Preparation of Polyfunctional Olefins and Allenes Using 1,1-Bimetallics of Zinc and Zirconium

Charles E. Tucker, Björn Greve, Wolfram Klein, and Paul Knochel*

Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany

Received August 30, 1993*

The hydrozirconation of various alkenylzinc halides with Cp₂Zr(H)Cl in dry dichloromethane provides 1,1-dimetalloalkanes of zinc and zirconium which react with aldehydes, providing (E)-alkenes with good to excellent stereoselectivity (up to 98% E). The reaction tolerates the presence of a wide range of functionalities in the dimetallic species as well as in the aldehyde, allowing the preparation of functionalized olefins. Ketones can also be olefinated by these reagents. However, only a moderate stereoselectivity is observed. The hydrozirconation of alkynylzinc halides with Cp₂Zr(H)Cl gives 1,1-dimetalloalkenes of zinc and zirconium which react with aldehydes, affording allenes. The olefination of α , β -unsaturated aldehydes provides a short access of 1,2,4-trienes.

Introduction

The methylenation of aldehydes and ketones using transition-metal carbene complexes 1 or related 1,1bimetallic organometallics 2 (R^1 and $R^2 = H$) constitutes an excellent preparation of olefins and has found many applications in organic synthesis.¹ The extension of this method to alkylidenation reactions is possible in many cases but is often complicated by the instability of the organometallic reagents 1 and 2 (\mathbb{R}^1 and/or $\mathbb{R}^2 \neq H$) and often shows a moderate E/Z stereoselectivity (eqs 1 and 2).² In the course of our studies concerning the reactivity of 1,1-bimetallic reagents of zinc and magnesium 3, we

found a need for a more general synthesis of these reagents, which were prepared by allylzincation of alkenylmagnesium halides (eq 3).³ Inspired by the work of Schwartz, ^{1o-g,4}

who has shown that various alkenyl organometallics can

T. S.; Tebbe, F. N. J. Am. Chem. Soc. 1981, 103, 5584. (c) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 3270. (d) Howard, T. R.; Lee, J. B.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 6876. (e) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 1664. (f) Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo, L.; Clawson, L.; Ho, S.; Meinhardt, D.; Stille, J. R.; Straus, D.; Grubbs, R. H. Pure Appl. S.; Meinnardt, D.; Stille, J. R.; Straus, D.; Grubbs, R. H. *Ter App.*. *Chem.* 1983, 55, 1733. (g) Clawson, L.; Buchwald, S. L.; Grubbs, R. H. *Tetrahedron Lett.* 1984, 25, 5733. (h) Gilliom, L. R.; Grubbs, R. H. J. *Am. Chem. Soc.* 1986, 108, 733. (i) Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego, C. H.; Tijerina, T.; Pine, R. D. J. Org. *Chem.* 1985, Gillion and Chem. 1984, 25, 5733. (h) State and Chem. 1985, Complexity of the state and the 50, 1212. (j) For an excellent review concerning titanium-based olefination reagents: Pine, S. H. Org. React. 1993, 43, 1. (k) Kauffmann, T.; Fiegenbaum, P.; Wieschollek, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 531. (l) Kauffmann, T.; Möller, T.; Rennefeld, H.; Welke, S.; Wieschollek, R. Angew. Chem., Int. Ed. Engl. 1985, 24, 348. (m) Lombardo, L. Org. Synth. 1987, 65, 81.

^{(2) (}a) Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1987, 52, 4410. (b) Takai, K.; Fujimura, O.; Kataoka, Y.; Utimoto, K. Tetrahedron Lett. 1989, 30, 211. (c) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1065. (d) Takai, K.; Tezuka, M.; Kataoka, Y.; Utimoto, K. Synlett 1989, 27. (e) Hartner, F. W., Jr.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 4979. (f) Hartner, F. W.; Schwartz, J.; Clift, S. M. J. Am. Chem. Soc. 1983, 105, 640. (g) Clift, S. Schwartz, J.; Clift, S. M. J. Am. Chem. Soc. 1983, 105, 640. (g) Clift, S. M.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 8300. (h) Schrock, R. R. J. Am. Chem. Soc. 1976, 98, 5399. (i) Aguero, A.; Kress, J. A.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1986, 531. (j) Yoshida, T.; Negishi, E. J. Am. Chem. Soc., 1981, 103, 1276. (k) Gilliom, L. R.; Grubbs, R. H. Organometallics 1986, 5, 721. (l) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 855. (m) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 109, 55, 843. (n) Yoshida, T. Chem. Lett. 1982, 429. (o) Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 5490. (p) Mortimore, M.; Kocienski, P. Tetrahedron Lett. 1988, 29, 3357. (q) Dorssee, K. M.; Mouser, J. K. M. Tetrahedron Lett. 1991, 32, 1687. (g) Doxsee, K. M.; Mouser, J. K. M.; Farahi, J. B. Synlett. 1992, 13. (a) Petasis, N. A.; Akritopoulou, I. Synlett 1992, 665. (t) Petasis, N. A.; Bzowej, E. I. J. Org. Chem. 1992, 57, 1327.

^{(3) (}a) Gaudemar, M. C. R. Seances Acad. Sci., Ser. C 1971, 273, 1669. (b) Frangin, Y.; Gaudemar, M. C. R. Seances Acad. Sci., Ser. C 1974, 278, (a) Bellassoued, M.; Frangin, Y.; Gaudemar, M. Synthesis 1977, 205.
 (d) Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, 27, 1039. 205. (d) Knochel, F.; Horman, J. F. Petrahedron Lett. 1998, 1, 1005, 1043, 4427, 4431, 5727. (e) Knochel, P.; Xiao, C.; Yeh, M. C. P. Tetrahedron Lett. 1988, 29, 6697. (f) Knochel, P.; Yeh, M. C. P.; Xiao, C. Organometallics 1989, 8, 2831. (g) Tucker, C. E.; Achyutha Rao, S.; Knochel, P. J. Org. Chem. 1990, 55, 5446. (h) Waas, J. R.; Sidduri, A.; Knochel, P. Tetrahedron Lett. 1992, 33, 3717. (i) Tucker, C. E.; Knochel, P. Statistics 1989, 520 P. Synthesis 1993, 530.
 (4) Clift, S. M.; Schwartz, J. J. Organomet. Chem. 1985, 285, C5.

be hydrometalated with $Cp_2Zr(H)Cl$,⁵ we found that the hydrozirconation of alkenylzinc halides 4 with $Cp_2Zr(H)$ -Cl proceeds smoothly in CH_2Cl_2 , leading to 1,1-bimetallic reagents tentatively depicted as 5 (eq 4). These reagents react rapidly with aldehydes and ketones, providing (*E*)olefins with good to excellent stereoselectivity.⁶ We report herein our full results, which demonstrate the excellent functional group tolerance of the reaction and its application to the preparation of alkenes.

Results and Discussion

The addition of a CH_2Cl_2 suspension of $Cp_2Zr(H)Cl^{5f}$ to a CH_2Cl_2 solution of an alkenylzinc halide 4 (4a, R^1 = Hex, $R^2 = H$; 4b, $R^1 = Ph$, $R^2 = H$; 4c-e, see Schemes 1 and 2) affords instantaneously a yellow solution of the relatively unstable 1.1-bimetallics of zinc and zirconium 5a-f, to which an aldehyde or a ketone must be immediately added. A spectroscopic characterization (NMR or X-ray) of the reactive intermediates failed due to their instability. However, the hydrolysis of 5a ($R^1 = Hex$, R^2 = H) affords n-octane, as indicated by GLC analysis and by mass spectroscopy. After 10 min at 25 °C, ca. 75% of 5a has decomposed and the GLC analysis of a hydrolyzed aliquot shows the formation of a mixture of octane and octene (ca. 3:1 ratio). Remarkably, the hydrozirconation can be applied to functionalized alkenylzinc reagents bearing an ester, chloride, or cyano functionality (see Table 1). The preparation of these functionalized alkenylzinc halides 4c,d was performed using a low-temperature iodine-lithium exchange followed by a transmetalation with a THF solution of ZnI_2 .⁷ Thus, the commercially available alkyne 6a was first hydroborated with pinacolborane,⁸ leading to a boronic ester, which was then treated without purification with I_2 /NaOH (25 °C, 1 h), providing (E)-5-chloro-1-iodo-1-pentene (7a; 88% overall)yield). The reaction of 7a with BuLi (1.05 equiv, -90 °C, 3 min) in the Trapp mixture,⁹ followed by the addition of a THF solution of ZnI_2 , provides the zinc reagent 4b in over 90% yield (estimated by the iodolysis of a reaction aliquot). Similarly, 5-hexynenitrile (6b) was converted to (E)-6-iodo-5-hexenenitrile (7b; 79% overall yield), which

after successive treatment with BuLi and ZnI₂ at -90 °C affords the functionalized alkenylzinc iodide 4c (Scheme 1). The ester-substituted alkenylzinc species 4e was prepared from 5-iodopentyne (8).¹⁰ after hydroboration of 8 using pinacolborane (84% yield), the resulting boronic ester 9 was treated with zinc dust (THF, 25 °C, 4 h).¹¹ leading to an intermediate zinc species which was transmetalated with the THF-soluble copper salt CuCN-2LiCl¹¹ and added to ethyl propiolate, furnishing the functionalized boronic ester 10. After a Michael addition of Bu2- $Cu(CN)Li_{2}{}^{12}\,(69\,\%$ yield) and iodolysis of the boronic ester group, the alkenyl iodide 11 was isolated in 77% yield. Its reaction with BuLi (Trapp mixture, -100 °C, 3 min) followed by a transmetalation with ZnI₂ gives the desired ester-substituted alkenylzinc iodide 4e in ca. 80% yield (by iodolysis of a reaction aliquot; Scheme 2).

All the alkenylzinc halides 4a-e rapidly react with Cp₂-Zr(H)Cl^{5f} in dry CH₂Cl₂ (0 °C, 1 min). The resulting yellow solution has to be immediately used; otherwise, low yields of the olefination products are obtained. Thus, the addition of a CH₂Cl₂ solution of hexanal (0.9 equiv) leads after 14 h of stirring at 25 °C, usual workup (see Experimental Section), and a short filtration over silica gel to a crude product, which gives a single peak in capillary gas chromatography. The ¹³C NMR spectrum shows, however, the presence of an impurity which was separated by performing two flash chromatographies,¹³ leading to (*E*)-6-tetradecene (12a) in 73% isolated yield with an *E:Z* ratio >98:2 (determined by ¹³C NMR spectroscopy; eq 5

and Table 1, entry 1). It should be noted that the performance of this reaction in other solvents such as THF, ether, and toluene gave only trace amounts of the product. The addition of phosphines such as PPh₃ and Me₂PhP which typically stabilize zirconium bimetallics²² completely inhibits the olefination reaction. A variety of unfunctionalized (entries 1, 2, 5, and 10–13) or functionalized (entries 3, 4, and 6–9) aldehydes produce the desired (*E*)-olefins in acceptable yields (43–89%) and satisfactory *E*-stereoselectivity (75–98% *E*). The functionalized bimetallic species 5c-e react in significantly lower yields (55–64%) but in excellent stereoselectivity (>94% *E*; see entries 11–13). Although the *E/Z* ratio was always

^{(5) (}a) Schwartz, J.; Hart, D. W. J. Am. Chem. Soc. 1974, 96, 8115. (b) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333.
(c) Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1976, 97, 679. (d) Bertelo, C. A.; Schwartz, J. J. Am. Chem. Soc. 1976, 98, 262.
(e) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521. (f) Buchwald, S. L.; La Maire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 28, 3895.

<sup>M. Tetrahedron Lett. 1987, 28, 3895.
(6) Tucker, C. E.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 9888.
(7) Tucker, C. E.; Majid, T. N.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 3983.</sup>

⁽⁸⁾ Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482.

⁽⁹⁾ Köbrich, G. Angew. Chem., Int. Ed. Engl. 1979, 6, 41.

⁽¹⁰⁾ Knoess, H. P.; Furlong, M. T.; Rozema, M. J.; Knochel, P. J. Org. Chem. 1991, 56, 5974.
(11) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.

⁽¹¹⁾ Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

⁽¹²⁾ Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005.

⁽¹³⁾ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

Table 1.	Preparation of	(E)-Polyfunctional Olefin	s 12 by the Re	action of 1,1	1-Bimetallic	Reagents of Zinc	and Zirconium	5а-е
with Aldehydes								

entry no.	1,1-bimetallic 5	aldehyde	product 12	E/Z ratio	yield (%) ^a
1	ZnBr	Pent-CHO	Hept	98/2	73
	Hept(ZrCp ₂ Cl		12 a -f		
	5a				
2	5a	c-HexCHO	12b, $R = c$ -Hex	98/2	83
3	5a	MeO ₂ C(CH ₂) ₄ CHO	$12c, R = (CH_2)_4 CO_2 Me$	98/2	46
4	5a	PivO(CH ₂) ₃ CHO	12d , $R = (CH_2)_3 OPiv$	75/25	60
5	5a	Ph(CH ₂) ₂ CHO	12e , $R = (CH_2)_2 Ph$	89/11	82
6	5a	MeS(CH ₂) ₂ CHO	$12f, R = (CH_2)_2SMe$	94/6	66
7	5 a	ме Сно	R=-}-	91/9	70
			12g		
8	5a	Me Q	Me O	89/11	43
		Mer COJCH2CHO	R= 3 20 20 me		
9	5a	сно	Bu	85/15	81
		Pent Bu	R = Pent		
			12i		
10	PhCH ₂ -	Pent-CHO	PhCH ₂ Pent	98/2	89
	ZrOp ₂ Ci 5 b		12)		
11	,ZnBr	c-HexCHO	∧ .c-Hex	98/2	64
	CI(CH ₂) ₄ { ZrCp ₂ Ci			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	5c		12k		
12	ZnBr NC(CH ₂) ₄	c-HexCHO	C-Hex	94/6	55
	ZrCp ₂ Cl		CN		
	50		121		
13		c-HexCHO	c-Hex	97/3	58
	Bu CO ₂ Et				
	5e		12m		

^a Isolated yields of products being >95% pure.

reproducible, the yields of the reaction were found to be dependent on the quality of the Cp₂Zr(H)Cl (variations up to 20% were observed) and the preparation method of the Schwartz reagent⁵ developed by Buchwald^{5f} gave the best results. Interestingly, the reaction could also be extended to the preparation of disubstituted 1,1-dimetallic reagents. Thus, cyclohexenylzinc bromide, prepared by a transmetalation of cyclohexenyllithium¹⁴ with ZnBr₂, readily adds Cp₂Zr(H)Cl, providing the intermediate bimetallic **5f**, which reacts with aliphatic and aromatic aldehydes, leading to the *exo*-alkylidenecyclohexanes 13a,b in 76-83% yield (eq 6). Ketones also undergo the olefination reaction, providing trisubstituted olefins 14a-e in moderate stereoselectivity and 39-87% yields (Table 2). The reaction of 5a with menthyl glyoxylate¹⁵ gives the α,β -unsaturated menthyl ester 14e in excellent yield (87%; E:Z = 14:86; entry 5 of Table 2), showing that ester functions do not react with these bimetallics.² Olefination of esters such as ethyl benzoate failed, even when the reaction was performed in the presence of a base such as pyridine or triethylamine.¹⁶ The hydrozirconation of

⁽¹⁵⁾ Boireau, G.; Deberly, A.; Abenhaim, D. Tetrahedron Lett. 1988, 29, 2175.

⁽¹⁴⁾ Brandsma, L.; Verkruijsse, H. D. In Preparative Polar Organometallic Chemistry; Springer-Verlag: New York, 1987; Vol. 1, p 50.

⁽¹⁶⁾ Straus, D. A.; Grubbs, R. H. Organometallics 1982, 1, 1658.

Olefins and Allenes from Bimetallics of Zn and Zr

 Table 2.
 Preparation of Trisubstituted Olefins 14a-e by the Reaction of the 1,1-Bimetallic Reagent 5a with Various Ketones

^a Isolated yields of products being >95% pure.

alkynylzinc halides 15a,b is also possible and affords 1,1dimetalloalkenes to type 16, which react with aldehydes to provide the allenes 17a-g in moderate yields (Table 3 and eq 7). The method seems to be well suited for the

and eq 7). The method seems to be well suited for the

$$R^{1} = ZnX \quad \frac{H(CI)ZrC p_{2}}{CH_{2}CI_{2}}$$

$$E^{25 \circ C, 10 \text{ min}}$$

$$15a: R=Hex$$

$$15b: R=Ph$$

$$R^{1} = ZnX \quad \frac{RCHO}{TrCp_{2}CI} \quad \frac{RCHO}{(27 - 71\%)} \quad R^{1} \quad (7)$$

$$16a: R=Hex$$

$$17a-g$$

$$R^{1} = CO_{2}Et \quad + \quad Hept-HC \\ ZrCp_{2}CI \quad \frac{ZnX}{ZrCp_{2}CI} \quad \frac{Ac_{2}O(5 \text{ equiv.})}{25 \circ C, 0.5h}$$

$$5a$$

$$H = Hept \quad (8)$$

18 (*E*/*Z* = 65/35)

preparation of 1,2,4-trienes (17c-g; entries 3-7 of Table 3). Numerous attempts to improve the yields failed. Finally, the olefination of alkylidenemalonates^{3g,i} with the 1,1bimetallic reagents proceeds cleanly in the presence of acetic anhydride (5 equiv, 25 °C, 0.5 h) and allows the conversion of diethyl benzylidenemalonate (0.9 equiv) and 5a into 1-phenyl-1-octene 18 (78%, E/Z = 65/35; eq 8). As in the Wittig reaction,¹⁷ we believe that the first step of the reaction of the bimetallic 5 with aldehydes is the formation of a cyclic intermediate of type 19 which

(17) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.

Table 3.	Preparation	of Allenes	17a-g by the	Reaction of
1,1-Bimetal	llic Álkenes o	of Zinc and	Zirconium w	ith Aldehydes

ntry no.	1,1-bimetallic reagent 16	aldehyde	allene product 17	yield (%)4
1	Hex-C= H ZrCp ₂ C 16a	Pent-CHO	Hex 17a	68
2	16a	c-HexCHO	Hex 17b	71
3	16a	Ргсно	Hex 17c	45
4	16a	Me Me CHO	Hex 1=1	49
5	16a	менсно	Hex	29
6	Ph-C= H ZrCp ₂ Cl 16b	Me Me CHO	Me Me Ph 17f	49
7	16b	Ргусно	Pr Ph 17g	29

^a Isolated yields of products being >95% pure.

Scheme 3

eliminates the zirconium moiety, affording the olefin of type 12 (Scheme 3). It is this elimination which seems to be the rate-determining step, since it was observed that the aldehyde disappears immediately after addition (rapid formation of 19) but the maximum yield is obtained by workup of the reaction mixture after ca. 12 h.

In summary, we have shown that 1,1-bimetallic species of zinc and zirconium prepared by the hydrozirconation of alkenylzinc halides provide a new access to 1,1-bimetallic compounds of zinc and zirconium 5. These reagents react with aldehydes with good to excellent E selectivity. The reaction constitutes an interesting preparation of functionalized (E)-olefins, since various functionalities can be present either in the 1,1-bimetallic or in the aldehyde. The reaction of 5 with ketones proceeds with low stereoselectivity. An extension to the preparation of allenes is possible by reacting alkynylzinc iodides with $Cp_2Zr(H)Cl$, which leads to a 1,1-dimetalloalkene of type 16. Their reaction with aldehydes provides allenes in moderate yields.

Experimental Section

General Considerations. All reactions were carried out under argon. Solvents (ether, THF) were dried over sodium/benzophenone and freshly distilled. The zinc foil was purchased from Alfa (0.62 mm thick, purity m3N). LiCl and ZnI₂ were dried for 1-2 h under vacuum (0.1 mmHg) at 150 °C before use. The reactions were monitored by gas chromatography (GLC) analysis. FT-IR spectra were recorded on sodium chloride plates. ¹H NMR spectra (300 MHz) and ¹³C NMR spectra (75.5 MHz) were measured in CDCl₃ on a Bruker WM-300 spectrometer.

Preparation of the Functionalized Alkenylzinc Halides 4c-e. Preparation of (E)-5-Chloro-1-iodo-1-pentene (7a). In a three-necked flask equipped with an addition funnel, a nitrogen inlet, and a thermometer, BH₃·SMe₂ (20 mmol, 10.0 M in methyl sulfide) was added to a solution of pinacol (2.36 g, 20 mmol) in CH₂Cl₂ (4 mL) at 0 °C and stirred for 1 h. After the mixture was warmed to 25 °C and stirred until no further evolution of H_2 was observed, the pinacolborane solution⁸ was cooled to 0 °C, and 5-chloro-1-pentyne (1.02 g, 10 mmol; Aldrich) was added. After it was warmed to 25 °C and stirred for 8 h, the reaction mixture was washed quickly with two 200-mL portions of saturated aqueous NH₄Cl. The aqueous phase was extracted twice with 50-mL portions of ether, the combined organic phases were dried over MgSO₄, and the solvents were removed under reduced pressure. Without further purification, the resulting oil was dissolved in ether (10 mL) and cooled to 0 °C. Aqueous sodium hydroxide (30 mmol, 3.0 M) was added dropwise, and the resulting white reaction mixture was stirred at 0 °C for 10 min. Iodine (5.08 g. 20 mmol, 2.0 M in ether) was then added dropwise, and the reaction mixture was stirred for an additional 1 h. After workup with aqueous Na₂S₂O₃, the organic phase was dried over MgSO4 and the solvents were removed under reduced pressure. The residue was purified by flash chromatography (solvent hexane), yielding 2.02 g (88%) of (E)-5-chloro-1-iodo-1-pentene (7a) as a red oil (E/Z ratio > 98/2). IR (neat): 2955 (s), 2948 (m), 2912 (m), 1588 (m), 1442 (s), 1218 (s), 946 (s), 651 (s) cm⁻¹. ¹H NMR: $\delta 6.49$ (dt, 1H, J = 14.3, 7.2 Hz), 6.10 (d, 1H, J = 14.3 Hz), 3.45 (t, 2H, J = 6.4 Hz), 2.27-2.20 (m, 2H), 1.91-1.82 (m, 2H). ¹³C NMR: δ 144.6, 76.0, 43.8, 33.1, 31.1. MS (EI, 70 eV; m/e(relative intensity)): 232 (8), 230 (25), 167 (26), 127 (12), 103 (26), 67 (74), 41 (100). HRMS: calcd for C₅H₈³⁵ClI 230.5126, obsd 230.5121.

Preparation of (E)-5-Cyano-1-iodo-1-pentene (7b). The same procedure as described for 7a was used. A pale yellow oil (1.52g, 69%) was obtained from 5-hexynenitrile (0.93g, 10 mmol) after flash chromatography (solvent 5% ether in hexane): E/Z ratio >98/2. IR (neat): 2936 (s), 2246 (m), 1609 (m), 1424 (s), 1219 (s), 947 (s) 659 (m) cm⁻¹. ¹H NMR: δ 6.45 (dt, 1H, J = 14.4, 7.2 Hz), 6.16 (d, 1H, J = 14.4 Hz), 2.36 (t, 2H, J = 7.0 Hz), 2.24 (q, 2H, J = 7.2 Hz), 1.76 (p, 2H, J = 7.2 Hz). ¹³C NMR: δ 143.8, 119.1, 76.9, 34.6, 24.1, 16.3. MS (EI, 70 eV; m/e (relative intensity)): 221 (21), 195 (15), 167 (40), 127 (16), 94 (48), 67 (100). HRMS: calcd for C₆H₈N 221.0691, obsd 221.0687.

Preparation of (E)-Pinacol (5-Iodo-1-pentenyl)boronate (9). The same procedure as described for 7a was used. A clear oil (2.70 g, 84%) was obtained from 5-iodo-1-pentyne (1.94 g, 10 mmol) after flash chromatography (solvent 5% ether in hexane): E/Z ratio >98/2. IR (neat): 2978 (s), 2932 (m), 1639 (s), 1388 (m), 1368 (s), 1324 (s), 1204 (m), 1165 (s), 1001 (m), 974 (m), 850 (s) cm⁻¹. ¹H NMR: δ 6.55 (dt, 1H, J = 6.5 Hz), 5.49 (dt, 1H, J= 1.5, 18.0 Hz), 3.17 (t, 2H, J = 7.0 Hz), 2.26 (dq, 2H, J = 1.2, 6.8 Hz), 1.95 (p, 2H, J = 7.0 Hz), 1.26 (s, 12H). ¹³C NMR: δ 151.4, 119.5 (bs), 82.8, 36.0, 31.7, 24.6, 5.8. MS (EI, 70 eV; m/e (relative intensity)): 322 (48), 307 (41), 236 (31), 223 (18), 195 (46), 153 (61), 109 (71), 101 (66), 83 (57), 67 (100). HRMS: calcd for $C_{11}H_{20}$ -BIO₂ 322.0601, obsd 322.0602.

Preparation of (1E,6E)-Pinacol 7-Carboethoxy-1,6-heptadienylboronate (10). To a three-necked flask equipped with an argon inlet, an addition funnel, and a thermometer, charged with a slurry of zinc dust (60 mmol, 3.92 g) activated by the addition of 1,2-dibromoethane (0.19 g, 1.0 mmol) and chlorotrimethylsilane (0.11 g. 1.0 mmol), in THF (5 mL), was added dropwise a solution of pinacol (5-iodo-1-pentenyl)boronate (9; 6.44 g, 20 mmol) in THF (7 mL). The resulting slurry was then stirred at 25 °C for 4 h, and the excess zinc dust was allowed to settle. The clear solution was then cannulated to a solution of CuCN (1.79 g, 20 mmol) and LiCl (1.70 g, 40 mmol)¹¹ in THF (20 mL) cooled to -50 °C. The resulting solution was warmed to 0 °C, stirred for 5 min, and then cooled to -78 °C. A solution of ethyl propiolate (1.96 g, 20 mmol) in THF (5 mL) was then added, and the reaction mixture was warmed to -20 °C and stirred for 14 h. After workup in ether with saturated aqueous NH₂Cl, the organic layer was dried over MgSO4, and the solvents were removed under vacuum. Purification of the residue by flash chromatography (solvent, 10% ether in hexane) yielded 3.70 g (63% yield) of (1E, 6E)-pinacol 7-carboethoxy-1,6-heptadienylboronate (10) as a clear oil: E,E purity >98%. IR (neat): 2979 (s), 2933 (s), 1722 (s), 1654 (2), 1368 (s), 1364 (s), 1321 (s), 1269 (s), 1209 (s), 1096 (s), 996 (s), 849 (s) cm⁻¹. ¹H NMR: δ 6.93 (dt, 1H, J = 15.6, 6.9 Hz), 6.58 (dt, 1H, J = 18.9, 6.4 Hz), 5.80 (d, 1H, J)J = 15.6 Hz), 5.44 (d, 1H, J = 18.0 Hz), 4.17 (q, 2H, J = 7.1 Hz), 2.24-2.14 (m, 4H), 1.63-1.56 (m, 2H), 1.35-1.13 (m, 15H). ¹³C NMR: δ 166.6, 153.2, 148.6, 121.7, 83.0, 60.0, 34.9, 31.4, 26.4, 24.7, 14.2. MS (EI, 70 eV; m/e (relative intensity)): 294 (2), 279 (1), 248 (3), 236 (8), 194 (57), 166 (54), 122 (82), 84 (100), 55 (90), 41 (83). HRMS: calcd for C₁₆H₂₇¹¹BO₄ 294.2002, obsd 294.2019.

Preparation of (E)-Pinacol 6-Butyl-7-carboethoxy-1-heptenylboronate. BuLi (20 mmol, 1.6 M in hexanes) was added to a three-necked flask (equipped with an argon inlet, an addition funnel, and a thermometer) charged with CuCN (0.90 g, 10 mmol) in THF (10 mL) and cooled to -78 °C. After the mixture was warmed to -60 °C, stirred for 5 min, and cooled to -78 °C, a solution of 10 (2.94 g, 10 mmol) in THF (5 mL) was added. The reaction mixture was warmed to -20 °C and stirred for 4 h. After workup in ether with saturated aqueous NH4Cl, the organic phase was dried over MgSO4 and the solvents were removed under vacuum. Purification of the remaining residue by flash chromatography (solvent, 10% ether in hexane) yielded 3.06 g (87%) of pinacol (6-butyl-7-carboethoxy-1-heptenyl) boronate as an oil. IR (neat): 2977 (s), 1958 (s), 2930 (s), 1714 (s), 1639 (s), 1374 (s), 1320 (s), 1146 (s) cm⁻¹. ¹H NMR: δ 6.60 (dt, 1H, J = 7.9, 6.0 Hz), 5.41 (d, 1H, J = 17.9 Hz), 2.36 (t, 3H, J = 7.4 Hz), 2.29 (d, 2H, J = 6.6 Hz), 2.14–2.04 (m, 2H), 1.96–1.80 (m, 1H), 1.57–1.43 (m, 4H), 1.43–1.10 (m, 17H), 0.95–0.81 (m, 6H). $^{13}\mathrm{C}$ NMR: δ 168.3, 154.0, 47.5, 42.8, 35.7, 33.5, 28.6, 25.7, 25.1, 24.5, 24.0, 22.6, 22.1, 21.8, 13.7, 13.5. MS (EI, 70 eV; m/e (relative intensity)): 352 (1), 307 (1), 264 (3), 201 (38), 165 (9), 136 (11), 109 (10), 101 (40), 85 (48). HRMS: calcd for $C_{20}H_{37}^{11}BO_4$ 35.2843, obsd 352.2850.

Preparation of (E)-Ethyl-3-butyl-8-iodo-7-octenoate (11). The same procedure as described for the preparation of 7a,b was used. However, sodium ethoxide (1.63 g, 24.0 mmol) in ethanol (50 mL) was used instead of sodium hydroxide. A clear oil (1.91 g, 81% yield) was obtained from (E)-pinacol (6-butyl-7-carboethoxy-1-heptenyl)boronate (2.35 g, 6.7 mmol) after purification by flash chromatography (solvent 10% ether in hexane). IR (neat): 2957 (s), 2921 (s), 1750 (s), 1452 (s), 1360 (s), 1311 (s), 1047 (s) cm⁻¹. ¹H NMR: δ 6.49 (dt, 1H, J = 17.2, 6.7 Hz), 6.29 (d, 1H, J = 17.2 Hz), 2.40 (t, 3H, J = 7.1 Hz), 2.19-2.11 (m, 2H),2.04-1.96 (m, 1H), 1.66-1.55 (m, 4H), 1.48-1.04 (m, 5H), 0.98-0.82 (m, 6H). ¹³C NMR: δ 167.3, 122.4, 76.8, 49.1, 44.6, 37.2, 34.0, 28.9, 26.1, 25.9, 22.9, 21.6, 13.9, 13.7. MS (EI, 70 eV; m/e (relative intensity)): 352 (1), 307 (4), 262 (1), 237 (11), 205 (4), 180 (8), 167 (18), 137 (9), 113 (15), 85 (92). HRMS: calcd for C14H25O2I 352.2629, obsd 352.2633.

Typical Procedure for the Preparation of Functionalized Alkenylzinc Halides Such as 4c-e. A 100-mL three-necked flask equipped with a thermometer, an argon inlet, and an addition funnel was charged under argon with (*E*)-5-chloro-1iodo-1-pentene (7a; 1.58 g, 2.50 mmol) in a mixture of THF/ ether/pentane (4/1/1; 12 mL) and cooled to -100 °C (liquid N₂, ether bath), and *n*-BuLi (2.6 mmol, 1.60 M in hexanes) was added over 4 min. The resulting yellow solution was stirred for 3 min at -100 °C, and a solution of ZnI₂ (0.83 g, 2.60 mmol) in THF (5 mL) was added. After it was stirred for 10 min at -100 °C, the solution was warmed up to 0 °C and was ready for use. Under these conditions 4c was obtained in >90% yield, 4d in ca. 85% yield, and 4e in ca. 80% yield, as determined by performing an iodolysis of a reaction aliquot (analysis by capillary GLC).

Typical Procedure for the Formation of (E)-Olefins of Type 12. Preparation of (E)-1-Cyclohexyl-1-nonene (12a). A three-necked flask equipped with an argon inlet and a thermometer was charged under argon with dry ZnBr₂ (1.13 g, 5 mmol) in dry THF (5 mL). After the flask was cooled to -50 °C, 1-octenyl-1-magnesium bromide (5 mmol, 1.0 M in THF) was added dropwise. After the mixture was warmed to 25 °C. the THF was removed under vacuum and replaced with dry CH₂-Cl₂ (10 mL). After dissolution, a slurry of Cp₂Zr(H)Cl,^{5f} (1.29 g, 5 mmol) in CH₂Cl₂ (8 mL) was added all at once, followed immediately by a solution of cyclohexanecarboxaldehyde (0.50 g, 4.5 mmol) in CH₂Cl₂ (3 mL). The resulting bright yellow solution was stirred for 14 h at 25 °C. After the usual workup and evaporation of the solvents, the residue was purified by flash chromatography (solvent hexane), affording 777 mg (83%) of (E)-1-cyclohexyl-1-nonene (12a) as a colorless oil (E/Z > 98/2). In some cases, such as 12a, two successive purifications by flash chromatography were necessary (solvent hexane) to obtain a pure compound.

Typical Procedure for the Preparation of the Functionalized Olefin 12. Preparation of (E)-6-Chloro-1-cyclohexyl-1-hexene (12k). To a three-necked flask equipped with an argon inlet and a thermometer, charged under argon with (E)-5-chloro-1-iodo-1-pentene (7a; 1.15 g, 5 mmol), and cooled to -100 °C was added BuLi (5 mmol, 1.8 M in hexanes). After stirring for 3 min, a solution of dry ZnBr₂ (1.13 g, 5 mmol) in THF (5 mL) was added dropwise. After the mixture was stirred at 25 °C, the solvents were removed under vacuum and replaced with dry CH₂-Cl₂ (10 mL). After dissolution, a slurry of Cp₂Zr(H)Cl^{5f} (1.29 g, 5 mmol) in CH₂Cl₂ (8 mL) was added all at once, followed immediately by a solution of cyclohexanecarboxaldehyde (0.50 g, 4.5 mmol) in CH₂Cl₂ (3 mL). The resulting bright yellow solution was stirred for 14 h at 25 °C. After the usual workup and evaporation of the solvents, the residue was purified by flash chromatography (solvent hexane), affording 594 mg (64%) of (E)-6-chloro-1-cyclohexyl-1-hexene (12k) as a colorless oil (E/Z)98/2).

Analytical Data for Compounds 12. (*E*)-6-Tetradecene (12a). A clear oil (644 mg, 73%) was obtained from hexanal (4.5 mmol, 450 mg) after two successive flash chromatographies (solvent hexane): E/Z ratio >98/2. IR (neat): 3003 (s), 2957 (s), 2873 (s), 2855 (s), 1467 (m), 967 (m) cm⁻¹. ¹H NMR: δ 5.42–5.33 (m, 2H), 2.01–1.91 (m, 4H), 1.40–1.13 (m, 16H), 0.89 (t, 6H, J = 6.8 Hz). ¹³C NMR: δ 130.3, 32.4, 31.7, 31.3, 29.5, 29.2, 29.1, 29.0, 28.9, 22.5, 22.4, 13.8. MS (EI, 70 eV; m/e (relative intensity)): 196 (16), 140 (2), 125 (6), 111 (23), 97 (56), 83 (75), 69 (100). HRMS: calcd for C₁₄H₂₈ 196.2191, obsd 196.2189.

(E)-1-Cyclohexyl-1-nonene (12b).¹⁸ A clear oil (777 mg, 83%) was obtained from 504 mg of cyclohexanecarboxaldehyde (504 mg, 4.5 mmol) after flash chromatography (solvent hexane). The spectral data match those given in ref 18: E/Z ratio 98/2. IR (neat): 2961 (s), 2915 (s), 2850 (s), 1451 (m) cm⁻¹. ¹H NMR: δ 5.38–5.31 (m, 2H), 2.15–1.80 (m, 3H), 1.73–1.56 (m, 5H), 1.39–0.94 (m, 15H), 0.87 (t, 3H, J = 7.5 Hz). ¹³C NMR: δ 136.5, 127.9, 40.8, 33.5, 32.7, 32.0, 29.8, 29.3, 29.2, 26.4, 26.2, 22.7, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 208 (18), 180 (2), 138 (3), 124 (4), 109 (42). HRMS: calcd for C₁₅H₂₈ 208.2191, obsd 208.2186.

(E)-Methyl 6-Tetradecenoate (12c). A clear oil (497 mg, 46%) was obtained from methyl 6-oxohexanoate (4.5 mmol, 648 mg) after flash chromatography (solvent hexane): E/Z ratio 98/2. IR (neat): 2954 (s), 2926 (s), 2856 (s), 1743 (s), 1437 (m), 1172 (m) cm⁻¹. ¹H NMR: δ 5.42–5.31 (m, 2H), 3.67 (s, 3H), 2.32 (t, 2H, J = 6.1 Hz), 2.05–1.91 (m, 4H), 1.66–1.54 (m, 2H), 1.44–1.28 (m, 12H), 0.87 (t, 3H, J = 6.2 Hz). ¹³C NMR: δ 174.3, 130.6, 129.6, 51.4, 34.0, 32.6, 31.9, 29.8, 29.6, 29.2, 24.6, 24.5, 22.7, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 240 (1), 208 (8), 166 (15), 151 (3), 137 (7), 124 (17), 110 (20), 96 (43). HRMS: calcd for C₁₅H₂₈O₂ 240.2089, obsd 240.2081.

(*E*)-4-Dodecenyl 2,2-Dimethylpropionate (12d). A clear oil was obtained after flash chromatography (solvent hexane/ ether 90/10): E/Z ratio 75/25. IR (neat): 2959 (vs), 2927 (vs), 2855 (vs), 1732 (vs), 1480 (m), 1460 (m), 1284 (s), 1261 (s), 1157 (br, s), 968 (s), 771 (br, s) cm⁻¹. ¹H NMR: δ 5.39 (m, 2H), 4.04 (t, 2H, J = 6.6 Hz), 2.05 (m, 2H), 1.97 (q, 2H, J = 7.6 Hz), 1.28 (m, 10H), 1.19 (s, 9H), 0.87 (t, 3H, J = 6.8 Hz). ¹³C NMR: δ 178.5, 131.5, 128.6, 63.7, 38.7, 32.5, 31.8, 29.5, 29.2, 29.1, 28.9, 28.5, 27.2, 23.5, 14.1. MS (NH₃; m/e (relative intensity)): 286 (98, [M + NH₄]⁺), 269 (40, [M + H]⁺), 136 (100). HRMS: calcd for C₁₇H₃₂O₂H 269.2481, obsd 269.2458.

(*E*)-1-Phenyl-3-undecene (12e). A clear oil was obtained after flash chromatography using hexane as solvent: E/Z ratio 89/11. IR (neat): 3027 (m), 2956 (vs), 2926 (vs), 2871 (vs), 2854 (vs), 1496 (m), 1466 (s), 1455 (s) cm⁻¹. ¹H NMR: δ 7.13 (m, 5H), 5.39 (m, 2H), 2.59 (t, 2H, J = 7.3 Hz), 2.25 (m, 2H), 1.90 (m, 2H), 1.18 (m, 10H), 0.81 (t, 3H, J = 6.8 Hz). ¹³C NMR: δ 142.2, 131.2, 129.3, 128.4, 128.2, 125.6, 36.2, 34.4, 32.6, 31.9, 29.6, 29.2, 29.1, 22.7, 14.0. MS (EI, 70 eV; m/e (relative intensity)): 230 (27), 104 (48), 83 (33). HRMS: calcd for C₁₇H₂₈ 230.2035, obsd 230.2043.

(E)-1-(Methylthio)-3-undecene (12f). A clear oil was obtained after flash chromatography using hexane as solvent: E/Z ratio 94/6. IR (neat): 3026 (vs), 2925 (vs), 2871 (vs), 2853 (vs), 1485 (s), 1437 (s), 967 (vs) cm⁻¹. ¹H NMR: δ 5.49 (m, 2H), 2.53 (t, 2H, J = 6.9 Hz), 2.27 (q, 2H, J = 6.9 Hz), 1.98 (q, 2H, J = 6.6 Hz), 1.27 (m, 10H), 0.88 (t, 3H, J = 6.9 Hz), 2.11 (s, 3H). ¹³C NMR: δ 132.1, 127.9, 34.3, 32.5, 32.4, 31.8, 29.4, 29.1, 29.09, 29.6, 15.5, 14.0. MS (EI, 70 eV; m/e (relative intensity)): 200 (6), 185 (59), 129 (12), 95 (14), 81 (21), 61 (100), 55 (29). HRMS: calcd for C₁₂H₂₄S 200.1599, obsd 200.1585.

(E)-(4S)-1-(1-Nonenyl)-4-isopropenylcyclohexene (12g). A clear oil was obtained after flash chromatography using hexane/ ether as solvent: E/Z ratio 91/9. IR (neat): 3022 (w), 2955 (vs), 2926 (vs), 2855 (vs), 1645 (m), 1466 (s), 1437 (m), 1376 (m) 964 (s), 888 (s) cm⁻¹. ¹H NMR: δ 6.0 (d, 1H, J = 15.9 Hz), 5.65 (m, 1H), 5.57 (dt, 1H, J = 15.9, 6.8 Hz), 4.72 (s, 2H), 2.15 (m, 6H), 1.90 (m, 1H), 1.74 (s, 3H), 1.50 (m, 1H), 1.33 (m, 12H), 0.87 (t, 3H, J = 6.8 Hz). ¹³C NMR: δ 149.8, 135.5, 132.9, 127.2, 126.0, 108.6, 41.5, 32.9, 31.9, 31.4, 29.8, 29.3, 27.7, 25.3, 22.7, 20.7, 14.0. MS (m/e (relative intensity)): 246 (46), 205 (67), 147 (32), 133 (22), 119 (27), 107 (38), 105 (34), 93 (61), 79 (100), 55 (33). HRMS: calcd for C₁₈H₃₀ 246.2348, obsd 246.2334.

(*E*)-1-(4,4-Dimethyl-2,6-dioxolan-1-yl)dec-2-ene (12h). A clear oil was obtained after flash chromatography using hexane/ ether as a solvent: E/Z ratio 89/11. IR (neat): 2955 (s), 2925 (s), 2853 (s), 1468 (m), 1391 (m), 1261 (m), 1128 (s), 1095 (s), 1023 (s), 971 (m), 805 (br s) cm⁻¹. ¹H NMR: δ 5.53 (dt, 1H, J = 15.8, 6.6 Hz), 5.42 (dt, 1H, J = 15.8, 6.6 Hz), 4.41 (t, 1H, J = 5.1 Hz), 3.62 (d, 2H, J = 10.0 Hz), 3.42 (d, 2H, J = 10.0 Hz), 2.35 (t, 2H, J = 5.2 Hz), 2.00 (q, 2H, J = 6.6 Hz), 1.3 (m, 10H), 0.87 (t, 3H, J = 6.9 Hz), 0.71 (s, 6H). ¹³C NMR: δ 133.8, 123.7, 102.0, 77.3, 38.3, 32.6, 29.2, 29.1, 31.4, 31.8, 29.3, 23.0, 22.6, 21.8, 27.4. MS (m/e (relative intensity)): 272 (24, [M + NH₄]⁺), 255 (100, [M + H]⁺), 168 (46), 136 (63), 115 (25). HRMS: calcd for C₁₆H₃₀O₂H 255.2324, obsd 255.2325.

(6Z,8E)-7-Butyl-6,8-hexadecadiene (12i). A clear oil was obtained after flash chromatography using hexane as solvent: E/Z ratio 85/15. IR (neat): 3018 (m), 2957 (vs), 2926 (vs), 2872 (vs), 2856 (vs), 1466 (s), 964 (s) cm⁻¹. ¹H NMR: δ 5.93 (d, 1H, J = 15.8 Hz), 5.56 (dt, 1H, J = 15.8, 6.9 Hz), 5.32 (t, 1H, J = 7.3 Hz), 2.19 (t, 2H, J = 7.4 Hz), 2.07 (q, 4H, J = 6.3 Hz), 1.31 (m,

⁽¹⁸⁾ Pelter, A.; Hutchings, M. G.; Rowe, K.; Smith, K. J. Chem. Soc., Perkin Trans 1 1975, 138.

20H), 0.92 (m, 9H). ¹³C NMR: δ 138.3, 133.5, 130.5, 127.3, 33.0, 31.9, 31.7, 31.4, 29.7, 29.6, 29.6, 29.2, 28.0, 23.1, 22.7, 22.6, 14.1, 14.0. MS (*m/e* (relative intensity)): 278 (10), 179 (23), 166 (14), 137 (14), 123 (36), 109 (37), 95 (54), 93 (14), 81 (79). HRMS: calcd for C₂₀H₃₇ 278.2974, obsd 278.2968.

(E)-1-Phenyl-2-octene (12j). A clear oil (754 mg, 89%) was obtained from benzaldehyde (4.5 mmol, 477 mg) after flash chromatography (solvent hexane). IR (neat): 3027 (m), 2958 (s), 2927 (s), 2857 (s), 1454 (m), 737 (m), 697 (s) cm⁻¹. ¹H NMR: δ 7.47-7.13 (m, 5H), 5.61-4.97 (m, 2H), 3.43 (d, 2H, J = 6.3 Hz), 2.17 (q, 2H, J = 7.43 Hz), 1.48-1.22 (m, 6H), 0.97-0.85 (m, 3H). ¹³C NMR: δ 143.7, 140.3, 136.2, 135.1, 127.8, 122.4, 54.6, 44.6, 32.9, 29.6, 27.3, 15.0. MS (EI, 70 eV; m/e (relative intensity)): 188 (2), 174 (5), 160 (8), 122 (10), 109 (21), 96 (33). HRMS: calcd for C₁₄H₂₀ 188.1565, obsd 188.1567.

(E)-6-Chloro-1-cyclohexyl-1-hexene (12k). A clear oil (594 mg, 64%) was obtained from cyclohexanecarboxaldehyde (504 mg, 4.5 mmol) after flash chromatography (solvent hexane): E/Z ratio 98/2. IR (neat): 2945 (s), 2908 (s), 1748 (s), 948 (m), 736 (s), 703 (m) cm⁻¹. ¹H NMR: δ 5.41–5.23 (m, 2H), 2.54 (t, 2H, J = 6.9 Hz), 2.00 (q, 2H, J = 7.1 Hz), 1.96–1.81 (m, 1H), 1.81–1.54 (m, 6H), 1.54–1.43 (m, 2H), 1.42–0.94 (m, 6H). ¹³C NMR: δ 137.3, 126.9, 44.9, 40.7, 33.3, 32.1, 31.8, 26.9, 26.3, 26.1. MS (EI, 70 eV; m/e (relative intensity)): 202 (3), 200 (8), 109 (50), 96 (48). HRMS: calcd for C₁₂H₂₁³⁶Cl 206.1643, obsd 200.1655.

(E)-6-Cyano-1-cyclohexyl-1-hexene (121). A clear oil (472 mg, 55%) was obtained from cyclohexanecarboxaldehyde (504 mg, 4.5 mmol) after flash chromatography (solvent 10% ethyl acetate in hexane): E/Z ratio 94/6. IR (neat): 2951 (s), 2930 (s), 2248 (m), 1466 (m), 980 (m), 745 (s) cm⁻¹. ¹H NMR: δ 5.52–5.45 (m, 2H), 2.34 (t, 2H, J = 7.2 Hz), 2.11–1.93 (m, 2H), 1.93–1.58 (m, 7H), 1.58–1.42 (m, 2H), 1.39–0.91 (m, 6H). ¹³C NMR: δ 135.1, 128.4, 116.2, 39.7, 34.2, 33.4, 31.9, 26.7, 25.8, 25.4, 14.2. MS (EI, 70 eV; m/e (relative intensity)): 191 (3), 108 (41), 95 (40), 81 (70), 67 (100). HRMS: calcd for C₁₃H₂₁N 191.1726, obsd 191.1733.

(E)-Ethyl-3-Butyl-9-cyclohexyl-8-nonenoate (12m). A clear oil (840 mg, 58%) was obtained from cyclohexanecarbox-aldehyde (4.5 mmol, 504 mg) after flash chromatography (solvent 20% ether in hexane): E/Z ratio 93/7. IR (neat): 2955 (s), 2930 (s), 2892 (s), 1742 (s), 1475 (s), 1063 (s), 991 (m) cm⁻¹. ¹H NMR: δ 5.63-5.56 (m, 2H), 2.42 (t, 3H, J = 7.4 Hz), 2.30 (d, 2H, J = 7.7 Hz), 2.18-2.04 (m, 2H), 2.04-1.49 (m, 13H), 1.49-0.89 (m, 16H). ¹³C NMR: δ 168.2, 139.6, 128.3, 48.2, 40.0, 36.2, 33.5, 33.3, 32.2, 32.1, 29.6, 28.6, 26.3, 26.2, 22.4, 21.9, 13.7, 13.4. MS (EI, 70 eV; m/e (relative intensity)): 322 (2), 277 (15), 249 (13), 140 (7), 127 (10), 123 (11), 109 (15), 85 (47). HRMS: calcd for C₂₁H₃₈O₂ 322.2948, obsd 322.2951.

Typical Procedure for the Preparation of Alkylidenecyclohexanes 13a,b. Preparation of (Cyclohexylmethylene)cyclohexane (13a). A three-necked flask equipped with an argon inlet and a thermometer was charged under argon with dry ZnBr₂ (1.13 g, 5 mmol) in 5 mL of dry THF. After the flask was cooled to -50 °C, 1-cyclohexenyllithium¹⁴ (5 mmol, 1.1 M in ether) was added dropwise. After the mixture was warmed to 25 °C, the THF was removed under vacuum and replaced with 10 mL of dry CH₂Cl₂. After dissolution, a slurry of Cp₂Zr(H)Cl (1.29 g, 5 mmol) in CH₂Cl₂ (3 mL) was added. The resulting bright yellow solution was stirred for 14 h at 25 °C. After the usual workup and evaporation of the solvents, the residue was purified by flash chromatography (solvent hexane), affording 610 mg (76%) of (cyclohexylmethylene)cyclohexane (13a) as a colorless oil. ¹H NMR: δ 4.87 (d, 1H, J = 9.1 Hz), 2.57–0.55 (m, 21H). The spectrum matches the literature data.¹⁹

Benzylidenecyclohexane (13b). A clean oil was obtained after flash chromatography (solvent hexane). ¹H NMR: δ 7.41–7.0 (m, 5H), 6.22 (bs, 1H), 2.39–2.30 (m, 2H), 2.25–2.20 (m, 2H), 1.80–1.38 (m, 6H). The ¹H spectrum matches the literature data.²⁰

Typical Procedure for the Preparation of Trisubstituted Olefins 14a-e by the Reaction of the 1,1-Bimetallic Species 5a with Ketones. Preparation of 1-Octylidenecyclohexane (14a). A three-necked flask equipped with an argon inlet and a thermometer was charged under argon with dry ZnBr₂ (1.13 g) in dry THF (5 mmol). After the flask was cooled to -50 °C, 1-octenylmagnesium bromide (5 mmol, 1.0 M in THF) was added dropwise. After the mixture was warmed to 25 °C, the THF was removed under vacuum and replaced with dry CH₂Cl₂ (10 mL). After dissolution, a slurry of Cp₂Zr(H)Cl (1.29 g, 5 mmol) in CH₂Cl₂ (8 mL) was added all at once, followed immediately by a solution of cyclohexanone (477 mg, 4.5 mmol) in CH₂Cl₂ (3 mL). The resulting bright yellow solution was stirred for 14 h at 25 °C. After the usual workup and evaporation of the solvents, the residue was purified by flash chromatography (solvent hexane), affording 726 mg (85%) of 1-octylidenecyclohexane (14a) as a colorless oil.

Analytical Data for 14a–e. 1-Octylidenecyclohexane (14a). A clear oil (726 mg, 85%) was obtained from benzaldehyde (477 mg, 4.5 mmol) after flash chromatography (solvent hexane). IR (neat): 2956 (s), 2925 (s), 2871 (s), 2854 (s), 1466 (m), 1459 (m), 1447 (m) cm⁻¹. ¹H NMR: δ 5.09 (t, 1H, J = 7.8 Hz), 2.16– 2.04 (m, 4H), 2.04–1.91 (m, 2H), 1.65–1.40 (m, 6H), 1.40–1.14 (m, 10H), 0.89 (t, 3H, J = 7.4 Hz). ¹³C NMR: δ 139.5, 121.6, 37.3, 32.0, 31.8, 30.3, 29.3, 28.8, 28.7, 27.9, 27.1, 27.08, 22.7, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 194 (11), 166 (1), 151 (1), 137 (1), 123 (3), 109 (48), 96 (70). HRMS: calcd for C₁₄H₂₆ 194.2035, obsd 194.2034.

1-Octylidene-2-cyclohexene (14b). A clear oil (708 mg, 82%) was obtained from cyclohexenone (4.5 mmol, 432 mg) after flash chromatography (solvent hexane): cis/trans ratio 1/1. IR (neat): 3030 (s), 3001 (s), 2955 (s), 2924 (s), 2870 (s), 2832 (s), 1466 (m), 1438 (m) cm⁻¹. ¹H NMR: δ 6.47–6.36 (m, 0.5H), 6.09–6.03 (m, 0.5H), 5.84–5.63 (m, 1H), 5.28–5.06 (m, 1H), 2.34–2.20 (m, 2H), 2.20–2.02 (m, 4H), 1.73–1.64 (m, 2H), 1.46–1.16 (m, 10H), 0.88 (t, 3H, J = 7.6 Hz). ¹³C NMR: δ 134.8, 133.3, 131.4, 129.4, 127.6, 127.0, 125.8, 124.6, 32.4, 31.9, 30.1, 29.7, 29.4, 29.3, 29.0, 27.4, 26.9, 26.9, 26.3, 25.7, 25.3, 23.4, 22.7, 22.6, 14.1. MS (EI, 70 eV; *m/e* (relative intensity)): 192 (24), 135 (30), 107 (75), 94 (83). HRMS: calcd for C₁₄H₂₄ 192.1878, obsd 192.1876.

5,5-Dimethyl-3-iodo-1-octylidene-2-cyclohexene (14c). A clear, red oil (608 mg, 39%) was obtained from 5,5-dimethyl-3-iodo-2-cyclohexanone (1.13 g, 4.5 mmol) after flash chromatography (solvent hexane): cis/trans ratio 68/32. IR (neat): 2954 (s), 2925 (s), 2869 (s), 2854 (s), 2829 (s), 1681 (w), 1466 (m), 1366 (w), 1339 (w), 724 (w) cm⁻¹. ¹H NMR: δ 7.03 (s, 0.32H), 6.65 (s, 068H), 5.29 (t, 0.32H, J = 7.1 Hz), 5.03 (t, 1H, J = 7.1 Hz), 2.49–2.40 (m, 2H), 2.13–1.96 (m, 4H), 1.46–1.17 (m, 10H), 1.08–0.87 (m, 9H). ¹³C NMR: δ 140.6, 135.0, 134.4, 133.2, 132.2, 130.1, 128.2, 98.9, 94.7, 54.4, 53.6, 51.9, 44.5, 37.6, 33.7, 33.2, 31.8, 30.0, 29.6, 29.3, 28.2, 27.8, 27.1, 22.6, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 346 (32), 331 (2), 261 (85), 247 (93), 233 (9), 219 (15), 204 (28), 163 (14), 149 (12), 134 (92), 119 (81), 105 (59), 91 (88). HRMS: calcd for C₁₆H₂₇I 346.1158, obsd 346.1153.

2-Phenyl-2-decene (14d). A clear oil (680 mg, 70%) was obtained from acetophenone (4.5 mmol, 540 mg) after flash chromatography (solvent hexane): *cis/trans* ratio 39/61. IR (neat): 2956 (s), 2924 (s), 2871 (s), 2854 (s), 1494 (m), 1466 (m), 1457 (m), 1444 (m), 757 (s), 698 (s) cm⁻¹. ¹H NMR: 7.44–7.26 (m, 5H), 5.77 (t, 0.61H, J = 7.7 Hz), 5.43 (t, 0.39H, J = 7.7 Hz), 2.20 (q, 2H, J = 6.9 Hz), 2.03 (s, 3H), 1.51–1.18 (m, 10H), 0.97–0.83 (m, 3H). ¹³C NMR: δ 144.0, 142.1, 135.9, 134.2, 128.7, 128.0, 127.9, 126.3, 126.2, 125.5, 31.8, 30.0, 29.5, 29.3, 29.1, 29.0, 28.9, 28.7, 25.4, 22.5, 15.6, 13.9. MS (EI, 70 eV; *m/e* (relative intensity)): 216 (18), 201 (1), 145 (3), 131 (100), 118 (79), 105 (15). HRMS: calcd for C₁₈H₂₄ 216.1878, obsd 216.1875.

Menthyl 2-Phenyl-2-decenoate (14e). A clear oil (1.50 g, 87%) was obtained from menthyl phenylglyoxylate (1.22 g, 4.5 mmol) after flash chromatography (solvent 20% ether in hexane): cis/trans ratio 86/14. IR (neat): 2957 (s), 2928 (s), 2871 (s), 2857 (s), 1721 (s), 1450 (m), 1256 (s), 1181 (m), 1149 (m), 697 (m) cm⁻¹. ¹H NMR: δ 7.59–7.40 (m, 2H), 7.38–7.21 (m, 3H), 6.05–5.93 (m, 1H), 4.81–6.62 (m, 1H), 2.18–1.78 (m, 4H), 1.70–1.54 (m, 2H), 1.54–1.38 (m, 3H), 1.38–1.09 (m, 8H), 1.09–0.70 (m,

⁽¹⁹⁾ Cohen, T.; Sherbine, J. P.; Matz, J. R.; Hutchins, R. R.; McHennry, B. M.; Willey, P. R. J. Am. Chem. Soc. 1984, 106, 3245.

⁽²⁰⁾ Shi, M.; Okamoto, Y.; Takamuku, S. J. Org. Chem. 1990, 55, 3821.

Olefins and Allenes from Bimetallics of Zn and Zr

10H), 0.63 (d, 3H, J = 6.1 Hz), 0.51 (d, 3H, J = 6.1 Hz). ¹³C NMR: δ 174.4, 142.1, 132.7, 132.3, 129.7, 128.3, 128.1, 127.8, 126.5, 126.3, 78.0, 47.1, 40.5, 40.2, 34.2, 32.3, 31.8, 31.5, 29.1, 28.8, 26.2, 25.5, 23.3, 23.1, 22.7, 22.0, 20.8, 20.6, 61.1, 15.7, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 384 (1), 262 (1), 246 (1), 217 (100), 133 (49), 105 (15), 83 (26). HRMS: calcd for C₂₆H₄₀O₂ 384.3028, obsd 284.3033.

Typical Procedure for the Preparation of Allenes by the Reaction of the 1.1-Dimetalloalkenes 16a.b with Aldehydes. Preparation of 4,6,7-Tetradecatriene (17c). A threenecked flask equipped with an argon inlet and a thermometer was charged under argon with 1-octyne (0.55 g, 5.00 mmol) in 5 mL of dry THF. After the flask was cooled to -80 °C, n-butyllithium (5.00 mmol, 1.6 M in hexanes was added dropwise. After warming to 25 °C a solution of dry ZnBr₂ (1.13 g, 5.00 mmol) in THF was added at -60 °C. After the mixture was warmed to 25 °C, the THF was removed under vacuum and replaced by dry CH_2Cl_2 (10 mL). $Cp_2Zr(H)Cl$ (1.16 g, 4.50 mmol) in dry CH₂Cl₂ (8 mL) was added at once, and the mixture was stirred for 10 min. trans-2-Hexenal (0.39g, 4.05 mmol) was added dropwise. The resulting yellow-green solution was stirred for 12 h at 25 °C. After the usual workup and evaporation of the solvents, the resulting residue was purified by flash chromatography (solvent hexane), yielding 0.35 g (45% yield) of pure 4,6,7tetradecatriene (17c).

Analytical Data for the Allenes 17a–g. 6,7-Tetradecadiene (17a). A clear oil (594 mg, 68%) was obtained from hexanal (450 mg, 4.5 mmol) after flash chromatography (solvent hexane). The spectral data match those given in ref 21. ¹H NMR: δ 5.48– 5.33 (m, 2H), 1.98–1.64 (m, 4H), 1.47–0.86 (m, 16H), 0.96–0.82 (m, 6H).

1-Cyclohexyl-1,2-nonadiene (17b). A clear oil (658 mg, 71%) was obtained from cyclohexanecarboxaldehyde (504 mg, 4.5 mmol) after flash chromatography (solvent hexane). The spectral data match those given in ref 21. ¹H NMR: δ 5.39–5.31 (m, 2H), 1.99–1.79 (m, 1H), 1.78–1.57 (m, 2H), 1.48–1.00 (m, 18H), 1.00–0.75 (m, 3H).

(E)-4,6,7-Tetradecatriene (17c).²² A clear oil (350 mg, 45% yield) was obtained from (E)-2-hexenal (390 mg, 4.05 mmol) after flash chromatograhy (solvent hexane): E/Z ratio >98% E. ¹H NMR: δ 5.68–5.80 (m, 2H), 5.51–5.60 (m, 1H), 5.21–5.24 (m, 1H), 1.95–2.02 (m, 4H), 1.23–1.40 (m, 10H), 0.81–0.88 (m, 6H). ¹³C NMR: δ 206.3, 132.2, 126.1, 94.1, 92.3, 34.8, 31.7, 29.1, 29.0, 28.8, 22.7, 22.6, 14.1, 13.7. IR (neat): 2957 (s), 2927 (s), 2856 (s), 1942 (w), 1708 (m), 1627 (w), 1460 (s) cm⁻¹. MS (EI, 70 eV; m/e (relative intensity)): 208 (1), 194 (1), 192 (2), 137 (2), 122 (47), 95 (23), 93 (51), 91 (22), 81 (22), 80 (51), 79 (100).

(E)-3-Methyl-2,4,5-dodecatriene (17d).²² A clear oil (290 mg, 49% yield) was obtained from (E)-2-methyl-2-butenal (290 mg, 3.50 mmol) after flash chromatography (solvent hexane): E/Z ratio >98% E. ¹H NMR: δ 5.80 (q, 1H, J = 3.1 Hz), 5.45–5.31 (m, 2H), 2.02–1.97 (m, 2H), 1.68–1.64 (m, 4H), 1.39–1.30 (m, 10H), 0.88–0.83 (m, 3H). ¹³C NMR: δ 204.4, 131.0, 122.3, 99.2, 93.9, 31.6, 29.11, 29.05, 28.7, 22.5, 13.9, 13.7, 13.1. IR (neat): 2955 (s), 2926 (s), 2852 (s), 1942 (w), 1696 (m), 1622 (m), 1455 (m). MS (EI, 70 eV; m/e (relative intensity)): 194 (4), 179 (3), 151 (3), 137 (3), 124 (9), 123 (100), 110 (31), 109 (34), 108 (42), 107 (20), 95 (35), 93 (57), 81 (25), 79 (35).

(S)-1-(1,2-Nonadienyl)-4-Isopropenylcyclohexene (17e).²² A clear oil (290 mg, 29% yield) was obtained after purification by flash chromatography (solvent hexane). ¹H NMR: δ 5.82– 5.78 (m, 1H), 5.63 (m, 1H), 5.33 (m, 1H), 4.71 (s, 3H), 2.23–1.96 (m, 6H), 1.72 (s, 3H), 1.50–1.20 (m, 10H), 0.87 (t, 3H, J = 6.9 Hz). ¹³C NMR: δ 204.4, 149.9, 132.3, 124.6, 108.6, 97.2, 94.2, 43.1, 31.8, 31.3, 29.2, 28.9, 27.6, 26.3, 26.2, 22.6, 20.8, 14.0. IR (neat): 2956 (s), 2921 (s), 2857 (s), 1942 (w), 1688 (m), 1639 (m), 1455 (s) cm⁻¹. MS (EI, 70 eV; m/e (relative intensity)): 189 (3), 175 (1), 133 (2), 70 (7), 57 (5), 55 (8), 44 (9), 43 (13), 42 (5), 41 (9), 32 (23), 29 (7), 28 (100), 27 (6).

1-Phenyl-4-methyl-1,2,4-hexatriene (17f). A yellow oil (290 mg, 49% yield) was obtained from (*E*)-2-methyl-2-butenal (290 mg, 3.50 mmol) after flash chromatography (hexane). ¹H NMR: δ 7.25–7.30 (m, 5H), 6.40–6.38 (m, 1H), 6.27 (d, 1H, *J* = 6.4 Hz), 5.57–5.54 (m, 1H), 1.73 (d, 3H, *J* = 7.2 Hz), 1.70 (s, 3H). ¹³C NMR: δ 206.5, 134.7, 130.2, 128.5, 126.8, 126.6, 124.3, 103.1, 97.3, 13.8, 13.2. IR (neat): 2977 (m), 2927 (m), 1944 (w), 1699 (s), 1618 (s), 1493 (s), 1448 (s), 1072 (s) cm⁻¹. MS (EI, 70 eV; *m/e* (relative intensity)): 186 (M + NH₃, 10), 171 (M + 1, 19), 170 (M⁺, 46), 169 (8), 155 (46), 128 (21), 115 (23), 91 (27), 77 (24), 43 (23), 28 (100). HRMS: calcd for C₁₃H₁₄ 170.1096, obsd 170.1094.

(E)-1-Phenyl-1,2,4-octatriene (17g). A yellow oil (190 mg, 29% yield) was obtained from (E)-hexenal (340 mg, 3.50 mmol) after purification by flash chromatography (solvent hexane). E/Z ratio >98% E. ¹H NMR: δ 7.30–7.16 (m, 5H), 6.32–6.19 (m, 2H), 5.91–5.87 (m, 1H), 5.77–5.71 (m, 1H), 2.12–2.05 (m, 2H), 1.51–1.37 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR: δ 208.6, 134.4, 134.3, 128.7, 127.02, 127.0, 124.5, 97.9, 95.9, 34.9, 22.5, 13.8. IR (neat): 2956 (s), 2926 (s), 2870 (m), 1931 (m), 1596 (m), 1494 (m), 1453 (m) cm⁻¹. MS (EI, 70 eV; m/e (relative intensity)): 185 (M + 1, 5), 184 (M⁺, 30), 155 (100), 128 (20), 115 (22), 77 (26), 32 (23), 28 (91). HRMS: calcd for C₁₄H₁₆ 184.1252, obsd 184.1266.

Reaction of an Alkylidenemalonate with a 1,1-Bimetallic Reagent of Zr and Zn. Preparation of 1-Phenyl-1-nonene (18). A three-necked flask equipped with an argon inlet, an addition funnel, and a thermometer was charged under argon with dry ZnBr₂ (5 mmol, 1.13 g) in 5 mL of dry THF. After the flask was cooled to -50 °C, a solution of 1-octen-1-ylmagnesium bromide (5 mmol, 0.63 M in THF) was added dropwise. After the mixture was warmed to 25 °C, the THF was removed under vacuum and replaced with dry CH₂Cl₂ (10 mL). After dissolution, Cp₂Zr(H)Cl (1.29 g, 5 mmol) in CH₂Cl₂ (8 mL) was added all at once, followed immediately by diethyl benzylidenemalonate (1.12 g, 4.5 mmol) in CH₂Cl₂ (3 mL). After the mixture was stirred for 10 min at 25 °C, acetic anhydride (5.10 g, 50 mmol) was added. The yellow solution was stirred for 13 h at 25 °C. After the usual workup and evaporation of solvents the residue was purified by flash chromatography, yielding 0.91 g (70%) of 1-phenyl-1-nonene (18) as a clear oil: E/Z ratio 60/40. The spectral data match those given in ref 23. IR (neat): 2947 (s), 2936 (s), 1465 (s), 1450 (m), 743 (s), 701 (m) cm⁻¹. ¹H NMR: δ 7.49-7.14 (m, 5H), 6.45-6.18 (m, 2H), 2.33 (q, 1.2H, J = 7.6 Hz), 2.21 (q, 0.8H, J = 7.6Hz), 1.43–1.11 (m, 10H), 0.99–0.84 (m, 3H). $^{13}\mathrm{C}$ NMR: δ 138.1, 138.0, 133.3, 131.3, 129.9, 128.8, 128.5, 128.2, 126.8, 126.5, 126.0, 33.1, 31.9, 29.5, 29.4, 29.3, 28.7, 22.7, 14.1. MS (EI, 70 eV; m/e (relative intensity)): 159 (1), 145 (1), 131 (4), 117 (75), 104 (100), 91 (24).

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (Grant No. SFB 260) and the Fonds der Chemischen Industrie for generous support of this research. We thank Schering AG (Witco Bergkamen) and BASF for generous gifts of chemicals.

OM9306032

⁽²¹⁾ Cherkasow, L. N.; Dubrooskaya, N. M.; Krovosheya, A. N. Fiz. Khim., Khim. Tekhnol. 1969, 221; Chem. Abstr. 1971, 75, 140151y.

⁽²²⁾ The instability of this allene did not allow us to obtain a satisfactory CHN analysis. Also, a HRMS could not be performed due to the low intensity of the molecular peak. However, capillary GC and ¹H and ¹³C NMR showed that the product has a purity >95%.

⁽²³⁾ Tolstikov, G. A.; Dzhemilev, U. M. J. Organomet. Chem. 1985, 292, 133.