* (\mathbf{a}_i \cdot \mathbf{a}_j).$

 Table VIII.
 Selected Bond Lengths (Å) and Bond Angles (deg) with Esd's in Parentheses for 4^a

	-		
W(1)-O(2)	1.910(4)	O(2)-W(1)-O(2)'	107.6(3)
W(1) - N(1)	1.759(7)	O(2) - W(1) - N(1)	101.3(2)
W(1) - C(1)	2.435(8)	O(2)-W(1)-Cp	112.8(2)
W(1) - C(2)	2.414(5)	N(1)-W(1)-Cp	119.6(2)
W(1) - C(3)	2.333(5)	W(1) - O(2) - C(8)	128.3(4)
W(1)-Cp	2.055(3)	W(1)-N(1)-O(1)	169.8(7)
O(1) - N(1)	1.218(9)	O(2) - C(8) - C(9)	111.1(5)
O(2) - C(8)	1.444(7)		

^a The primed atom is related to the unprimed atom by the symmetry operation x, 1/2 - y, z.

(alkoxo) complexes are indefinitely stable in air. The bis-(alkoxo) complexes are also thermally stable in solution, as evidenced by the fact that 2 persists unchanged in C_6D_6 after 16 h at 120 °C. The spectroscopic properties of 1–4, collected in Tables II and III, are consistent with their possessing monomeric, three-legged piano-stool molecular structures.

The progress of reactions 1 can be monitored by observing the changes in the nitrosyl-stretching frequency evident in the IR spectra of the reaction mixtures. For instance, the reaction of Cp*W(NO)Cl₂ ($\nu_{NO} = 1630 \text{ cm}^{-1}$) with 2 equiv of LiOCMe₃ in THF exhibits first an intermediate nitrosyl-stretching band at 1593 cm⁻¹ (vide infra), which appears at the expense of the band due to the starting material. As the transformation continues, this absorption feature decreases as the 1557-cm⁻¹ band characteristic of the product complex appears and intensifies. In other words, $\nu_{\rm NO}$ is shifted to lower energy as the chloro ligands are replaced by the more electron-donating alkoxide groups. In general, the nitrosyl-stretching frequencies¹⁵ of the $Cp*M(NO)(OR)_2$ class of complexes (Table II) indicate that the metal is receiving increased donation of π -electron density from the alkoxide ligands. For comparison, it may be noted that a THF solution of Cp*W(NO)(CH₂CMe₃)₂ exhibits a ν_{NO} at 1568 cm⁻¹, whereas Cp*W(NO)(OCMe₃)₂ has the same feature at 1557 cm⁻¹.

Consistent with their having more electron-rich metal centers, the $Cp*M(NO)(OR)_2$ complexes are relatively inert chemically. As noted above, these bis(alkoxo) complexes are extremely air-stable. Furthermore, Cp*W- $(NO)(OCMe_3)_2$ (2) does not react with O_2 (1 atm) in Et₂O or with an excess of H_2O in THF. The stability of 2 toward O_2 suggests that complexes of this type are not easily oxidized. In addition, a cyclic voltammogram of Cp*W-(NO)(OCMe₃)₂ in THF shows no oxidation features up to the solvent limit of 0.85 V.¹⁶ The hydrolytic stability is somewhat surprising since the polar W-O bonds in complex 2 would be expected to be susceptible to nucleophilic attack. Complex 2 also does not react with typical Lewis bases such as CO and PMe₃. Consequently, we believe that the chemical inertness of the $Cp*M(NO)(OR)_2$ complexes reflects their inability to form Lewis base adducts at their evidently electron-sufficient metal centers. This behavior is in marked contrast to the 16-electron dialkyl and diaryl species $Cp'M(NO)R_2$, which readily form 1:1 metal-centered adducts with a variety of Lewis bases.²

X-ray Crystallographic Analyses of Complexes 2 and 4. X-ray crystallographic analyses of 2 and 4 demonstrate that these representative examples of Cp*W- $(NO)(OR)_2$ complexes are best viewed as 18-valenceelectron species, the ability of the alkoxide ligands to donate π -electron density effectively satisfying the electronic requirements of the metal centers. Both Cp*W- $(NO)(OCMe_3)_2$ (2) and $Cp*W(NO)(OCH_2Ph)_2$ (4) are monomeric, and their intramolecular geometrical parameters are collected in Table VI. Their chemically most interesting features are the dimensions about the alkoxide ligands. Since OCMe₃ and OCH₂Ph ligands have very different steric requirements, we believe that the large W-O-C angles (averaging 135.9° for 2 and 128.3° for 4) and short W-O bond lengths (averaging 1.90 Å for 2 and 1.91 Å for 4) are a result of electronic rather than steric effects. The increased W-O bond order likely results from the donation of electron density from filled p orbitals on oxygen to the empty d orbitals on the metal center.¹⁷ The tungsten centers in 2 and 4 are thus relatively more electron-rich (a fact also indicated by their IR and chemical properties, vide supra) than those in their dialkyl or diaryl analogues.² Consistently, no evidence for the existence of agostic interactions between the metal and the β -hydrogens of the alkoxide ligands was revealed by the crystallographic analysis of 4.

A bis(alkoxo)chromium complex related to the compounds synthesized during this work was recently described by Hubbard and McVicar.¹⁸ They prepared $Cp*Cr(NO)(O-i-Pr)_2$ by treatment of $Cp*Cr(NO)_2(CH_2-Cl)$ with excess Na(O-*i*-Pr) in 2-propanol, a process which results in the formal replacement of NO and CH₂Cl ligands by 2-propoxide groups. Such chromium complexes cannot be synthesized via a route analogous to that portrayed in eq 1 since the Cp*Cr(NO)Cl₂ precursor remains unknown.

⁽¹⁵⁾ For a discussion of the dependence of $\nu_{\rm NO}$ on electron density at the metal center, see: Richter-Addo, G. B.; Legzdins, P. *Metal Nitrosyls*; Oxford University Press: New York, 1992; pp 61–68.

⁽¹⁶⁾ The electrochemical experimental details generally employed in our laboratories are summarized in ref 4. The cyclic voltammogram of 2 was recorded using a Pt-bead electrode in THF using 0.1 M [Bu,N]PFe as the support electrolyte and SCE as the reference electrode. Scan rates ranged from 0.2 to 1.0 V s^{-1} .

 ^{(17) (}a) Lunder, D. M.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K.
 G. J. Am. Chem. Soc. 1991, 113, 1837. (b) McCleverty, J. A.; Seddon, D.;
 Bailey, N. A.; Walker, N. W. J. J. Chem. Soc., Dalton Trans. 1976, 898.
 (18) Hubbard, J. L.; McVicar, W. K. Inorg. Chem. 1992, 31, 910.

Figure 1. ORTEP diagram of the solid-state molecular structures of $Cp*W(NO)(OCMe_3)_2$ (2) on the left and $Cp*W(NO)(OCH_2Ph)_2$ (4) on the right. Probability ellipsoids at the 50% level are shown for the non-hydrogen atoms.

In other work, McCleverty and co-workers have prepared an extensive series of isoelectronic pyrazolylborate alkoxide compounds, $\{HB(Me_2pz)_3\}M(NO)(OR)_2 \ [M = Mo, W]$, which result from alcoholysis of $\{HB(Me_2pz)_3\}M(NO)X_2$ $[X = Cl, I].^{19}$ Interestingly, we find that similar treatment of Cp*M(NO)Cl₂ [M = Mo, W] with alcohols does not produce the bis(alkoxo) complexes synthesized during this work, but rather affords intractable materials. Both McCleverty and Hubbard have attributed the stability of their group 6 bis(alkoxo) complexes to the electrondonating ability of the alkoxo ligands.

Synthesis and Characteristic Properties of the Alkoxo Chloro Complexes Cp*M(NO)(OR)Cl. In order to explore the reactivity of more electron-deficient group 6 alkoxo complexes, we decided to isolate the alkoxo chloro complexes, Cp*M(NO)(OR)Cl, which are the intermediate organometallic species formed during conversions 1. The Cp*M(NO)(OR)Cl compounds are best obtained via metathesis reactions utilizing 1 equiv of an alkoxide salt at low temperatures, i.e.

The three such product complexes prepared during this work (5–7) are isolable as black to purple analytically pure needles in moderate yields (25-44%). The alkoxo chloro complexes, like the bis(alkoxo) compounds, are very soluble in all common organic solvents. In contrast to complexes 1–4, however, the monoalkoxo species are very thermally, oxidatively, and hydrolytically sensitive both as solids and in solutions.

The spectroscopic properties (Tables II and III) of complexes 5–7 are consistent with their possessing monomeric, three-legged piano-stool molecular structures. The $\nu_{\rm NO}$ bands evident in their IR spectra are higher in energy than those exhibited by the corresponding bis(alkoxo) complexes but lower in energy than those characteristic of the dichloro starting materials. For example, the nitrosyl-stretching frequencies decrease in the order Cp*W(NO)Cl₂(1630 cm⁻¹) > Cp*W(NO)(OCMe₃)Cl (1593 cm⁻¹) > Cp*W(NO)(OCMe₃)₂ (1557 cm⁻¹) for THF solutions of the various compounds. Such spectroscopic data indicate that the metal centers in the Cp*M(NO)(OR)Cl complexes are relatively more electron-deficient than in the analogous Cp*M(NO)(OR)₂ compounds.

Consistent with the greater electron deficiency at the metal centers of complexes 5–7, the Cp*M(NO)(OR)Cl complexes decompose rapidly both in solution and in the solid state when exposed to the atmosphere. Upon treatment with dry O_2 (1 atm), compounds 5–7 decompose to intractable tan solids. Exposure to water results in compounds 5 and 6 being converted to [Cp*M(NO)(OH)-Cl]₂ species.²⁰ Indeed, our attempts to perform reactivity studies of the alkoxo chloro complexes have been hampered by their extreme sensitivity to air and moisture. Nevertheless, we have ascertained to date that the monoalkoxide complexes do react with PMe₃ presumably to form adducts of the type Cp*M(NO)(OR)(Cl)(PMe₃), but these adducts are only stable at low temperatures.

Synthesis and Characteristic Properties of the Alkoxo Alkyl Complexes Cp*M(NO)(R)(OR'). To enable us to investigate the relative reactivity of alkyl vs alkoxide ligands at the same metal center, we decided to prepare a third class of alkoxide complexes, namely the alkoxo alkyl species, Cp*M(NO)(R)(OR'). We quickly discovered that the limiting factor in the preparation of these compounds by metathesis reactions is the availibility

⁽¹⁹⁾ McCleverty, J. A.; Wlodarczyk, A. Polyhedron 1988, 7, 449 and references cited therein.

⁽²⁰⁾ Hunt, M. M.; Kita, W. C.; McCleverty, J. A. J. Chem. Soc., Dalton Trans. 1978, 474.

of the requisite alkyl chloro precursors. Until very recently,²¹ only the benzyl chloro⁶ and (trimethylsilyl)methyl chloro^{9,10} complexes Cp*M(NO)(R)Cl [M = Mo, $R = CH_2Ph; M = W; R = CH_2Ph, CH_2SiMe_3]$ were available. The six alkoxo alkyl complexes prepared during this work (8-13) have been made from these starting materials in the manner summarized in eq 3. The desired

$$Cp*M(NO)(R)Cl + M'(OR') \rightarrow$$

 $Cp*M(NO)(R)(OR') + M'Cl$ (3)

organometallic products are isolable from reactions 3 in yields that range from 25 to 67% even in the presence of excess M'(OR) reagent. The low isolated yields of complexes 11 and 13 may be attributed to their high solubility in pentane. Of the complexes 8-13, Cp*W-(NO)(CH₂SiMe₃)(OCMe₃) (11) is an oil and Cp*W- $(NO)(CH_2SiMe_3)(OMe)$ (13) is thermally sensitive as a solid.

The spectroscopic properties of 8-13 are collected in Tables II and III. As expected, the $\nu_{\rm NO}$ bands in the IR spectra of the alkoxo alkyl complexes are lower in energy than those exhibited by the symmetric dialkyl compounds but are higher in energy than those characteristic of the bis(alkoxo) compounds (vide supra). To attain electron sufficiency at their metal centers, the following possibilities exist:

The ¹H and ¹³C¹H NMR spectral data for these compounds clearly distinguish between these two structural possibilities. For instance, the ipso carbon chemical shift at 147 ppm in the ${}^{13}C{}^{1}H$ NMR spectrum of 10 in C₆D₆ is diagnostic of an η^1 -benzyl ligand.²² Furthermore, the ¹H NMR spectrum of Cp*W(NO)(CH₂Ph)(OCMe₃) (10) in C_6D_6 exhibits an AB pattern due to the diastereotopic methylene protons, for which the low-field chemical shifts $(\delta 2.76 \text{ and } 2.64 \text{ ppm})$ and the large ${}^{2}J_{HH}$ coupling constant (11.2 Hz) are typical of those displayed by η^1 -benzyl ligands.²² It thus appears that the benzyl ligand is functioning as a one-electron donor in complexes 8-10, the π donation from the alkoxide ligand again providing the extra electron density to the metal centers.

It has been established previously that the bis(benzyl) complexes $Cp'M(NO)(CH_2Ph)_2$ react with HCl to produce $Cp'M(NO)(CH_2Ph)Cl.^6$ We have found that similar treatment of Cp*W(NO)(OCMe₃)₂ with HCl provides first the monoalkoxo complex $Cp*W(NO)(OCMe_3)Cl$ and then the dichloro compound Cp*W(NO)Cl₂. The reactions of Cp*M(NO)(R)(OR') with HCl provide insight into the relative reactivities in M-C versus M-O bonds in these systems. Interestingly, the alkoxo alkyl complexes 10 and 12 react with HCl to produce exclusively the corresponding alkyl chloro species (eq 4). Thus, the preferred site of reactivity of the Cp*M(NO)(R)(OR') complexes with the polar reagent HCl is indeed the more polar M-O bond rather than the M-C linkage.

$$Cp*M(NO)(R)(OR') + HCl \rightarrow Cp*M(NO)(R)Cl + R'OH$$
 (4)

Both in solution and in the solid state, all six Cp*M(NO)(R)(OR') complexes decompose rapidly when exposed to the atmosphere. In the case of $M = W, O_2$ effects the transformations depicted in eq 5. This reac-

$$Cp*W(NO)(R)(OR') + O_2 \rightarrow Cp*W(O)_2R \qquad (5)$$

tivity parallels that documented for the related dialkyl and diaryl complexes of tungsten $Cp*W(NO)R_{2}$,^{11b,12} the known dioxo alkyl products Cp*W(O)₂R^{12,23} being the thermodynamically most stable entities formed upon exposure of the various complexes to molecular oxygen. In contrast, the congeneric molybdenum alkoxide species $Cp*Mo(NO)(CH_2Ph)(OCMe_3)$ (8) and Cp*Mo(NO)- $(CH_2Ph)(OPh)$ (9) react with O_2 to form the known $[Cp*Mo(O)_2]_2(\mu-O) \text{ complex.}^{11}$

We have previously shown that $Cp*W(NO)R_2$ compounds are inert with respect to hydrolysis when R = alkylbut react with H_2O to form $Cp*W(O)_2R$ when $R = aryl.^{11b}$ The alkoxo alkyl compounds 10 and 12 more resemble the diaryl systems in that they both react with H₂O to produce the known $Cp*W(O)_2(CH_2Ph)$ and $Cp*W(O)_2(CH_2SiMe_3)$ complexes, respectively.

 $Cp*W(NO)(CH_2SiMe_3)(OPh)$ (12) is a sufficiently potent Lewis acid to form an adduct with PMe₃ at low temperatures, as evidenced by variable-temperature ¹H NMR spectroscopy from +24 to -60 °C. At 24 °C, the purple CD₂Cl₂ solution of 12 and excess PMe₃ exhibits signals due to only 12 and free PMe₃. At -60 °C the solution is yellow, and all signals in the ¹H NMR spectrum are broad. Nevertheless, new resonances consistent with the adduct complex are evident at this temperature, most notably a doublet at δ 1.42 (² $J_{PH} = 6$ Hz) attributable to coordinated PMe₃. When the sample is warmed to room temperature, however, its color reverts to purple and its ¹H NMR spectrum is identical to the original spectrum, thereby indicating that this adduct formation is a reversible process.

The Lewis acidic nature of Cp*W(NO)(CH₂SiMe₃)(OPh) (12) is also demonstrated in its reaction with CNCMe₃. tert-Butyl isocyanide reacts with 12 to provide the yellow iminoacyl complex $Cp*W(NO)(\eta^2-C\{NCMe_3\}$ -CH₂SiMe₃)(OPh) in high yield (eq 6). Consistent with

other iminoacyl complexes that we have previously isolated, 10,24 Cp*W(NO)(η^2 -C{NCMe_3}CH_2SiMe_3)(OPh) contains an η^2 -iminoacyl ligand.²⁵ Thus, the Nujol mull IR spectrum of this complex exhibits two strong bands attributable to $\nu_{\rm CN}$ and $\nu_{\rm NO}$ at 1670 and 1585 cm⁻¹,

⁽²¹⁾ A series of Cp'M(NO)(R)(Cl) complexes has been prepared in our (2) A series of OP = W(xO)(C) (O) (D) place a size of plequate in black of the place of the plac

⁽²³⁾ Faller, J. W.; Ma, Y. Organometallics 1988, 7, 559.
(24) Dryden, N. H.; Legzdins, P.; Lundmark, P. J.; Riesen, A.; Einstein, F. W. B. Organometallics 1993, 12, 2085.
 (25) Durfee, L. D.; Rothwell, I. P. Chem. Rev. 1988, 88, 1059.

Organometallics, Vol. 12, No. 9, 1993 3552

respectively. Like other iminoacyl complexes,²⁶ Cp*W- $(NO)(\eta^2-C\{NCMe_3\}CH_2SiMe_3)(OPh)$ is also unstable to water, undergoing hydrolysis to form $Cp*W(NO)(\eta^2-\eta^2)$ C{NCMe₃}Me)(OPh), as evidenced by ¹H NMR monitoring.27

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for support of this work in the form of grants to P.L.

Supplementary Material Available: Tables of hydrogen atom coordinates, anisotropic thermal parameters, complete bond lengths and bond angles, bond lengths and bond angles involving hydrogen atoms, torsion angles, intermolecular distances, and least-squares planes for complexes 2 and 4 (22 pages). Ordering information is given on any current masthead page.

OM9300944

⁽²⁶⁾ Legzdins, P.; Rettig, S. J.; Sánchez, L. Organometallics 1988, 7,

⁽²⁰⁾ Legzans, F.; Rettig, S. 3.; Sanchez, E. Organometatics 1366, 7, 2394. (27) ¹H NMR data for Cp*W(NO)(C[NCMe₃]Me)(OPh) in C₆D₆: δ 7.42–7.32 (m, 4H, Ar H), 6.87–6.80 (m, 1H, Ar H), 2.08 (s, 3H, CH₃), 1.71 (s, 15H, C₆(CH₃)₅), 1.05 (s, 9H, NC(CH₃)₃).