Carbon Dioxide Insertion into the Fe-Zr and Ru-Zr Bonds of the Heterobimetallic Complexes $\text{Cp(CO)}_2\text{M}-\text{Zr(CI)}\text{Cp}_2$: **Direct Production of the** μ **-** η **¹(C):** η **²(** O, O' **)-CO₂ Compounds** $Cp(CO)₂MCO₂-Zr(CI)CD₂$

John R. Pinkes, Bryan D. Steffey, Jose C. Vites, and Alan R. Cutler'

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received October 14, 1999

Summary: The Fe-Zr and Ru-Zr heterobimetallic compounds Cp(CO)N-Zr(Cl)Cp2 incorporate carbon dioxide under mild conditions and give their respective μ *-* $\eta^I(C)$ *:* $\eta^2(O,O')$ bimetallocarboxylates $Cp(CO)_{2}M-CO_{2}Zr(Cl)CD_{2}$. $With Cp(CO)_2Fe-Zr(Cl)Cp_2, 1$ equiv of CO_2 or $^{13}CO_2$ (99%) *labeled) quantitatively adds at above 0 "C in THF. The resulting* $CO₂$ *adduct,* $Cp(CO)₂Fe-CO₂-Zr(Cl)Cp₂$ *, was independently synthesized and fully characterized.* $Cp(\bar{C}O)_2Fe^{-13}CO_2-Zr(Cl)CD_2$ *equilibrates with its isotopomer* $\overline{C}p(^{13}CO)(CO)Fe-CO₂-Zr(Cl)Cp₂$ at room tem*perature. Results of control experiments preclude ionization of Cp(CO)₂Fe-Zr(Cl)Cp₂ to Cp(CO)₂Fe^{-/+}(THF)Zr-(CI)Cp2in order to add C02. Operation of a C02insertion pathway that requires bifunctional activation of the C02 is discussed. Analogous Ru-Zr* **C02** *insertion chemistry requires more forcing conditions: 3-5 atm of CO₂ and 3 days.*

The challenge of developing carbon dioxide fixation as a potential source of C_1 organic feedstocks is that the limiting step often entails binding $CO₂$ at a transitionmetal center.^{1,2} The electron-rich transition-metal complexes that ligate $CO₂$ irreversibly reduce it to carbon monoxide.3 These degradative processes can be circumvented by incorporating $CO₂$ into organotransition-metal systems via ligand reactions,⁴ typically "insertion" of exogenous CO₂ into metal-hydride and some metal-alkyl bonds to produce O-bound carboxylato compounds.6 We now report that the **Fe-Zr** and Ru-Zr bimetallic complexes $Cp(CO)₂M-Zr(Cl)Cp₂$ (1 and 2)⁶ add $CO₂$ to give the stable

M. Organometallics 1991, 10, 1811.

(2) Reduction of CO_2 by electrocatalysis or photoelectrocatalysis/

photochemical activation of CO_2 may engender CO_2 binding and ligand

reactions at transition-metal centers: (a) Momentau, M.; Savht, J.-M. J. Am. Chem. *Soc.* **1991,113,8455.** (b) Bruce, M. R. M.; Megehee, E.; Sullivan, B. P.; Thorp, H. H.; OToole, T. R.; **Downard,** A.; Pugh, J. R.; Meyer, T. J. Znorg. Chem. **1992,31,4864.**

(3) Recent examples include the following. (a) Reductive disproportionation: Alvarez, R.; Atwood, J. L.; Carmona, E.; Pérez, P. J.; Poveda, **M. L.;** Rogers, R. D. Inorg. Chem. **1991,30,1493.** (b) Oxygen atom abstraction: Fu, P.; Khan, M. A.; Nicholas, K. M. Organometallics 1992, 11, 2607. Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, **10402.**

(4) Examples of homogeneoua catalytic hydrogenation*b and hydro- silationk of COS: (a) T&, J.-C.; Nicholas, K. M. J. Am. Chem. SOC. **1992, 114,5117. (b) C C** is **1881**, **J.** C.; Nutholas, R. M. J. Am. Chem. Com. 2019, **1992**, **114,5117. (b) Graf, E.; Leitner, W. J. Chem. Soc., Chem. Commun. 1992**, **623.** (c) **Eisenschmid**, T. C.; Eisenberg, R. Orga **1822.**

(5) Selected examples: (a) Sullivan, B. P.; Meyer, T. J. Organometallics 1986, 5, 1500. (b) Darensbourg, D. J.; Wiegreffe, H. P.; Wiegreffe, P. H.
J. Am. Chem. Soc. 1990, 112, 9252. (c) Darensbourg, D. J.; Hanckel, R. K.; **1985,107,7463.** (d) Darensbourg, D. J.; Pala, M. J. Am. Chem. SOC. **1985,** *107,* **5887.**

bimetallocarboxylates $Cp(CO)₂M-CO₂-Zr(Cl)CD₂$ (3 and **4)** (eq **l),** which represent the first examples of inserting CO2 into **transition-metal-transition-metal** bonds.

3, M -Fe: **4, MI** k

The carbon dioxide complexes 3 and **4** typify an emerging theme that heterobimetallic complexes facilitate the binding of CO₂ at transition-metal centers.⁷⁻⁹ Our recently reported RuZr CO_2 complex $Cp(CO)_2Ru-CO_2-Zr(Cl)CD_2$ **(4),'0** for example, is much more stable than its metallocarboxylate precursor, $Cp(CO)₂Ru-CO₂-K⁺$. This stabilization is associated with an electronic "push-pull" that results from coupling electron-rich ruthenium and oxophilic zirconium moieties¹¹ through the μ - η ¹(C): η ²(O,O') carboxylate bridge.

Continuing these studies on late-early bimetallic $CO₂$ complexes required reproducibly synthesizing and fully

Abstract published in Aduance ACS Abstracts, December 1, **1993. (1)** Reviews on COa complexes: **(a)** Catalytic Activation *of* Carbon *Dioxide;* ACS Symposium Series **363;** Ayers, W. M., Ed.; American Chemical Society: Washington, DC, **1988.** (b) For recent tabulations of COa complexes, **see:** Tanaka, H.; Tzeng, B.-C.; **Nagao,** H.; Peng, **S.-M.;** Tanaka, K. *Inorg.* Chem. **1993,32,1508.** Gibson, D. H.; Ong, **T.-S.;** Ye,

⁽⁶⁾ (a) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. J. Am. Chem. SOC. **1983, 105, 665;** Organometallics **1984, 3, 504.** (b) Casey, C. P. J. Organomet. Chem. **1990,400, 205.**

⁽⁷⁾ Bifunctional activation of CO₂, L_xM-CO₂-M', was established for ion pairing anionic metallocarboxylates L_x MCO₂- to alkali- or alkalineearth-metal counterions $(M')^{+,1b,8}$ (a) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. *J.* Am. Chem. SOC. **1982,104,5082.** Floriani, C. Pure *Appl.* Chem. **1983,55, 1.** (b) Bianchini, C.; Meli, A. J. Am. Chem. SOC. **1984,106,2698.** (c) Schmidt, M. H.; Miskelly, G. M.; Lewis, N. **5.** J. Am. Chem. SOC. **1990,112, 3420.** (d) Group **1** and **2** counterione influence metal alkyl $-CO_2$ insertions^{5b} and catalytic electrochemical CO_2 reduction
by $Fe(0)$ porphyrins.²⁴

by Fe(0) porphyrins." (8) Cutler, A. R.; Hanna, P. K.; Vites, J. C. Chem. Reu. **1988,88,1363.** ition-metal groups: (a) Gibson, D. H.; Ye, M.; Richardson, J. F. J. Am. Chem. Soc. 1992, 114, 9716. (b) Pilato, R. S.; Housmekerides, C. E.; Jernakoff, P.; Rubin, D.; Geoffroy, G. L.; Rheingold, A. L. Organometallics (S. B.; Ramage, D. L.; Kretz, C. M.; Sonotz, J. T.; Pilato, R. S.; Geoffroy,

⁽¹¹⁾ Recent examples of FeZr or **RuZr** hetarobimetallic complexeswith bridging ligands: **(a)** Berno, P.; Floriani, C.; Chiesi-Villa, **A.;** Guastini, **C.** Organometallics **1990,9,1995. (b)** Lemke, F. R.; Szalda, D. J.; Bullock, **R.** M. J. Am. Chem. SOC. **1991,113,8466;** Organometalhcs **1992,11,876.** Lemke, F. R.; Bullock, **R.** M. Organometallics **1992,11,4261.** (c) Reviews on heterobimetallic chemistry: Stephan, D. W. Coord. Chem. Reu. **1989, 95,41.** Bullock, R. M.; Casey, C. P. Acc. Chem. Res. **1987,20,167.**

characterizing the Fe-Zr bimetallocarboxylates Cp- $(CO)_2Fe-CO_2-Zr(Cl)Cp_2$ (3) and $Cp(CO)_2Fe^{-13}CO_2-Zr$ - $(Cl)Cp₂$ (3a) (eq 2). The Fe-Zr $CO₂$ adduct 3 had been

reportedlO" **as** an impure material; it now was obtained analytically pure after a prompt workup involving removal of the THF.12 Although stable as a solid, THF solutions of 3 at room temperature degraded to $[CpFe(CO)₂]$ ₂ and $[Cp_2(C1)Zr]_2O$ with a half-life $(\tau_{1/2})$ of 4.0 h. IR spectral carboxylate $\nu(CO_2)$ assignments for 3, which define a chelating $\eta^2(0,0')$ metallocarboxylate structure,¹⁰ were confirmed by comparison with those for **3a.** In addition to its solution degradation, **3a** more rapidly $(\tau_{1/2} = 1.5 h)$ exchanges the ¹³C label between the carboxylate and terminal carbonyl sites (eq 3).13 The resulting isotopomer $\text{Co}(^{13}\text{CO})$ (CO)Fe-CO₂-Zr(Cl)C_{P2} (3b)¹⁴ is presumably derived from equilibrium concentrations of the metalloanhydride species depicted in eq 3.

Incorporating carbon dioxide **into** the Fe-Zr bond of Casey's heterobimetallic compound $Cp(CO)_2Fe-Zr(CI)$ -Cp2 **(1)** proved to be surprisingly straightforward.16 Treatment of a THF solution of **1** above 0 "C with 1 equiv of CO_2 quantitatively converted it to $Cp(CO)_2Fe-CO_2 Zr(C1)Cp₂$ (3) (eq 1). Also evident in these reaction

(13) (a) Analogous label shuttling between carboxylate and terminal carbonyl sites on Cp(CO)₂Fe-¹³CO₂-Li+ or Cp(CO)₂Fe-C¹³O₂-Li+,^{13b} **[Cp(CO)₂Fe-C¹⁷O)O-WCp₂]⁺,^{3b} and Cp(CO)₂Ru-¹³CO₂-Zr(Cl)Cp_{2**} **haa** been noted. Metalloanhydride species (cf. *eq* 3) are proposed intermediatee. (b) **he,** G. R.; Cooper, **N.** J. *Organometallics* 1986,4,794.

Figure 1. Infrared spectrum of $\text{Cp(CO)}_2\text{Fe}-\text{Zr(CI)Cp}_2$ (3) (upper scan), the spectrum after addition of 1 equiv of $CO₂$ (middle scan), and the spectrum of purified $Cp(CO)_2Fe-CO_2 Zr$ (Cl)Cp₂ (1) (bottom scan). Concentrations: 0.50 mmol of **1** or 3 in 5.0 mL of THF. u(C0) bands at **1992,1950,** and **1781** cm^{-1} correspond to the $[Cp(CO)₂Fe]₂$ impurity.

mixtures was $[CpFe(CO)₂]$ ₂ (cf. Figure 1) and $[Cp₂(Cl)-$ ZrlzO that accompanied the generation of **1.** Using **99%** ¹³C-labeled $CO₂$ in this insertion reaction likewise afforded $Cp(CO)_2Fe^{-13}CO_2-Zr(C1)Cp_2$ (3a).

Carboxylation of the Ru-Zr bimetallic complex $Cp(CO)₂$. Ru-Zr(Cl)Cp₂ (2), however, only reluctantly occurred with 3-5.5 atm of C02. Vigorously stirred suspensions of **2** in THF (room temperature) afforded clear solutions after 2-3 days under C02 pressure.17 IR and **NMR** spectral analysis confirmed the presence of $Cp(CO)₂Ru-CO₂$ $Zr(Cl)Cp₂$ (4) in 22-38% yields, along with $Cp(C0)₂RuH$ and $[Cp_2(C)]Zr]_2O$. Both byproducts can be attributed to the previously documented slow decomposition of the product 4 in THF $(\tau_{1/2} = 12 \text{ h})$.^{10a}

⁽¹²⁾ A THF solution containing $Cp(CO)_2FeCO_2-K^+$ (1.00 mmol) was
generated using 1.0 equiv of CO_2 (-196 to -78 °C) on a high-vacuum
line^{10a} and was treated with Cp_2ZrCl_2 (-78 °C). Rapid workup involving
evaporation o Cp(CO)₂Fe-CO₂-Zr(Cl)Cp₂ (3) (80% yield) as a stable, pale yellowish white solid. IR (THF): ν (CO) 2032, 1977 cm⁻¹; $\nu_{\text{asym}}(CO_2)$ 1363, $\nu_{\text{sym}}(CO_2)$ 1283 cm⁻¹. ¹H NMR (C₆D₆): δ 6.09 (s, Cp₂Zr), 4.15 (s, CpFe). ⁷¹³C{¹H}
NMR (CDCl₃): δ 229.2 (FeCO), 212.6 (μ -CO₂), 114.0 (Cp₂Zr), 85.9 (CpFe).
Anal. Calcd for C₁₉H₁₅O₄ClFeZr: C, 45.25; H, 3.05. Results using 99% ¹³C-labeled CO₂: Cp(CO)₂Fe-¹³CO₂-Zr(Cl)C cm-1. Once removed **from** THF, **3 is** stable **an** a solid or even in benzene **(So).** IR (THF): v(C0) 2031,1977 **m-1;** u,(COI) 1330, v,(COz) 1258 solution; <20% degradation over 4 h.

⁽¹⁴⁾ IR (THF) of $\text{Cp}(^{13}\text{CO})$ (CO)Fe-CO₂-Zr(Cl)C_{p2} (3b) $(\nu(\text{CO})$ 2014, 1958 cm⁻¹) and its ¹⁸C NMR spectra are consistent with the presence of
the monosubstituted Cp(¹⁸CO)(CO)Fenoiety.¹⁵ [Cp(¹⁸CO)(CO)Fe]₂/[Cpthe monosubstituted Cp(¹³CO)(CO)Fe moiety.¹⁵ [Cp(¹³CO)(CO)Fe]₂/[Cp-(CO)₂Fe]₂ and [Cp₂(Cl)Zr]₂O, as well as small amounts (<10%) of free

C02 and *W02* **(IR** v(C02) 2336 and 2270 cm-1) **ala0** were detected. (15) (a) Alexander, J. J.; Wojcicki, A. J. *Znorg. Chem.* 1973, 12, 74. Alexander, J. J. J. *Am. Chem.* **SOC.** 1976, *97,* 1729. (b) Few, D. J.; Narayanaswamy, R.; Rest, A. J. J. *Chem.* **Soe.,** *Dalton Trans.* 1981,2311. Mahmoud, K. A.; Rest, A. J.; Alt, H. G. *J. Chem. Soc., Dalton Trans.* 1985, 1365. (c) Kazlauskas, R. J.; Wrighton, M. S. *Organometallics* 1982,

^{1, 602. (}d) Bodnar, T. C.; Cutler, A. R. J. Am. Chem. Soc. 1983, 105, 5926.

(16) Cp(CO)₂Fe-Zr(Cl)Cp₂(1) was generated as an orange THF solution

(5 mL) by treating Cp(CO)₂Fe-K⁺ with Cp₂ZrCl₂ (0.50 mmol each) °C (0.5 h), and then warmed to room temperature over 2.5 h. **IR** spectral monitoring confirmed quantitative conversion of 1 to 3: 70% yields of 3 were quantified by IR and NMR spectroscopy. Insertion of 99% ^{13C}. of 1 in toluene solution was slower; only a 35% transformation to **3a was** realized after 5 h.

Plausible pathways for adding $CO₂$ to the FeZr and RuZr bimetallic complexes $Cp(CO)_2M-Zr(Cl)Cp_2$ (1 and 2) include their prior ionization in THF, with the resulting metalates $Cp(CO)₂M$ -then intercepting the $CO₂$ (Scheme 1; eq **4).** Although the ionization of polar Fe-Zr or Ru-Zr bonds in the starting bimetallics **3** and **4** has not been detected, both $\text{CpM}(\text{CO})_2$ -ions and (solvated) zirconocene electrophiles¹⁸ Cp₂(X)Zr(THF)⁺BPh₄⁻ independently exist. In the alternative pathway, $CO₂$ could insert into the Fe-Zr and Ru-Zr bonds via a bifunctional $CO₂$ activation step (Scheme 1; eq 5) similar to that promulgated by Floriani.^{7a}

We favor the latter direct-insertion pathway for two reasons. First, ¹³C-labeled $CO₂$ (1 atm in THF) does not exchange with unlabeled $CO₂$ in $Cp(CO)₂Fe-CO₂-Zr (C1)Cp_2(3)$; neither $Cp(CO)_2Fe^{-13}CO_2-Zr(C1)Cp_2(3a)$ nor **3b** were detected after 3 h at room temperature. This result establishes that heterolytic cleavage of **3** to give the ion pairs **6** and then **5,** the reverse of the postulated **5-6-3**

 $transformations$ (eq 4), does not occur in THF. In independent studies, we had established that $Cp(CO)_2Fe CO₂-K⁺$ will exchange with ¹³CO₂.¹⁹ The more compelling second reason pertains to the lack of reactivity of Cp- $(CO)₂Fe-Zr(Cl)Cp₂$ (1) toward carbon disulfide under conditions (1.0 equiv of CS_2 at $0 °C$ for 2.5 h, then warming to $22 \degree C$) where CO_2 readily adds. If 1 did ionize, then the resulting $Cp(CO)_2$ Fe-would have immediately added CS_2 and produced the well-known dithiocarboxylate compound $Cp(CO)_2FeCS_2^{-8,20}$ We independently established that Cp(CO)ZFeCSz-K+ plus CpzZrClz at **0** "C affords the stable and fully characterized FeZr μ - η ¹(C): η ²(S,S')-dithiocarboxylate complex $Cp(CO)_2Fe-CS_2-Zr(Cl)Cp_2$.²¹

Although the Fe-Zr and Ru-Zr bonds of $Cp(CO)₂M Zr(C1)Cp_2$ (1 and 2) incorporate CO_2 to give their bimetallocarboxylates $Cp(CO)_2M-CO_2-Zr(Cl)Cp_2$ (3 and 4) under relatively mild conditions, further studies are required to firmly establish the mechanism of $CO₂$ insertion into Fe-Zr, Ru-Zr, and perhaps other polar, heterobimetallic complexes.

Acknowledgment. Support from the National Science Foundation (Grant CHE-8305484) is gratefully acknowledged.

OM9307110

⁽¹⁷⁾ (a) Reactions were carried out in a Fischer-Porter glass pressure line. The glass pressure bottle was loaded with 4 in a glovebox and mounted on the vacuum line before condensing carefully dried CO₂ (in several portions) and THF. Resulta of control experimenta using Cp(CO)eRu-Na+ and Cp(CO)ZRu-Zr(Cl)Cpz **(4)** ruled out adventitious water **as** the source of **the** RpH. (b) Messerle, L. In *Experimental Ormnometallic Chemistrv:* ACS Svmmium Series **357:** Wavda. A. L.. Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, **1987;** Chapter **7,** p **198.**

⁽¹⁸⁾ Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. *Organometallics* **1989,8,2892.** Borkowski, *S.* L.; Jordan, R. F.; Hinch, G. D. *Organometallics* **1991**, 10, 1268. Jordan, R. F. *Adv. Organomet. Chem.* **1991**, 32, 325.

⁽¹⁹⁾ Pinkes, J. R.; Chiuli, R. J.; Steffey, B. D.; Cutler, A. R. Manuscript in preparation.

⁽²⁰⁾ (a) Ellis, J. E.; Fennel, R. W.; Flom, E. A. **Inorg.** *Chem.* **1976,15, 2031.** (b) Giuseppetti-Dery, **M.;** Landrum, B. E.; Shibley, J. L.; Cutler, A. R. *J. Organomet. Chem.* **1989, 378,421.**

⁽²¹⁾ Pinkes, J. R.; Cutler, A. R. Submitted for publication.