Formal $[2+2+1]$ and $[4+1]$ Cycloadditions of Electron Poor **Alkenes to Pentacarbonyl** [**(N,N-dimethylamino)methylene]chromium**

Miguel **A.** Sierra, Bjorn Soderberg, Peter **A.** Lander, and Louis S. Hegedus'

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received March 15, 1993

Summary: Methyl acrylate and acrylonitrile underwent a formal [2+2+1] cycloaddition with pentacarbonyl[(N,N-dimethy1amino)methylenelchromium to give trisubstituted cyclopentanes in modest yield. Methyl sorbate underwent a formal [4+11 cycloaddition with the same complex to produce the trisubstituted cyclopentene. A number of other conjugated enones failed to undergo this cyclization.

Introduction

The thermal reaction of chromium alkoxycarbene complexes with electron deficient alkenes was one of the earliest "organic" reactions of Fischer carbenes studied $(eq 1).¹$ It has subsequently been developed into a practical

$$
(CO)_5 \text{Cr} = \begin{pmatrix} \text{OMe} \\ \text{R} \end{pmatrix} + \begin{pmatrix} \text{A} \\ \text{C} \end{pmatrix} + \begin{pmatrix} \text{MA} \\ \text{C} \end{pmatrix} + \begin{pmatrix} \text{OMe} \\ \text{C} \end{pmatrix} + \begin{pmatrix} \text{MA} \\ \text{C} \end{pmatrix} + \begin{pm
$$

X = *COpR,* **CN, etc.**

procedure for the synthesis of donor-acceptor substituted cyclopropanes.2 (Electron rich alkenes also undergo this cyclopropanation reaction, although under substantially different conditions.³) More recently, 1,3-dienes have been studied as substrates for this reaction, and a variety of vinylcyclopropanes have been prepared.⁴ However, all of these studies have been restricted to the use of *alkoxy*carbene complexes. Aminocarbene complexes have been much less studied in this regard,⁵ although an intramolecular cyclopropanation of an N-butenylcarbene complex has been reported.⁶ Reactions of alkynes with aminocarbene complexes having olefin groups on the nitrogen produce complex products resulting from cycloaddition/ metathesis/cycloaddition/reductive elimination sequences.'

(1) (a) Fischer, E. *0.;* D&tz,K. H. *Chem. Ber.* **1970,103,1273.** (b) Datz,

K. H.; Fischer, E. O. Chem. Ber. 1972, 105, 1356.
(2) For a review see: Ressig, H-U. Topp. Curr. Chem. 1988, 144, 73.
(3) (a) Fischer, E. O.; Dötz, K. H. Chem. Ber. 1972, 105, 3966. (b) For

cyclopropanation by O-acyl carbene complexes see: Murray, C. K.; Yang, D. C.; Wulff, W. D. J. Am. Chem. Soc. 1990, 112, 5660.
(4) (a) Buchert, M.; Reissig, H-U.Chem. Ber. 1992, 25, 2723. (b) Harvey,
D. F.; Lund, K. P. J. A M. D. *J.* Am. *Chem.* SOC. **1991,113,7808.** (e) Wulff, W. D.; Yang, D. C.; Murray, C. K. *J. Am. Chem. Soc.* 1988, 110, 2653. *(5)* For reviews on the reactions of chromium aminocarbene complexes

(5) For reviews on the reactions of chromium aminocarbene complexes see: Schwindt, M. **A.;** Miller, J. R.; Hegedus, L. **S.** *J.* Organomet. *Chem.*

1991, 413, 143. Grotjahn, D. B.; Dötz, K. H. Synlett 1991, 381.

(6) (a) Soderberg, B. C.; Hegedus, L. S. Organometallics 1990, 9, 3113.

(b) Casey, C. P.; Vollendorf, N. W.; Haller, K. J. J. Am. Chem. Soc. 1984,

106, 375

(7) (a) Hoye, T. R.; Rehberg, G. M. Organometallics **1989,8,2701.** (b) Chelain, E.; Goumont, R.; Hamon, L.; Parker, **A,;** Rudler, M.; Rudler, H.; Daran, J-C.; Vaissermann, J. J. Am. Chem. Soc. 1992, 114, 8088 and references therein.

With the development of efficient syntheses of pentacarbonyl[(amino)methylene]chromium complexes8 and the report of their unusual cycloaddition chemistry with imines? reactions of this class of carbenes with electron deficient olefins became of interest. The results of these studies are reported below.

Results and Discussion

The thermal reaction of **pentacarbonyl[(N,N-dimethylamino)methylenelchromium (1)** with methyl acrylate or acrylonitrile in acetonitrile **as** solvent produced *no* cyclopropane products. Rather, a single isomer of a **1,2,4** trisubstituted cyclopentane, resulting from a formal **[2+2+11** cycloaddition was obtained in fair yield (eq **2).**

The relative stereochemistry could not be unequivocally assigned from spectroscopic data. The thermodynamically most stable isomer is expected, since the compounds are formed in a polar solvent, and the amino group should be sufficiently basic to equilibrate the acidic α -positions. A possible route to the observed products is shown in eq **2** and parallels that thought operant in cyclopropanation.

Cycloaddition of the electron deficient alkene to the carbene complex, with the regiochemistry expected from the polarity of both the carbene complex and the alkene, produces the metallacyclobutane intermediate. The anticipated cyclopropane would result from reductive elimination from this intermediate. Instead, coordination and insertion of another alkene followed by reductive elimination would produce the observed products. The reasons for the difference between alkoxy- and aminocarbene complexes in their reactions with olefins **2a** and **2b** are not apparent.

Methyl sorbate also forms a five membered ring upon reaction with chromium carbene complex **1,** in a formal

~ ~~ ~~

⁽⁸⁾ (a) Borel, C.; Hegedus, L. **S.;** Krebs, J.; Satoh, **Y.** *J. Am. Chem.* SOC. **1987, 109, 1101.** (b) Imwinkelried, R.; Hegedus, L. S. Organometallics **1988,7,702.** (c) **Schwindt,M.A.;Lejon,T.;Hegedus,L.S.** Organometallics **1990,9, 2814.**

⁽⁹⁾ Hegedus, L. S.; Miller, D. B. *J.* Org. *Chem.* **1989,64, 1241.**

[4+11 cycloaddition (eq **3).** This product can be rationalized by a **"1,6"** addition of the carbene to this enone,

followed by reductive elimination. To our knowledge this is the **first** instance of a formal **[4+11** cycloaddition of a chromium carbene to a diene.

Reaction of carbene complex **1** with dimethyl fumarate and dimethyl maleate takes yet a different course (eq **4).** In this case, formal CH insertion (a common side reaction in alkoxycarbene complex cyclopropanation reactions) was observed.

Most striking was the range of closely related substrates that did not undergo productive reaction with carbene complex **1.** These include methyl vinyl ketone, methyl crotonate, methyl methacrylate, cyclopentenone, cyclohexenone, methyl cinnamate, maleic anhydride, and styrene. In most cases, unreacted starting materials were recovered after long reaction times, although in a few cases (e.g. benzoquinone) decomposition occurred. The reaction was also restricted to carbene complex **1.** When the [**(dimethylamino)(methyl)carbenelchromium** complex **2** was used, only insertion/hydrolysis products resulted (eq *5).* Because of this the reaction is very limited in scope, although perhaps mechanistically interesting.

Experimental Section

Toluene, ethyl acetate, hexane (technical grade), and acetonitrile were distilled from CaHz. Diethyl ether was predried over CaH₂ and distilled from benzophenone ketyl under a nitrogen atmosphere prior to use. All starting materials were commercially available (Aldrich) or synthesized. The carbene complexes **1** and 2 were prepared by literature procedures.^{8b,c}

A Brüker ACS-300 NMR spectrometer was used for the 300-MHz¹H NMR and the 75-MHz¹³C NMR. All NMR spectra were recorded in CDCls and the chemical shifts are given in ppm relative to Me₄Si (0 ppm, ¹H and ¹³C) and CDCl₃ (77 ppm, ¹³C). IR spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrophotometer. Mass spectra were obtained on a VG Micromass Ltd. Model 16F spectrometer.

The products, although pure by NMR, were distilled (short path) prior to elemental analysis to remove decomposition products. Elemental analyses were performed by M-H-W Laborqtories, Phoenix, AZ.

2,4-Bis(carbomethoxy-1-(N,N-dimethylamino)cyclopen**tane (3a).** A solution of 249 mg (1.00 mmol) of complex **1** and 198 μ L (2.20 mmol) of methyl acrylate in 15 mL of MeCN was heated at reflux (48 h) and worked up **as** described below (air oxidation, 26 h) to give 127 mg (0.56 mmol, 56%) of **2a as** a colorless oil.

lH NMR (300 MHz): *S* 3.60 *(8,* 3H, OMe), 3.58 (s,3H,OMe), 2.83 **(9,** lH, J = 8.7 Hz), 2.75 (t, lH, J ⁼7.7 Hz), 2.55 (dd, lH, $J = 14.5, 4.2$ Hz), 2.45 (m, 2H), 2.33 (dd, 1H, $J = 14.5, 9.0$ Hz), 2.13 **(a,** 6H, NMez), 1.56 **(9,** lH, J ⁼10 Hz). '*C NMR (75 MHz): **^S**174.44(CO), 172.18 (C0),69.48 (Cl), 51.55 (OMe),51.33 (OMe), 41.52 (2C, NMe₂), 39.30, 39.06, 32.88, 24.54. IR (film): ν 1725 (CO) cm⁻¹. MS (EI): m/z 229 (M⁺). Anal. Calcd for C₁₁H₁₉NO₂: C, 57.62; H, 8.35. Found: C, 57.59; H, 8.39.

2,4-Dicyano-1-(N,N-dimethylamino)cyclopentane (3b). A solution of 249 mg (1.00 mmol) of complex 1 and 146 μ L (2.20 mmol) mmol) of acrylonitrile in 10 mL of MeCN was heated at reflux for 67 h under an argon atmosphere. The resulting green-brown precipitate was removed by filtration (Celite), and the filter cake was washed with 40 mL of $Et₂O$ to give a brownish solution. The solution was diluted with 40 mL of hexane and air oxidized in a light-box (6 **X** 20-W Vitalite fluorescent bulbs) for 27 h. A brown precipitate was removed by filtration (Celite), and the filter cake was washed with Et_2O to give a pale yellow solution. The solvents were removed on a rotary evaporator at water aspirator pressure to give 97 mg (0.60 mmol, 60%) of **2b as** a pale yellow oil.

lH NMR (300 MHz): **6** 3.01 (t, lH, J ⁼7.8 Hz), 2.78 **(9,** lH, $J = 9$ Hz), 2.55-2.34 (m, 4H), 2.23 (s, 6H, NMe₂), 1.80 (q, 1H, J = 9 Hz). 13C NMR (75 MHz): **S** 120.39 (CN), 116.98 (CN), 70.25, 41.47 (2C, NMe₂), 34.26, 24.61, 22.15, 21.84. IR (film): ν 2940, 2860,2820,2770,2225,2220,1935,1445 cm-l; MS (EI): *m/z* 163 (M⁺). Anal. Calcd for C₉H₁₃N₃: C, 66.26; H, 7.98; N, 25.77. Found: C, 66.31; H, 7.91; N, 26.00.

2- (Carbomet hoxy)- **1** -(**N,N-dimet hylamino)-S-met hyl-3 cyclopemtene (5).** A solution of 249 mg (1.00 mmol) of complex **1** and 132 mg (1.05 mmol) of methyl sorbate in 15 mL of MeCN was heated at reflux (27 h) and worked up **as** described above (air oxidation, sunlight, *5* h) to give 63 mg (0.34 mmol, 34%) of **5 as** a colorless oil.

¹H NMR (300 MHz): δ 5.69 (td, 1H, $J = 5.8$, 2.3 Hz), 5.53 (td, lH, *J=* 5.8,2.2 Hz), 3.67 **(a,** 3H, OMe), 3.50 (sextet, lH, J ⁼6.4, 4.2, 2.3 Hz, H-2), 3.15 (t, 1H, $J = 4.5$ Hz, H-1), 2.67 (m, 1H, H-5), 2.21 **(s, 6H, NMe₂), 1.11 (d, 3H,** $J = 7.0$ **Hz, Me).** ¹³C NMR (75 MHz): **S** 175.10 (CO), 138.74, 126.06, 75.42 (Cl), 51.97, 51.21, 45.67, 41.59 (2C, NMe₂), 20.72 (Me). IR (film): ν 1735 (CO) cm⁻¹. MS (NH₃-CI): m/z 184 (M + H⁺). Anal. Calcd for $C_{10}H_{17}NO_2$: C, 65.54; H, 9.35. Found: C, 65.54; H, 9.19.

Methyl trans-3-(Carbomethoxy)-4-(N_yN-dimethylamino)-**3-butenoate (7).** Thermal reaction of 249 mg (1.00 mmol) of complex **1** with 144 mg (1.00 mmol) of dimethyl maleate in 15 mL of MeCN for 45 h gave after standard workup (air oxidation, sunlight, 7 h) 136 mg of a pale yellow oil. Short path distillation gave 132 mg (0.66 mmol, 66%) of **7** as a colorless oil.

1H NMR (300 MHz): 6 7.37 **(a,** lH, H-4), 3.59 **(a,** 3H, OMe), 3.55 **(s, 3H, OMe)**, 3.38 **(s, 2H, H-2)**, 2.94 **(s, 6H, NMe**₂). ¹³C (C3), 51.63 (OMe), 50.81 (OMe), 42.69 (2C, NMe₂), 30.83 (C2). IR **(film):** v 1732 (CO) cm-l. MS (EI): 201 (M+). Anal. Calcd for $C_9H_{15}NO_4$: C, 53.70; H, 7.52. Found: C, 53.70; H, 7.39. NMR (75 MHz): δ 173.60 (CO), 170.25 (CO), 150.07 (C4), 89.14

Acknowledgment. Support for this research by National Science Foundation Grant **CHE-8921992** is grate-

OM9301571