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Summary: The Fe-Zr and Ru~Zr heterobimetallic com-
pounds Cp(CO)sM-Zr(Cl)Cpzincorporate carbon dioxide
under mild conditions and give their respective u-1!(C):
1(0,0’) bimetallocarboxylates Cp(CO)sM-COzZr(Cl)Cpg.
With Cp(CO)oFe-Zr(Cl)Cpsy, 1 equivof COz0r3C02(99%
labeled) quantitatively adds at above 0°C in THF. The
resulting CO; adduct, Cp(CO)Fe—-CO4~Zr(Cl)Cpg, was
independently synthesized and fully characterized.
Cp(CO)gFe~13C0O+Zr(Cl)Cpz equilibrates with its isoto-
pomer Cp(3CO){(CO)Fe-COsZr(Cl)Cpz at room tem-
perature. Results of control experiments preclude ion-
ization of Cp(CO)sFe-Zr(Cl)Cpg to Cp(CO)gFe/*(THF)Zr-
(C)Cpzinordertoadd CO, Operationofa COzinsertion
pathway that requires bifunctional activation of the CO,
is discussed. Analogous Ru-Zr CO;insertion chemistry
requires more forcing conditions: 3-5 atm of COzand 3
days.

The challenge of developing carbon dioxide fixation as
a potential source of C; organic feedstocks is that the
limiting step often entails binding CO; at a transition-
metal center.2 The electron-rich transition-metal com-
plexes that ligate CO; irreversibly reduce it to carbon
monoxide.! These degradative processes can be circum-
vented by incorporating CO; into organotransition-metal
systems via ligand reactions,* typically “insertion” of
exogenous CO; into metal-hydride and some metal-alkyl
bonds to produce O-bound carboxylato compounds.? We
now report that the Fe-Zr and Ru~Zr bimetallic complexes
Cp(CO):M-Zr(C1)Cp: (1 and 2)8 add CO; togive the stable
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bimetallocarboxylates Cp(CO);M—-CO.-Zr(C1)Cp; (3 and
4) (eq 1), which represent the first examples of inserting
CO; into transition-metal-transition-metal bonds.

co,

M——Zr —_—
I\

oc co X (1-565atm,)

1,M=F9;2, M-Rj

\
M—C Zr 1)
/\ \o/ |
oC Co

3, M=Fe; 4, M= Ru

The carbon dioxide complexes 3 and 4 typify an emerging
theme that heterobimetallic complexes facilitate the
binding of CO; at transition-metal centers.™? Ourrecently
reported RuZr CO; complex Cp(CO);Ru-CO4-Zr(Cl)Cp2
(4),10 for example, is much more stable than its metallo-
carboxylate precursor, Cp(CO);Ru~CQ5-K*. This stabi-
lization is associated with an electronic “push—pull” that
results from coupling electron-rich ruthenium and oxo-
philic zirconium moieties!! through the u-1(C):92(0,0")
carboxylate bridge.

Continuing these studies on late—early bimetallic CO,
complexes required reproducibly synthesizing and fully
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characterizing the Fe—Zr bimetallocarboxylates Cp-

(CO)9Fe-CO+~Zr(C1)Cp: (3) and Cp(CO)oFe-13COo-Zr-
(C)Cp;, (3a) (eq 2). The Fe-Zr CO; adduct 3 had been
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reported!® as an impure material; it now was obtained
analytically pure after a prompt workup involving removal
of the THF.12 Although stable as a solid, THF solutions
of 3 at room temperature degraded to [CpFe(CO).]; and
[Cps(C1)Zr1;0 with a half-life (r1/2) of 4.0 h. IR spectral
carboxylate »(CO;) assignments for 3, which define a
chelating #2(0,0") metallocarboxylate structure,'® were
confirmed by comparison with those for 3a. In addition
to its solution degradation, 3a more rapidly (r12 = 1.5 h)
exchanges the 13C label between the carboxylate and
terminal carbonyl sites (eq 3).13 The resulting isotopomer
Cp(13CO)(CO)Fe—COo~Zr(C)Cp2 (3b)!4 is presumably
derived from equilibrium concentrations of the metal-
loanhydride species depicted in eq 3.
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Incorporating carbon dioxide into the Fe~Zr bond of
Casey’s heterobimetallic compound Cp(CO).Fe-Zr(Cl)-
Cp: (1) proved to be surprisingly straightforward.!s
Treatment of a THF solution of 1 above 0 °C with 1 equiv
of CO; quantitatively converted it to Cp(CO);Fe—COq-
Zr(C)HCpy (8) (eq 1). Also evident in these reaction

(12) A THF solution containing Cp(C0);FeCO;-K* (1.00 mmol) was
generated using 1.0 equiv of CO; (-196 to =78 °C) on a high-vacuum
linel% and was treated with Cp,ZrCl; (-78 °C). Rapid workup involving
evaporation of THF and reprecipitation from benzene-hexane afforded
Cp(CO)3Fe-CO-Zr(Cl)Cp, (8) (80% yield) as a stable, pale yellowish
whitesolid. IR (THF): »(CO) 2032, 1977 cm-}; vm(COg) 1363, veym(CO2)
1283 cm-1. 'H NMR (Cq¢Dy): 8 6.09 (s, CpoZr), 4.15 (s, CpFe). 12C{:H}
NMR (CDCly): §228.2 (FeCO),212.6 (u-CO5), 114.0 (CpsZr), 85.9 (CpFe).
Anal. Calcd for 'CmHuO‘ClFSZI‘I C, 45.25; H, 8.16, Found: C, 45.40; H,
3.05. Results using 99% 12C-labeled CQ,: Cp(CO);Fe-13C0O-Zr(Cl)Cp,
(3a). IR (THF): »(CO) 2081, 1977 cm11; vaaym(COy) 1330, r4ym(CO3) 1258
cm-!, Once removed from THEF, 3 is stable as a solid or even in benzene
solution; <20% degradation over 4 h.

(13) (a) Analogous label shuttling between carboxylate and terminal
carbonyl sites on Cp(CO);Fe—13CO;Li* or Cp(CO);Fe—C180,-Li+ 150
[Cp(CO)sFe=C(170)0—WCp,]*,? and Cp(CO);Ru—13CO,—Zr(Cl)Cp,1%®

been noted. Metalloanhydride species (cf. eq 3) are proposed
intermediates. (b) Lee, G.R.; Cooper, N. J. Organometallics 1985, 4, 794.
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Figure 1. Infrared spectrum of Cp(CO),Fe-Zr(C1)Cp; (3)
(upper scan), the spectrum after addition of 1 equiv of CO,
(middle scan), and the spectrum of purified Cp(CO);Fe—CO4-
Zr(C1)Cps (1) (bottom scan). Concentrations: 0.50 mmol of
1or3in5.0mL of THF. »(CO) bands at 1992, 1950, and 1781
cm-! correspond to the [Cp(CO)oFe]; impurity.
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mixtures was [CpFe(C0O);z]; (cf. Figure 1) and [Cp2(Cl)-
Zr];0 that accompanied the generation of 1. Using 99%
13C-labeled CO;in this insertion reaction likewise afforded
Cp(CO)oFe-13CO2—-Zr(C1)Cp; (3a).

Carboxylation of the Ru—Zr bimetallic complex Cp(CO)o-
Ru-Zr(C1)Cp; (2), however, only reluctantly occurred with
3-5.5 atm of CQ,. Vigorously stirred suspensions of 2 in
THF (room temperature) afforded clear solutions after
2-3 days under CO; pressure.!” IR and NMR spectral
analysis confirmed the presence of Cp(CO):Ru—COqo-
Zr(CHCp; (4) in 22-38% yields, along with Cp(CO);RuH
and [Cp2(CDZr].0. Both byproducts can be attributed
to the previously documented slow decomposition of the
product 4 in THF (113 = 12 h).102

(14) IR (THF) of Cp(13C0)(CO)Fe—~CO,~Zr(C))Cpg (3b) (»(CO) 2014,
1958 cm-!) and its 13C NMR spectra are consistent with the presence of
the monosubstituted Cp(13C0)(CO)Fe moiety.’® [Cp(:3CO)(CO)Fely/ [Cp-
(CO);Fe]; and [Cp,y(C1)Zr];0, as well as small amounts (<10%) of free
CO; and 13CO; (IR »(CO;3) 2336 and 2270 em-!) also were detected.

(15) (a) Alexander, J. J.; Wojcicki, A. J. Inorg. Chem. 1978, 12, 74.
Alexander, J. J. J. Am. Chem. Soc. 1975, 97, 1729, (b) Fettes, D. J.;
Narayanaswamy, R.; Rest, A. J. J. Chem. Soc., Dalton Trans. 1981, 2311.
Mahmoud, K. A,; Rest, A. J.; Alt, H. G. J. Chem. Soc., Dalton Trans.
1985, 1365. (c) Kazlauskas, R.J.; Wrighton, M. S. Organometallics 1982,
1,602. (d) Bodnar, T.C.; Cutler, A. R.J. Am. Chem. Soc. 1983, 105, 5926.

(16) Cp(CO)oFe-Zr(Cl)Cp, (1) was generated as an orange THF solution
(5 mL) by treating Cp(CO)sFe-K+ with Cp,ZrCl; (0.50 mmol each):¢ IR
»(CO) 1955, 1805 cm-!. On a high-vacuum line, 1.0 equiv of CO; was
condensed; the mixture was warmed from —196 to —46 °C, stirred at —46
°C (0.5 h), and then warmed to room temperature over 2.5 h. IR spectral
monitoring confirmed quantitative conversion of 1 to 3: 70% yields of
38 were quantified by IR and NMR spectroscopy. Insertion of 89% ‘?C-
labeled CO, afforded Cp(CO).Fe-13CO.~Zr(C1)Cp; (3a). Carboxylation
of 1 in toluene solution was slower; only a 35% transformation to 3a was
realized after 5 h.
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Plausible pathways for adding CO; to the FeZr and RuZr
bimetallic complexes Cp(C0):M~Zr(Cl)Cpz (1 and 2)
include their prior ionization in THF, with the resulting
metalates Cp(CO);M-then intercepting the CO; (Scheme
1;eq4). Although the ionization of polar Fe-Zr or Ru-Zr
bonds in the starting bimetallics 3 and 4 has not been
detected, both CpM(CO);-ions and (solvated) zirconocene
electrophiles!® Cpy(X)Zr(THF)+*BPhy- independently ex-
ist. In the alternative pathway, CO; could insert into the
Fe-Zr and Ru-Zr bonds via a bifunctional CO; activation
step (Scheme 1; eq 5) similar to that promulgated by
Floriani.

We favor the latter direct-insertion pathway for two
reasons. First, 13C-labeled CO; (1 atm in THF) does not
exchange with unlabeled CO; in Cp(CO):Fe-COo-Zr-
(C)Cpg (3); neither Cp(CO);Fe-13COs-Zr(Cl)Cp; (3a) nor
3b were detected after 3 h at room temperature. This
result establishes that heterolytic cleavage of 3 to give the
ion pairs 6 and then 5, the reverse of the postulated 5-6-3

(17) (a) Reactions were carried out in a Fischer-Porter glass pressure
vessell”® that had been suitably modified so that it attached to a vacuum
line. The glass pressure bottle was loaded with 4 in a glovebox and
mounted on the vacuum line before condensing carefully dried CO; (in
several portions) and THF. Results of control experiments using
Cp(CO);Ru-Na* and Cp(CO);Ru~Zr(Cl)Cp; (4) ruled out adventitious
water as the source of the RpH. (b) Messerle, L. In Experimental
Organometallic Chemistry; ACS Symposium Series 357; Wayda, A. L.,
Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC,
1987; Chapter 7, p 198,

(18) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N.
Organometallics 1989, 8, 2892. Borkowski, S. L.; Jordan, R. F.; Hinch,
G. D. Organometallics 1991, 10, 1268. Jordan, R. F. Adv. Organomet.
Chem. 1991, 32, 325.

transformations (eq 4), does not occur in THF. In
independent studies, we had established that Cp(CO),Fe-
CO,K* will exchange with 13C04.1 The more compelling
second reason. pertains to the lack of reactivity of Cp-
(CO)oFe-Zr(Cl)Cpz (1) toward carbon disulfide under
conditions (1.0 equiv of CS; at 0 °C for 2.5 h, then warming
t0 22 °C) where CO; readily adds. If 1 did ionize, then the
resulting Cp(CO).Fe- would have immediately added CS,
and produced the well-known dithiocarboxylate compound
Cp(CO)yFeCS;-820 We independently established that
Cp(CO)2FeCSy K plus CpyZrClp at 0°C affords the stable
and fully characterized FeZr u-n'(C):9%(S,S")-dithiocar-
boxylate complex Cp(CO).Fe-CSy-Zr(Cl)Cp,.2!

Although the Fe-Zr and Ru-Zr bonds of Cp(CO); M-
Zr(C)HCp: (1 and 2) incorporate CO; to give their bime-
tallocarboxylates Cp(CO):M-COo-Zr(Cl)Cp; (3 and 4)
under relatively mild conditions, further studies are
required to firmly establish the mechanism of COyinsertion
into Fe-Zr, Ru-Zr, and perhaps other polar, heterobime-
tallic complexes.
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