Mixed-Valent Linear Chains of Gold Atoms. X-ray Structure of $[(2, 4, 6-C_6F_3H_2)Au(CH_2PPh_2CH_2)_2Au_2Au(CH_2PPh_2CH_2)_2Au(CIO_4)_2]$

Antonio Laguna,* Mariano Laguna, Josefina Jiménez, Fernando J. Lahoz, and Elena Olmos

Departamento de Qulmica Inorgbnica, Instituto de Ciencia de Materiales de Araggbn, Universidad de Zaragoza CSIC, 50009 Zaragoza, Spain

Received July **12,** *199P*

Reactions of asymmetrical gold(II) derivatives $[RAu(CH_2PPh_2CH_2)_2AuX]$ ($R = C_6F_5$, 2,4,6- $C_6F_3H_2$; CH_3 , $X =$ halogen) with AgClO₄ lead to the compounds $[RAu(CH_2PPh_2CH_2)_2AuOClO_3]$, which further react with $NBu_4[AuR_2]$ ($R = C_6F_5$, $C_6F_3H_2$) or $[Au(CH_2PPh_2CH_2)_2Au]$ to give pentanuclear [{RAu(CH₂PPh₂CH₂)₂Au}₂AuR₂]ClO₄ or hexanuclear [{RAu(CH₂PPh₂CH₂)₂- $\text{Au}_2\text{Au}(\text{CH}_2\text{PPh}_2\text{CH}_2)_{2}\text{Au}(\text{ClO}_4)_{2}$ gold complexes in different oxidation states. The same results can be achieved if the reactions are carried out with $\text{[RAu}(\text{CH}_2\text{PPh}_2\text{CH}_2)_2\text{Au}(\text{tht})\text{]}ClO_4$ (tetrahydrothiophene). The structure of $[\{(2,4,6-C_6F_3H_2)Au(CH_2PPh_2CH_2)aAu\} _2Au$ (CH₂PPh₂- $CH₂$ ₂Au] (ClO₄)₂ has been determined by a single-crystal X-ray diffraction study. It crystallizes in the monoclinic space group $P2_1/c$ with $a = 12.150(1)$ Å, $b = 15.498(2)$ Å, $c = 24.693(2)$ Å, β $= 95.18(1)$ °, $Z = 2, R = 0.0404$, and $R_w = 0.0417$ for 5132 observed reflections. The centrosymmetric cationic complex exhibits a linear hexametallic skeleton and is composed of three pairs of gold atoms, each of them doubly bridged by two bis-ylide ligands. Two σ -bonded C₆F₃H₂ groups complete the coordination of the external gold centers. The three "Au($CH_2PPh_2CH_2$)₂Au" moieties are held together through two unbridged Au-Au direct bonds **(2.7370(7) A),** with the ligand-bridged Au-Au separations at **2.6540(7)** and **2.8378(7) A.**

Introduction

There has been much current interest in the synthesis of gold clusters and gold complexes containing gold-gold bonds. The oxidation state of the gold atoms in these complexes is usually 0 and I in clusters^{1,2} or II in dinuclear gold complexes. $3-8$ These latter contain one³ or, more frequently, two ligands bridging the two gold centers. $4-8$ Another relevant Au(1)-Au(II1) case with ylide metallacycles has been described. 9

Despite the extensive work done in this area, the only two hitherto known complexes with a direct formal goldgold bond unbridged by any other ligand have been reported recently: 1 and 2.^{10,11}

- (2) Hall, K. P.; Mingos, D. M. P. *Prog. Inorg. Chem.* 1984, 32, 237.
(3) (a) Usón, R.; Laguna, A.; Laguna, M.; Fraile, M. N.; Jones, P. G.;
Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1986, 291. (b) Schmidbaur, **H.; Wohlleben, A.; Wagner, F. E.; Van der Vondel, D. F.; Van der Kelen, G. P.** *Chem. Ber.* **1977,** *110*, 2758.
- **(4) (a) Schmidbaur, H.; Franke, R.** *Inorg. Chim. Acta* **1975,13,85. (b) Schmidbaur, H.; Mandl, J. R.; Frank, A.; Huttner, G.** *Chem. Ber.* **1976,** *109,466.*
- **(5) Basil, J.; Murray, H. H.; Fackler, J. P., Jr.; Tocher, J.; Mazany, A. M.; Tncinska-Bancroft, B.; Knachel, H.; Dudis, D.; Delord, T. J.; Marler,**
- **D. 0.** *J. Am. Chem. SOC.* **1986,107,6908. (6) Knachel, H.; Dudis, D. S.; Fackler, J. P., Jr.** *Organometallics* **1984, 3, 1312.**
- **(7) Vicente, J.;Chicote, M. T.; Saura-Llamas,** I. *J. Chem. SOC., Dalton Tram.* **ISSO, 1941.**
- **(8) (a) U&n, R.; Laguna, A.; Laguna, M.; JimBnez, J.; Jones, P. G.** *J.*
- *Chem. Soc., Dalton* **Tram. 1991, 1361. (b) Laguna, A.; Laguna, M.; Jimhez, J.;** Lahoz, **F. J.; Olmoe, E.** *J. Organomet. Chem.* **1992,436,236. (9) Schmidbaur, H.; Hatmann, C.; Wagner, F. E.** *Angew. Chem., Int.*
- *Ed. Engl.* **1987,26,1149. (10) U&n, R.; Laguna, A.; Laguna, M.; Tdn, M. T.; Jones, P. G.** *J.*

*Chem. Soc., Chem. Commun. 1*988, 740.

(11) Usón, R.; Laguna, A.; Laguna, M.; Jiménez, J.; Jones, P. G. *Angew.*
*Chem., Int. Ed. Engl. 1*991, *30, 19*8.

Complex **1** contains a formal gold(I)-gold(III) donoracceptor bond, but the oxidation states of the gold atoms in the AUS chain of **2** remain unclear.

The formation of complex **2** by the reaction of the dinuclear bis-ylide derivative $[(C_6F_5)Au(CH_2PPh_2CH_2)_2$ - $Au(C_6F_5)$ with $[Au(C_6F_5)_3OEt_2]$, although in relatively low yield, prompted the investigation of a systematic synthesis of this complex and related ones. In this paper we describe the preparation of mixed-valent gold complexes containing linear Au_5 or Au_6 chains. The molecular structure of the hexanuclear $[\{(2,4,6-C_6F_3H_2)Au(CH_2PPh_2-C_6F_3H_3]$ CH_2 ₂Au}₂Au(CH_2 PPh₂CH₂)₂Au](ClO₄)₂ has been established by single-crystal X-ray analysis.

Results and Discussion

The bonding in complex **2** can be explained by taking into account that one aurate(I) moiety $[Au(C_6F_5)_2]$ may be donating electron densityto the dinuclear gold(I1) cation

Abstract published in *Aduance ACS Abstracts,* **December 1,1993. (1) Steggerda, J. J.; Bow, J. J.; Van der Velden, J. W. A.** *Recl. Trau. Chim. Pays-Baa* **1982,101, 164.**

a **Calculated values are given in parentheses. In CDCl'; values in ppm. Values in Hz.** *d* **In CD2C12; values in ppm.**

 $[(C_6F_5)Au(CH_2PPh_2CH_2)_2Au]^+$. Species of this type have been proposed for the group exchange in gold(I1) derivatives by Fackler¹² and Murray and by us.^{8b} Furthermore, complexes containing the organoaurates $[AuR_2]$ ⁻ $(R =$ C_6F_5 , 2,4,6- $C_6F_3H_2$) acting as donor centers to silver atoms have also been described.¹³⁻¹⁵

Using this idea in a synthetic strategy, we have considered the use of the recently reported complexes^{8b} $C_6F_3H_2$ as adequate precursors for the synthesis of highnuclearity complexes since tetrahydrothiophene, which is a poor ligand in gold chemistry, could be replaced by the $[AuR₂]-$ donor anions. $[RAu(CH_2PPh_2CH_2)_2Au(tht)]ClO_4$ (R = C₆F₅, 2,4,6-

Other candidates **as** starting materials could be the dinuclear gold(II) derivatives of the type $[RAu(CH_2PPh_2-$ CH2)2AuXl containing one halogen **as** ligand, which can be converted into the corresponding perchlorates **3-5** by reaction with silver perchlorate (eq 1).

Complexes **3-5** were isolated **as** yellow (3 and **4)** or greenbrown **(5)** solids, air- and moisture-stable at room temperature. Their NhlR spectra are in accordance with an asymmetrical formulation; only one absorption in the 31P- (lH) spectra and two resonances in the methylene region in the **lH** spectra were observed (see Table 1). Addition of PPhs to dichloromethane solutions of 3 and **4** gives rise

to the previously reported^{8b} complexes $[RAu(CH_2PPh_2 CH_2$ ₂Au(PPh₃)]ClO₄ (R = C₆F₅, C₆F₃H₂).

Complexes $3-5$ react with organoaurates $NBu₄[AuR₂]$ $(R = C_6F_5$ or $C_6F_3H_2$) in a 2:1 ratio, to give a mixture of the pentanuclear complex 6 or 7 and NBu_4ClO_4 , which can be separated because of their different solubilities in ethanol/diethyl ether **(1:l).** Complexes **6** and **7** can also be obtained by an altemative method, *uiz.* the 2:l reaction of monocationic $\text{[RAu(CH_2PPh_2CH_2)_2Au(tht)]ClO}_4$ with a dichloromethane solution of organoaurate(I), **as** is shown in eq 2.

Complexes **6** and **7** are red solids, air- and moisturestable at room temperature. Complex 6 shows ¹H, ³¹P- ${^{11}H}$, and ${^{19}F}$ NMR spectra very similar to those previously described for **2** with the lack of the corresponding absorptions of the $[Au(C_6F_5)_4]$ ⁻ group in the ¹⁹F NMR spectra. Complex **7** shows one resonance at 33.4 ppm for $31P{1H}$ NMR, two pseudodoublets for the methylene protons in the 'H NMR spectra, and four different signals (two assigned to *ortho* F and two topara F) corresponding to two different $C_6F_3H_2$ groups for ¹⁹F NMR.

Complexes **6** and **7** are the only species containing phosphorus in process 2, as can be seen from the ³¹P NMR of the reaction mixture, but the only slightly different

⁽¹²⁾ Fackler, J. P., Jr.; Murray, H. H. *Organometolllics* **1984,3,821. (13) Udn, R.;** *Laguna,* **A.;** *Laguna,* **M.; Jones, P. G.; Sheldrick, G. M.** *J. Chem.* **Soc.,** *Chem. Commun.* **lSEl,1097.**

⁽¹⁴⁾ Usón, R.; Laguna, A.; Laguna, M.; Manzano, B. R.; Jones, P. G.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1984, 285.

⁽¹⁵⁾ Us6n, R.; Laguna, A.; Laguna, M.; Manzano, B. R.; Tapia, A. *Inorg. Chim.* **Acta 1988,101, 161.**

Mixed- Valent Linear Chains of Gold Atom

solubilities as compared to that of NBu₄ClO₄ prevent a better yield (-50%) of the pure solids 6 and 7.

The success of the synthesis of the pentanuclear cation **6** in this way indicates that it seems sensible to assume that complexes **2** and **6** are formed by a donor-acceptor interaction between the gold center of the anionic aurate- (I) $[Au(C_6F_5)_2]$ and the dinuclear cationic gold(II) fragment, in which the central aurate(1) moiety is donating electron density to both gold(I1) centers. With this in mind, attempts to synthesize other polynuclear gold complexes using other gold complexes **as** electron donors were successful. Therefore, similar gold(I1) fragments were used **as** starting materials and made to react with a bis- $(\mu$ -diphenylphosphonium bismethylido)digold(I) complex (2:l ratio, dichloromethane) hexanuclear derivatives were obtained (eq 3). The bis(ylide)digold(I) complex has been used previously **as** an electron donor agent in gold

Complexes **8-10** can be isolated **as** dark red solids, air and moisture stable at room temperature. Their molar conductivities in acetone solution (for complexes **8** and **9)** are in agreement with the dicationic formulation. Their $^{31}P\{^{1}H\}$ NMR spectra show a singlet signal for the PPh_2 groups at gold(II) auracycles and a smaller one for PPh_2 groups of gold(1) centers. The 1H NMR spectra show three pseudodoubleta of equal intensities because of the three different CH_2-P groups, but the assignment is not unambiguous. A singlet, at 1.88 ppm, is observed for the CH3 group in **10.**

The structure of **9** was determined by X-ray diffraction. The molecular structure of the cationic complex is shown in Figure 1 together with the numbering scheme used. Atomic coordinates are listed in Table 2, and selected bond distances and angles in Table 3. **This** complex has a crystallographically imposed center of inversion located in the center of the Au(3)-Au(3') vector. The whole dication consists of three Au($\text{CH}_2\text{PPh}_2\text{CH}_2$)₂Au moieties linked together through two unbridged gold-gold bonds, building up an almost linear six-atom metal chain (Au- (1) –Au(2)–Au(3) = 173.87(3)° and Au(2)–Au(3)–Au(3') = 177.11(3)[°]). Each of the two metal atoms at the ends of the chain is coordinated to a $C_6F_3H_2$ group.

EEquivalent isotropic *U* defined as one-third of the trace of the orthogonalized U_{ij} tensor. \mathbf{b} These atoms were refined isotropically.

The Au(1)-Au(2) bond length is 2.6540(7) Å, very similar to other reported Au^{IL}Au^{II} distances in dinuclear bisylide gold(II) complexes (e.g. 2.675(1) Å for $[(C_6F_6)Au (CH_2PPh_2CH_2)_2Au(C_6F_5)]^{16}$ and 2.6612(8) Å for $[(C_6F_5)-C_6F_6]$ $Au(CH_2PPh_2CH_2)_2Au(PPh_3)ClO_4^{8b}$ and identical with the mean value described for this type of complex.'' The Au(3)-Au(3') distance is significatively longer (2.8378(7) **A)** and seems to be consistent with the absence of a Au-

Figure 1. Molecular diagram of the cationic complex $[(2,4,6-C_6F_3H_2)Au(CH_2PPh_2CH_2)Au]_2Au(CH_2PPh_2CH_2)2Au]^{2+}$ (cation of 9). Primed atoms are related to the unprimed ones by the symmetry transformation $1 - x$, $-y$, $-z$.

^aPrimed atoms are related to the unprimed ones by the symmetry transformation $1 - x$, $-y$, $-z$.

Au bond. However, this distance, which is shorter than that observed in its gold(I) precursor $[Au(CH_2PH_2)_2-$
 $C_6F_5(0.1023 g, 0.1 mmol), 2.4.6-C_6F_3H_2(0.0987 g, 0.1 mmol))$ Au] (2.977(1) **A),** indicates the presence of a weak intermetallic interaction, as has been suggested for related

Au(I) complexes.¹⁸ The Au(2) atom is bonded to the proposed Au(1) center (labeled as Au(3)) of the central $[Au(CH_2PPh_2CH_2)_2Au]$ unit with a distance of 2.7368(7) Å, comparable to the unbridged bond in $[(C_6F_5)Au(CH_2 PPh_2CH_2)_2Au\}{}_{2}Au(C_6F_5)_2]$ ⁺ (2), which is 2.755(1) Å.¹¹

All three independent metal atoms show slightly distorted square-planar coordination (assuming that the Au- (3') atom occupies the fourth coordination position of its symmetry-related Au(3) center). The coordination planes of Au(1) and Au(2) are almost coplanar (dihedral angle $14(2)$ ^o), with those planes of the Au(3) atom and of the $C_6F_3H_2$ ligand disposed nearly perpendicularly (mean dihedral angles $83(1)$ and $74(1)$ °, respectively).

Interestingly, the two external symmetry-related eightmembered rings present a clear boat conformation and are linked by another similar metallacycle exhibiting the alternative chair conformation.

Despite the differences between 2 and 9, i.e. C₆F₅ instead of 2,4,6-C₆F₃H₂ and [Au(C₆F₅)₂] instead of [Au(CH₂PPh₂- $CH₂$ ₂Au], all analogous Au-Au bond distances are very close. These data and the preparative methods prompt us to argue that probably complex **2** has an Au(1) atom in the center of the metal chain. Thus, complex **9** seems to be formed by a donation of electron density from the central $[Au^I(CH_2PPh_2CH_2)_2Au^I]$ unit to two $[RAu(CH_2 PPh_2CH_2)_2Au$ ⁺ gold(II) fragments.

Experimental Section

General Data. Instrumentation and general experimental techniques were as described earlier. **8b** All the reactions were performed at room temperature.

(4), CH₃ (5)). To a solution of $[RAu(CH_2PPh_2CH_2)_2AuCl]^{8b}$ (R = C₆F₅ (0.1023 g, 0.1 mmol), 2,4,6-C₆F₃H₂ (0.0987 g, 0.1 mmol)) or $[CH_3Au(CH_2PPh_2CH_2)_2AuII^{19}$ (0.0962 g, 0.1 mmol) in dichloromethane (20 mL) was added AgClO₄ $(0.0207 \text{ g}, 0.1 \text{ mmol})$. The mixture was stirred for 1 h, and the precipitated AgCl or AgI was filtered off and washed with dichloromethane (3 **X** *5* mL). $[RAu(CH_2PPh_2CH_2)_2Au(OClO_3)] (R = C_6F_5 (3), C_6F_3H_2$

⁽¹⁶⁾ Murray, H. H.; Fackler, J. P., Jr.; Porter, **L.** C.; Briggs, D. A.; Guerra, M. A.; *Lagow,* R. J. **Inorg. Chem. 1987,26, 357.**

⁽¹⁷⁾ Allen,F. H.;Bellard, **S.;** Brice, M. D.; Cartwright, B. A.;Doubleday, A,; Higgs, H.; Hummelink, T.; Hummelink-Peters, B. G.; Kennard, 0.; Motherwell, W. D. S.; Rodgers, J. R.; Watson, D. G. **Acta Crystallogr. 1979, B35, 2331.**

⁽¹⁸⁾ (a) Jones, P. G. **Gold Bull. 1981,14,102,159; 1983,16, 114; 1986,** 19, **46.** (b) Schmidbaur, H. **Gold Bull. 1990,23, 11.**

⁽¹⁹⁾ Fackler, J. **P.,** Jr.; Basil, J. D. **Organometallics 1982, 1, 871.**

Mixed- Valent Linear Chains *of* Gold Atoms

Concentration of the filtrate to ca. **5** mL and addition of diethyl ether **(20** mL) led to the precipitation of complexes **3-5 as** yellow $(3, 4)$ or green-brown (5) solids. ¹⁹F NMR: $3, \delta$ -124.02 $(m, 2F,)$ **o-F), -157.43** (t, **lF, p-F), -160.77** (m, **2F, m-F); 4,d -93.83** (m, **2F, o-F), -113.29** (m, **lF, p-F).** Yield **3,87** mg (80%); **4,79** mg

 $\left[\frac{\text{RAu}}{\text{CH}_2\text{PPh}_2\text{CH}_2}\right]_2\text{Au}\right]_2\text{Au}$ R₂]ClO₄(R = C₆F₅(6), C₆F₃H₂ (7). (a) To a solution of $[RAu(CH_2PPh_2CH_2)aAu(tht)ICIO_4^{8b}$
 $(R = C_6F_6 (0.1175 g, 0.1 mmol))$, $C_6F_3H_2 (0.1139 g, 0.1 mmol))$ in dichloromethane (20 mL) was added NBu₄[AuR₂]²⁰ (0.05 mmol, $R = C_6F_5$ (0.0387 g), $C_6F_3H_2$ (0.0351 g)). After the mixture was stirred for **15** min at room temperature, the solution was evaporated to ca. **5** mL. Addition of diethyl ether **(20** mL) led to the precipitation of a mixture of complex **6** or **7** and NBQ-C104, which was washed with methanol/diethyl ether **(50%)** to remove NBu₄ClO₄.

(b) To a solution of $[(C_6F_5)Au(CH_2PPh_2CH_2)_2Au(OClO_3)]$ **(3; 0.1087g,0.1** mmol) indichloromethane (20mL) wasaddedNBw $[Au(C_6F_5)_2]^{20a}$ (0.0387 g, 0.05 mmol), and the mixture was stirred for **30** min. The solution was evaporated to ca. **5** mL, and addition of diethyl ether **(20** mL) led to the precipitation of a dark red solid (6), which was washed with a mixture of methanol/diethyl ether (50%) to remove the NBu₄ClO₄ also formed. Λ_M (~5 \times 10^{-4} M, acetone solutions): 136 (6), 118 (7) Ω^{-1} cm² mol⁻¹. ¹⁹F **NMR 6,s -123.81** (m, **4F, o-F), -157.41** (t, **2F,p-F), -160.65** (m, **4F, m-F)** and **-117.22** (m, **4F, o-F), -159.62** (t, **2F, p-F), -162.68** (m, **4F, m-F); 7,d -93.81** (m, **4F, o-F), -112.98** (m, **2F, p-F)** and **-85.93** (m, **4F, o-F), -113.53** (m, **2F, p-F).** Yield: **6,65** mg **(50%**); **7, 55** mg **(45%).**

 $[{(\mathrm{RAu}(\mathrm{CH}_2\mathrm{PPh}_2\mathrm{CH}_2)_2\mathrm{Au}]_2\mathrm{Au}(\mathrm{CH}_2\mathrm{PPh}_2\mathrm{CH}_2)_2\mathrm{Au}](\mathrm{ClO}_4)_2$ $(R = C_6F_5 (8), C_4F_3H_2 (9), CH_3 (10)$. (a) To a solution of mmol), $C_6F_3H_2$ (0.1139 g, 0.1 mmol)) in dichloromethane (20 mL) was added [Au(CH₂PPh₂CH₂)₂Au]⁵ (0.0410 g, 0.05 mmol). The mixture was stirred for **15** min. Concentration of the solution to ca. **5** mL and addition of diethyl ether **(20** mL) gave complexes **8** and **9 as** dark red **(8)** and red **(9)** solids. $[RAu(CH_2PPh_2CH_2)_2Au(tht)]ClO_4^{8b}$ (R = C₆F₅ (0.1175 g, 0.1

(b) To a solution of $[RAu(CH_2PPh_2CH_2)_{2}Au(OClO_3)]$ $(R = C_6F_5$ (3; 0.1087 g, 0.1 mmol), CH₃ (5; 0.0935 g, 0.1 mmol)) in dichloromethane (20 mL) was added [Au(CH₂PPh₂CH₂)₂Au]⁵ **(O.O41Og,** 0.05mmol). After it was stirred for 30min, the solution was evaporated to ca. **5** mL. Addition of diethyl ether **(20** mL) led to the precipitation of complexes **8** and **9 as** dark red and brown solids, respectively. Λ_M ($\sim 9 \times 10^{-5}$ M, acetone solutions): $300 (8), 280 (9) \Omega^{-1}$ cm² mol⁻¹. Complex 10 is not soluble enough. ¹⁹F NMR: 8, δ-123.51 (m, 4F, o-F), -157.66 (t, 2F, p-F), -160.66 (m, **4F, m-F); 9, d -93.65** (m, **4F, o-F),-113.61** (m, **2F,p-F).** Yield **8, 127** mg **(85%); 9, 102** mg **(70%); 10,100** mg **(75%).**

X-ray Structure Analysis of 9. Collection and Reduction of Data. Crystals of **9** suitable for the X-ray study were obtained from a dichloromethane/diethyl ether solution **as** red plates. A red prismatic crystal was glued on a glass fiber and mounted on a Siemens AED-2 diffractometer. A summary of crystal data, intensity collection procedures, and refinement data is reported in Table **4.** Cell constants were obtained from the least-squares fit of the setting angles of 52 reflections in the range $20 \le 2\theta \le$ **35O.** The **8729** recorded reflections *(*h,+k,-l)* were corrected for Lorentz and polarization effects. Three orientation and intensity standards were monitored every **55** min of measuring

Table **4.** Crystallographic **Data** for **9**

Crystal Data		
formula	$C_{96}H_{88}Au_6Cl_2F_6O_8P_6$	
mol wt	2922.29	
color, habit	red, irregular, prismatic block	
cryst size, mm	$0.152 \times 0.175 \times 0.397$	
cryst syst	monoclinic	
space group	P2 ₁ /c	
a, A	12.150(1)	
b. A	15.498(2)	
c. A	24.693(2)	
β , deg	95.18(1)	
V, \mathbf{A}^3 : Z	4630.7(8); 2	
D_{calod} , g cm ⁻³	2.096	
Data Collection and Refinement		
diffractometer	four-circle Siemens AED	
λ (Mo K α radiation), A; technique	0.710 69; bisecting geometry	
monochromator	graphite oriented	
μ , cm ⁻¹	96.80	
scan type	$\omega/2\theta$	
2θ range, deg	$3 - 50$	
no. of data collected	8729 $(\pm h, \pm k, -l)$	
no. of unique data	8181	
unique obsd data	5132 (F_0 ≥ 6 $\sigma(F_0)$)	
no. of params refined	540	
R. R. ª	0.0404, 0.0417	
max, min correctn factors	0.729, 1.185	
$^a w^{-1} = \sigma^2(F_0) + 0.000508 F_0^2$.		

time; no intensity decay was observed. An empirical method

was used to correct the data for absorption effects.²¹ **Structure Solution and Refinement.** The structure was solved by Patterson (Au atoms) and conventional Fourier techniques. Refinement was carried out by full-matrix least squares, initially with isotropic thermal parameters. Further refinement was performed with anisotropic thermal parameters for all non-hydrogen atoms (except for oxygen atoms of the perchlorate group). Hydrogen atoms were included in calculated positions and refined riding on carbon atoms with a common isotropic thermal parameter. The function minimized was **2-** $({[F_{o}}] - [{F_{c}}])^{2}$ with the weight defined as $w^{-1} = \sigma^{2}({F_{o}}) + 0.000508F_{o}^{2}$. Atomic scattering factors, corrected for anomalous dispersion for Au, P and C1, were taken from ref **22.** Final R and *R,* values were **0.0404** and **0.0417,** respectively. *All* calculations were performed by use of the SHELXTL-PLUS system of computer programs.29

Acknowledgment. We thank the Dirección General de Investigación Científica y Técnica (No. PB91-0122) for financial support.

Supplementary Material Available: Tables of anisotropic thermal parameters, hydrogen coordinates, experimental details of the X-ray study, bond distances and angles, selected leastsquares planes, and interatomic distances **(16** pages). Ordering information is given on any current masthead page.

OM930470K

⁽²⁰⁾ (a) Ush, R.; Laguna, A.; Vicente, J. *J. Organomet. Chem* **1977,** 131, 471. (b) Usón, R.; Laguna, A.; Laguna, M.; Jiménez, J.; Fumanal, A. *J. Organomet. Chem.* **1990,396,121.**

⁽²¹⁾ Walker, N.; Stuart, D. *Acta Crystallogr.* **1983, A39, 158. (22)** *International Tables for X-Ray Crystallography;* Kynoch Press: Birmingham, England, **1974;** Vol. **4.**

⁽²³⁾ SHELXTL PLUS Program for **Crystal** Structure Determinations,

Siemens Analytical X-Ray Instruments, Madison, WI, **1990.**