Envne and Butatriene Ligands from the Reaction of Diynes on the Square Face of the Hydrido Phosphinidene Cluster $(\mu$ -H)₂Ru₄(CO)₁₂ $(\mu_3$ -PPh)

John F. Corrigan, Nicholas J. Taylor, and Arthur J. Carty*

Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

Received May 20, 1994[®]

Summary: Diphenylbutadiyne reacts with the 62-electron cluster nido- $(\mu-H)_2Ru_4(CO)_{12}(\mu_3-PPh)$ (1) to afford $\begin{array}{l} Ru_4(CO)_{12}[\mu_4 \cdot \eta^1:\eta^1:\eta^3 \cdot P(Ph)C\{C(H)Ph\}CC(H)Ph](2),\\ Ru_4(CO)_{10}[\mu-CO)(\mu_4 \cdot PPh)[\mu_4 \cdot \eta^1:\eta^1:\eta^2:\eta^2 \cdot PhC(H)CCC(H) \cdot Ph](3),\\ and Ru_4(CO)_{11}(\mu_4 \cdot PPh)(\mu_4 \cdot \eta^1:\eta^1:\eta^1:\eta^3 \cdot PhC(H)C \cdot Ph)(\mu_4 \cdot \eta^1:\eta^1:\eta^3 \cdot PhC(H)C \cdot Ph)(\mu_4 \cdot \eta^1:\eta^3 \cdot PhC(H)C \cdot Ph)(\mu_4 \cdot \eta^3 \cdot PhC(H)C \cdot Ph)(\mu_4 \cdot PhC(H)C \cdot Ph)(\mu_4 \cdot PhC(H)C \cdot PhC(H)$ (H)CCPh] (4), containing coordinated trans-diphenylbutatriene and trans-diphenylbut-3-en-1-yne ligands. These reactions proceed via P-C bond formation and 1.4- and 1,2-diinsertion reactions into the two Ru-H bonds. Cluster 4 reacts with excess diphenylbutadiyne to generate $Ru_4(CO)_{10}(\mu_4-PPh)[\mu_4-\eta^1:\eta^3:\eta^3-PhCCC(H)C(H)Ph-$ C(Ph)CCCPh] (5) via an ene-yne coupling sequence on an Ru_4 square face.

Metal-mediated alkyne dimerization to enynes and butatrienes^{1,2} and the generation of unsaturated or partially unsaturated metallo- C_4 and $-C_6$ chains³ from diynes are of considerable importance in the context of synthesizing new polyunsaturated organic materials and complexes from simple precursors. We describe herein the synthesis of the *trans*-butatriene Ph(H)C=C=C=C(H)Ph and the *trans*-but-3-en-1-yne PhC=CCH= C(H)Ph ligands via the reaction of the readily available reagent $\bar{1}$,4-diphenylbutadiyne with the cluster (μ - $H_{2}Ru_{4}(CO)_{12}(\mu_{3}-PPh)$ (1).⁴ Although coordinated butatrienes and enynes are known in mononuclear⁵ chemistry and binuclear compounds of the type $Fe_2(CO)_6(\mu$ -

 G. J. Am. Chem. Soc. 1987, 109, 3486.
 (2) (a) Morken, P. A.; Bachand, P. C.; Swenson, D. C.; Burton, D. J.
 J. Am. Chem. Soc. 1993, 115, 5430. (b) Schäfer, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. **1993**, 32, 1315. (c) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Johar, P. S. Bull. Chem. Soc. Jpn. 1993, 66, 987. (d) Wakatsuki, Y.; Yamazaki, H.; Kumegawa,
 N.; Satoh, T.; Satoh. J. Y. J. Am. Chem. Soc. 1991, 113, 9604.

(3) For leading references see: (a) Rappert, T.; Nürnberg, O.; Werner, H. Organometallics **1993**, *12*, 1359. (b) Seyler, J. W.; Weng, Werner, H. Organometallics 1993, 12, 1359. (b) Seyler, J. W.; Weng,
W.; Zhou, Y.; Gladysz, J. A. Organometallics 1993, 12, 3802. (c) Zhou,
Y.; Seyler, J. W.; Weng, W.; Arif, A. M.; Gladysz, J. A. J. Am. Chem.
Soc. 1993, 115, 8509. (d) Le Narvor, N.; Lapinte, C. J. Chem. Soc.,
Chem. Commun. 1993, 357. (e) Bruce, M. I.; Hinterding, P.; Kekink,
E. R. T.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1993, 450,
209. (f) Osella, D.; Gambino, O.; Nevi, C.; Ravera, M.; Bertolino, D.
Inorg. Chim. Acta 1993, 206, 155. (g) Sun, Y.; Taylor, N. J.; Carty, A.
J. Organometallics 1992, 11, 4293. (h) Stang, P. J.; Tykwinski, R. J.
Am. Chem. Soc. 1992, 114, 4411. (i) Crescenzi, R.; Lo Sterzo, C.
Organometallics 1992, 11, 4301. (j) Worth, G. H.; Robinson, B. H.;
Simpson, J. Organometallics 1992, 11, 3863. (k) Pirio, N.; Touchard,
D.; Dixneuf, P. H.; Fettouhi. M.; Ouahabb, L. Angew. Chem., Int. Ed. D.; Dixneuf, P. H.; Fettouhi. M.; Ouahabb, L. Angew. Chem., Int. Ed.
 Engl. 1992, 31, 651. (1) Fyfe, H. B.; Mlezuk, M.; Zargarian, D.; Taylor,
 N. J.; Marder, T. B. J. Chem. Soc., Chem. Commun. 1991, 188. (m)
 Wong, A.; Kang, P. C.; Tagge, C. D.; Leon, D. R. Organometallics 1990, 9, 1992.

(4) van Gastel, F.; Corrigan, J. F.; Doherty, S.; Taylor, N. J.; Carty, A. J. Inorg. Chem. 1992, 31, 4492.

butatriene) have been reported,⁶ the clusters Ru₄- $(CO)_{12}[\mu_4-\eta^1:\eta^1:\eta^2:\eta^3-P(Ph)C\{C(H)Ph\}CC(H)Ph]$ (2), Ru₄- $(CO)_{10}(\mu-CO)(\mu_4-PPh)[\mu_4-\eta^1:\eta^1:\eta^2:\eta^2-PhC(H)CCC(H)Ph]$ (3) and $Ru_4(CO)_{11}(\mu_4-PPh)(\mu_4-\eta^1:\eta^1:\eta^3-PhC(H)C(H)-$ CCPh] (4) represent to our knowledge the first examples of polynuclear clusters bearing these organic ligands. The conversion of 1 to 2-4 is mediated by facile P-C bond formation on a square Ru₃P face followed respectively by 1,4- and 1,2-dihydrometalation and skeletal isomerization reactions. Finally, we demonstrate that addition of a divne to the coordinated envne in 4 generates, via ene-yne coupling, an eight-carbon hydrocarbyl chain in Ru₄(CO)₁₀(μ_4 -PPh)[μ_4 - η^1 : η^1 : η^3 : η^3 -PhCCC-(H)C(H)PhC(Ph)CCCPh] (5).

Transition-metal clusters supported by main-group fragments offer a unique opportunity to examine the directing/mediating ability of the p-block elements when reacted with unsaturated organic molecules. Recent investigations have focused on binuclear and polynuclear cluster compounds with group 15 and 16 ligands.⁷ In a recent communication⁸ we described the coordination and trimerization of diynes on a square face of the *nido* cluster $Ru_4(CO)_{13}(\mu_3-PPh)$ (6) and demonstrated that divnes coordinate readily to the Ru₃P square face of 6 via facile P-C bond formation and a typical μ_3 - η^2 -II-bonding mode. The main-group atom in this case functions in the same way as a skeletal metal atom. The presence of two potentially reactive hydride

(7) (a) Mathur, P.; Munkir Hossain, Md.; Das, K.; Sinha, U. C. J.
(7) (a) Mathur, P.; Munkir Hossain, Md.; Das, K.; Sinha, U. C. J. *Chem. Soc., Chem. Commun.* **1993**, 46. (b) Imhof, W.; Huttner, G. J. *Organomet. Chem.* **1993**, 447, 31. (c) Corrigan, J. F.; Doherty, S.;
Taylor, N. J.; Carty, A. J. *Organometallics* **1993**, 12, 1365. (d) Adams,
R. D.; Wang, S. J. Am. Chem. Soc. **1987**, 109, 924.
(8) Corrigan, J. F.; Doherty, S.; Taylor, N. J.; Carty, A. J. Organometallics **1992**, 11, 3160.
(1) Substant data for 2 April October of U. O. D. D. C. 20070.

metallics **1992**, *11*, 3160. (9) Selected data for **2**. Anal. Calcd for $C_{34}H_{17}O_{12}PRu_4$: C, 38.79; H, 1.63. Found: C, 38.58; H, 1.41. IR ($\nu(CO)$, cm⁻¹, C₆H₁₂): 2089 m, 2063 vs, 2035 m, 2029 m, 2016 w, 1990 w. ³¹P{¹H} NMR (81.0 MHz, CDCl₃, δ): 150.1 (s). ¹H NMR (200 MHz, CDCl₃, δ): 7.71–6.84 (mult, H_{phenyl}), 5.41 (s, PhCH=), 5.32 (s, PhCH=) ppm. ¹³C{¹H} NMR (50.3 MHz, CDCl₃): 203.7 (s, CO), 199.9 (s, CO), 199.1 (d, $J_{PC} = 16.6$ Hz, CO), 185.0 (s, CO), 191.3 (s, CO), 189.9 (s, CO), 187.4 (d, $J_{PC} = 6.0$ Hz, CO), 186.9 (s, CO), 152.4 (d, $J_{PC} = 10.6$ Hz, =C=), 139.0 (s, C_{ipso}), 137.5 (d, $J_{PC} = 6.5$ Hz, =CH-), 137.3 (d, $J_{PC} = 18.1$ Hz, C_{ipso}), 134.5 (d, $J_{PC} = 13.6$ Hz, C_{ipso}), 132.3–128.5 (mult, C_{phenyl}), 72.1 (d, $J_{PC} = 25.6$ Hz, =C=), 71.1 (d, $J_{PC} = 21.1$ Hz, =CH-) ppm.

^{*} Abstract published in Advance ACS Abstracts, September 1, 1994. ^a Abstract published in Advance ACS Abstracts, September 1, 1994. (1) For recent references see: (a) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. **1991**, 113, 5453. (b) Dahlenburg, L.; Frosin, K.-M.; Kerstan, S.; Werner, D. J. Organomet. Chem. **1991**, 407, 115. (c) Echavarren, A. M.; López, J.; Santos, A.; Montoya, J. J. Organomet. Chem. **1991**, 414, 393. (d) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem. **1990**, 55, 2277. (c) Lehikawa, M. J. Org. Chem. **1990**, 55, 3277. (e) Ishikawa, M.; Obshita, J.; Ito, Y.; Minato, A. J. Organomet. Chem. **1988**, 346, C58. (f) Trost, B. M.; Chan, C.; Ruhter,

^{(5) (}a) Rappert, T.; Nürnberg, O.; Mahr, N.; Wolf, J.; Werner, H. Organometallics 1992, 11, 4156. (b) Macomber, R. S.; Hemling, T. C. *Organometallics* **1985**, *26*, 136. (c) Stang, P. J.; Mass, G.; White, M. R. Organometallics **1983**, *2*, 720.

^{(6) (}a) Lentz, D.; Reuter, M. Z. Anorg. Allg. Chem. 1992, 614, 121.
(b) Osella, D.; Gambino, O.; Gobetto, R.; Zanello, P.; Laschi, F.; Housecroft, C. E.; Owen, S. M. Organometallics 1990, 9, 1792. (c) Aime, Housecrott, C. E.; Uwen, S. M. Organometallics 1990, 9, 1792. (c) Aime,
 S.; Osella, D.; Milone, L.; Tiripicchio, A. Polyhedron 1983, 2, 77. (d)
 Granozzi, G.; Casarin, M.; Aime, S.; Osella, D. Inorg. Chem. 1982, 21,
 4073. (e) Gerlach, J. N.; Wing, R. M.; Ellgen, P. C. Inorg. Chem. 1976,
 15, 2959. (f) Victor, R. J. Organomet. Chem. 1977, 127, C25. (g) King,
 R. B.; Harmon, C. A.; J. Organomet. Chem. 1973, 88, 93. (h) Joshi, K.
 K. J. Chem. Soc. A 1966, 594. (i) Joshi, K. K. J. Chem. Soc. A 1966, 598. (j) Nakamura, A.; Kim, P.-J.; Hagihara, N. J. Organomet. Chem. 1966, 6, 420.

ligands in the isoelectronic cluster **1** prompted us to extend this fascinating chemistry.

Thermal treatment (*n*-heptane, 70 °C, 70 min) of 1 (0.100 g, 0.118 mmol) with excess diphenylbutadiyne (0.072 g, 0.354 mmol) results in a marked color change from orange to red-brown. Separation of the reaction products was achieved via thin-layer chromatography using silica gel plates (20×20 cm, Merck, TLC grade, Aldrich Chemical Co.) and a hexane/CH₂Cl₂ mixture (85: 15) as the eluant. The first band eluted contained a mixture of **2** and **4**; however, cluster **2** could be fractionally crystallized from CH₂Cl₂/MeOH solutions at -10 °C. Four major products were recovered from the reaction mixture in varying yields (**2**, ~15%; **3**, ~10%; **4**, ~20%; **5**, ~5%) (Scheme 1). Clusters **2**–**5** have been fully characterized by IR and ³¹P{¹H} and ¹H NMR spectroscopy and by single-crystal X-ray analyses.

The presence of a high-field signal in the ${}^{31}P{}^{1}H$ NMR spectrum of 2 (δ 150.1 ppm; $\Delta \approx 260$ ppm vs 1) suggested substantial rearrangement of the coordination environment about phosphorus. Proton NMR spectra indicated the absence of hydride signals and the presence of uncoupled resonances (δ 5.41, 5.32 ppm) in the olefinic region. An X-ray analysis¹⁰ provided full details of the molecular structure (Figure 1). The

Figure 1. Molecular structure of $\operatorname{Ru}_4(\operatorname{CO})_{12}[\mu_4-\eta^{1:}\eta^{1:}\eta^{1:}\eta^{1:}\eta^{3:}P(\operatorname{Ph})C\{C(H)\operatorname{Ph}\}CC(H)\operatorname{Ph}]$ (2) illustrating the coordination mode of the diphenylbutatriene ligand. For clarity, only the *ipso* carbon atoms of the phenyl rings are illustrated. Important bond lengths (Å) and angles (deg): $\operatorname{Ru}(1)$ - $\operatorname{Ru}(2) = 2.857(1)$; $\operatorname{Ru}(1)$ - $\operatorname{Ru}(3) = 2.827(1)$; $\operatorname{Ru}(2)$ - $\operatorname{Ru}(3) = 2.891(1)$; $\operatorname{Ru}(2)$ - $\operatorname{Ru}(4) = 2.953(1)$; $\operatorname{Ru}(3)$ - $\operatorname{Ru}(4) = 2.813(1)$; $\operatorname{Ru}(1)$ - $\operatorname{P}(1) = 2.303(1)$; $\operatorname{Ru}(2)$ - $\operatorname{P}(1) = 2.317(1)$; $\operatorname{Ru}(3)$ - $\operatorname{P}(1) = 2.838(1)$; $\operatorname{Ru}(3)$ - $\operatorname{C}(14) = 2.420(4)$; $\operatorname{Ru}(3)$ - $\operatorname{C}(15) = 2.408(4)$; $\operatorname{P}(1)$ - $\operatorname{C}(15) = 1.818(5)$; $\operatorname{Ru}(4)$ - $\operatorname{C}(16) = 2.119(4)$; $\operatorname{C}(14)$ - $\operatorname{C}(15) = 1.396(6)$; $\operatorname{C}(15)$ - $\operatorname{C}(16) = 1.469(6)$; $\operatorname{C}(16)$ - $\operatorname{C}(17) = 1.340(6)$; $\operatorname{C}(13)$ - $\operatorname{C}(14)$ - $\operatorname{C}(15) = 128.5(4)$; $\operatorname{C}(14)$ - $\operatorname{C}(15)$ - $\operatorname{P}(1) = 117.5(3)$; $\operatorname{C}(14)$ - $\operatorname{C}(15)$ - $\operatorname{C}(16) = 129.8(4)$; $\operatorname{C}(15)$ - $\operatorname{C}(16)$ - $\operatorname{C}(17) = 127.0(3)$; $\operatorname{C}(16)$ - $\operatorname{C}(17)$ - $\operatorname{C}(18) = 130.6(4)$.

formation of 2 has occurred via a 1,4-diinsertion of the C4 chain into the Ru-H bonds and the coordination of the generated 1,4-diphenylbutatriene ligand onto the distorted Ru₃P face. The phosphinidene ligand, originally capping the open Ru(1)-Ru(2)-Ru(4) face in 1, is now coordinated to the two hinge atoms (Ru(2)-P(1))= 2.317(1) Å; Ru(3)-P(1) = 2.838(1) Å) and one wingtip atom (Ru(1)-P(1) = 2.303(1) Å) in **2**. The dihedral angle between the two Ru₃ planes in $2(161^\circ)$ is much greater than that found in $1 (104^\circ)$, and the *trans*-diphenylbutatriene ligand lies exclusively to one side of the Ru₃P face. The C–C bond lengths (C(14)-C(15) = 1.396(6))Å; C(15)-C(16) = 1.469(6) Å; C(16)-C(17) = 1.340(6)Å) reflect the $2\sigma - \pi$ interactions of the unsaturated chain, which can be regarded as a 1,4-diphenylbuta-1,3diene-2,3-diyl ligand. There was no evidence for the generation of the cis-butatriene.

Cluster 2 undergoes a smooth and quantitative transformation to 3 (*n*-heptane, 80 °C, 4 h) via a decarbonylation/skeletal isomerization sequence. The ³¹P{¹H} NMR signal for 3¹¹ is in the region associated with μ_4 -PR ligands capping an electron precise M₄ face¹² and full details were provided by an X-ray analysis.¹³ The molecular structure of 3 is shown in Figure 2, emphasizing the coordination mode of the butatriene ligand

⁽¹⁰⁾ Dark red needle prisms of **2** were grown from CH₂Cl₂/n-hexane solutions at 263 K. Crystals of Ru₄(CO)₁₂[P(Ph)C{C(H)Ph}CC(H)Ph] are monoclinic, space group P2, /c, with a = 19.162(2) Å, b = 10.714. (2) Å, c = 17.955(3) Å, $\beta = 105.61(2)^\circ$, T = 295 K, V = 3550.5(9) Å³, $d_{calc} = 1.969$ g cm⁻³, and Z = 4. Data were collected via the ω -scan method on a Nicolet-Siemens R3m/V diffractometer using graphitemonochromated Mo Ka ($\lambda = 0.710$ 73 Å) radiation in the 2 θ range 4.0–50.0°. A total of 6293 independent reflections were collected, of which 4631 were observed ($F \ge 6.0\sigma(F)$). The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques to yield R = 0.0240 and $R_w = 0.0244$.

⁽¹¹⁾ Selected data for **3**. Anal. Calcd for $C_{33}H_{17}O_{11}PRu_4$: C, 38.68; H, 1.67. Found: C, 38.70; H, 1.60. IR (ν (CO), cm⁻¹, C₆H₁₂): 2080 m, 2046 s, 2037 vs, 2023 s, 2018 s, 1989 m, 1981 w, 1827 w. ³¹P{¹H} NMR (81.0 MHz, CDCl₃, δ): 366.2 (s). ¹H NMR (200 MHz, CDCl₃, δ): 7.39– 7.03 (mult, $H_{\rm phenyl}$), 5.18 (s, PhCH=) ppm. ¹³C{¹H} NMR (50.3 MHz, CDCl₃): 149.6 (d, $J_{\rm PC}$ = 3.0 Hz, =C=), 141.6 (d, $J_{\rm PC}$ = 24.6 Hz, $C_{\rm ipso}$), 136.6 (s, $C_{\rm ipso}$), 133.3–128.1 (mult, $C_{\rm phenyl}$), 95.8 (d, $J_{\rm PC}$ = 5.0 Hz, =CH) ppm.

⁽¹²⁾ Carty, A. J.; MacLaughlin, S. A.; Nucciarone, D. In *Phosphorus-*31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes; Verkade, J. G., Quinn, L. D., Eds.; VCH: New York, 1987, Chapter 16.

Figure 2. Molecular stucture of $\operatorname{Ru}_4(\operatorname{CO})_{10}(\mu$ -CO)(μ_4 -PPh)-[μ_4 - $\eta^1:\eta^1:\eta^2:\eta^2$ -PhC(H)CCC(H)Ph] (3). For clarity, only the *ipso* carbon atoms of the phenyl rings are illustrated. Important bond lengths (Å) and angles (deg): Ru(1)–Ru(2) = 2.933(1); Ru(1)–Ru(4) = 2.915(1); Ru(2)–Ru(3) = 2.824(1); Ru(3)–Ru(4) = 2.912(1); Ru(1)–C(14) = 2.137-(5); Ru(2)–C(13) = 2.462(5); Ru(2)–C(14) = 2.289(4); Ru(3)–C(15) = 2.121(5); Ru(4)–C(15) = 2.316(5); Ru(4)–C(16) = 2.479(5); C(13)–C(14) = 1.384(7); C(14)–C(15) = 1.479-(7); C(15)–C(16) = 1.389(6); C(13)–Ru(2)–P(1) = 107.3-(1); C(14)–Ru(1)–P(1) = 79.0(1); C(14)–Ru(2)–P(1) = 73.7(1); C(15)–Ru(3)–P(1) = 78.6(1); C(15)–Ru(4)–P(1) = 73.4(1); C(16)–Ru(4)–P(1) = 106.9(1); C(12)–C(13)–C(14) = 131.5(4); C(13)–C(14)–C(15) = 124.3(6); C(14)–C(15)–C-(16) = 125.1(4); C(15)–C(16)–C(17) = 131.4(4).

on the Ru₄ face. The distances associated with the C₄ chain (C(13)–C(14) = 1.384(7) Å; C(14)–C(15) = 1.479-(7) Å; C(15)–C(16) = 1.389(6) Å) reflect the additional π -interaction on going from 2 to 3, required to satisfy the electronic requirements of the Ru₄ plane, resulting in a lengthening of the third C=C bond. The *trans* disposition of the olefinic protons is also retained on going from 2 to 3.

The molecular structure of 4, the final major product isolated from the reaction mixture, is shown in Figure 3.¹⁴ The phosphinidene fragment caps a square Ru₄ face, and 1,2-diinsertion of diphenylbutadiyne has afforded 1,4-diphenylbut-3-en-1-yne, which is attached to the opposite side of the metal square. The coupling constants associated with the two olefinic protons (³J_{HH} = 7.9 Hz) reflect a relative pseudo *trans* relationship (dihedral angle ~141°) with H(16) also coupled to the phosphorus atom (³J_{PH} = 2.9 Hz).¹⁵ The metal-carbon distances associated with the alkyne (Ru(1)-C(13) = 2.208(9) Å; Ru(2)-C(13) = 2.155(10) Å; Ru(3)-C(14) = 2.192(9) Å; Ru(4)-C(14) = 2.166(9) Å) and olefin moi-

Figure 3. Projection of the molecular structure of Ru₄-(CO)₁₁(μ_4 -PPh)(μ_4 - η^1 : η^1 : η^3 -PhC(H)C(H)CCPh] (4) with phenyl rings omitted for clarity. Important bond lengths (Å) and angles (deg): Ru(1)-Ru(2) = 2.823(1); Ru(1)-Ru(4) = 2.889(1); Ru(2)-Ru(3) = 2.888(1); Ru(3)-Ru(4) = 2.806(1); Ru(1)-C(13) = 2.208(9); Ru(2)-C(13) = 2.155(10); Ru(3)-C(14) = 2.192(9); Ru(4)-C(14) = 2.166(9); Ru(4)-C(15) = 2.251(9); Ru(4)-C(16) = 2.352(9); C(13)-C(14) = 1.422(13); C(14)-C(15) = 1.418(13); C(15)-C(16) = 1.405(14); C(13)-Ru(1)-P(1) = 79.1(2); C(13)-Ru(2)-P(1) = 79.1(3); C(14)-Ru(3)-P(1) = 75.1(2); C(14)-Ru(4)-P(1) = 75.3(3); C(15)-Ru(4)-P(1) = 112.6(3); C(16)-Ru(4)-P(1) = 137.4(3); C(12)-C(13)-C(14) = 115.9(8); C(13)-C(14)-C(15) = 125.0(8); C(14)-C(15)-C(16) = 124.3-(8); C(15)-C(16)-C(17) = 121.6(8).

eties (Ru(4)–C(15) = 2.251(9) Å; Ru(4)–C(16) = 2.352-(9) Å) lie within a narrow range. It is noteworthy that, including the Ru–olefin interaction, the C₄ hydrocarbyl acts as a six-electron donor to the metal framework which has a total of 64 cluster valence electrons. The related molecules Ru₄(CO)₁₀(μ -CO)(μ ₄-PPh)(μ ₄-X) (X = four-electron donor)^{7c,16} are electron deficient according to the EAN rule and exhibit marked upfield shifts in their ³¹P{¹H} NMR spectra compared to 4.

The η^2 -olefin interaction of the 1,4-diphenylbut-3-en-1-yne ligand in **4** is easily displaced and accounts for the formation of **5** during the reaction sequence. Once isolated, **4** is easily and quantitatively converted to **5** via the addition of excess PhC₄Ph (*n*-heptane, 80 °C).¹⁷ The Ru(3)-Ru(4) bonding distance in **5** (2.714(1) Å) has contracted considerably on going from **4** to **5** and is unsymmetrically bridged by C(19) (Ru(3)-C(19) = 2.060(5) Å; Ru(4)-C(19) = 2.247(6) Å).¹⁸ The eightcarbon atom chain has formed from the coupling of one of the alkyne units to the previously coordinated olefin. The second alkyne functionality of the incoming

⁽¹³⁾ Red needle plates of **3** were grown from the slow evaporation of n-hexane solutions at 295 K. Crystals of Ru₄(CO)₁₁(PPh)[Ph(H)-CCCC(H)Ph] are triclinic, space group PI, with a = 9.256(2) Å, b = 12.198(3) Å, c = 15.700(3) Å, $a = 95.54(2)^{\circ}$, $\beta = 96.90(2)^{\circ}$, $\gamma = 101.06-(2)^{\circ}$, T = 200 K, V = 1714.0(6) Å³, $d_{calc} = 1.986$ g cm⁻³, and Z = 2. Data were collected as for **2** on an LT-2 equipped Nicolet-Siemens R3m/V diffractometer in the 2θ range $4.0-50.0^{\circ}$. The structure was solved (Patterson/Fourier) and refined using 4836 observed data (6061 independent data collected). Refinement converged at R = 0.0313 and $R_w = 0.0365$.

⁽¹⁴⁾ Red-brown prisms of 4 were grown from the slow evaporation of CH₂Cl₂/n-hexane solutions at 295 K. Crystals of Ru₄(CO)₁₁(PPh)-[Ph(H)CCCC(H)Ph] are monoclinic, space group $P2_1/c$, with a = 9.952-(2) Å, b = 16.189(3) Å, c = 20.888(4) Å, $\beta = 94.17(2)^\circ$, T = 295 K, V = 3356.3(11) Å³, $d_{calc} = 2.028$ g cm⁻³, and Z = 4. Data were collected as for 2 in the 2 θ range 4.0-50.0°. The structure was solved (Patterson/ Fourier) and refined using 4333 observed reflections (5942 independent data collected) to yield R = 0.0491 and $R_w = 0.0560$.

⁽¹⁵⁾ Selected data for 4. Anal. Calcd for $C_{33}H_{17}O_{11}PRu_4$: C, 38.68; H, 1.67. Found: C, 38.46; H, 1.42. IR (ν (CO), cm⁻¹, C₆H₁₂): 2083 w, 2058 vs, 2049 s, 2024 s, 2019 s, 1984 m, 1966 w, ³¹P{¹H} NMR (81.0 MHz, CDCl₃, δ): 401.3 (s). ¹H NMR (200 MHz, CDCl₃, δ): 7.55–7.05 (mult, H_{phenyl}), 5.25 (d, ³J_{HH} = 7.9 Hz, PhCH=), 3.86 (dd, ³J_{HH} = 7.9 Hz, ³J_{PH} = 2.9 Hz, =CH⁻) ppm. ¹³C{¹H} NMR (63.0 MHz, CDCl₃): 203.2 (d, J_{PC} = 7.6 Hz, CO), 197.9 (s, CO), 195.6 (d, J_{PC} = 8.8 Hz, CO), 195.3 (d, J_{PC} = 10.1 Hz, CO), 193.7 (s, CO), 162.9 (d, J_{PC} = 6.9 Hz, C_{alkyne}), 154.3 (d, J_{PC} = 5.0 Hz, C_{alkyne}), 142.5 (d, J_{PC} = 20.2 Hz, C_{ipso}), 139.2–125.1 (mult, C_{phenyl}), 96.0 (d, J_{PC} = 3.0 Hz, C_{olefn}), 67.2 (d, J_{PC}

^{120.1 (}Inder, Opneny), Solid G, J. C. C., J. C. C., J. C. C., Colefin) ppm.
(16) (a) Van Gastel, F.; Agocs, L.; Cherkas, A. A.; Corrigan, J. F.; Doherty, S.; Ramachandran, R.; Taylor, N. J.; Carty, A. J. J. Cluster Sci. 1991, 2, 131. (b) Knox, S. A. R.; Lloyd, B. R.; Morton, D. A. V.; Nicholls, S. M.; Orpen, A. G.; Vinas, J. M.; Weber, M.; Williams, G. K. J. Organomet. Chem. 1990, 394, 385. (c) Jaeger, T.; Aime, S.; Vahrenkamp, H. Organometallics 1986, 5, 245. (d) Field, J. S.; Haines, R. J.; Smit, D. N. J. Chem. Soc., Dalton Trans. 1988, 1315.

Figure 4. Molecular structure of $Ru_4(CO)_{10}(\mu_4$ -PPh)[μ_4 - $\eta^{1}:\eta^{1}:\eta^{3}:\eta^{3}$ -PhCCC(H)C(H)PhC(Ph)CCCPh] (5) illustrating the coordinated eight-carbon hydrocarbyl chain. Important bond lengths (Å) and angles (deg): Ru(1)-Ru(2) = 2.862-(1); Ru(1)-Ru(4) = 2.908(1); Ru(2)-Ru(3) = 2.951(1); Ru-(3)-Ru(4) = 2.714(1); Ru(1)-C(12) = 1.866(8); Ru(2)-C(12)= 2.172(6); Ru(3) - C(13) = 2.250(6); Ru(4) - C(13) = 2.084-(5); $\operatorname{Ru}(3)$ -C(14) = 2.314(6); $\operatorname{Ru}(4)$ -C(18) = 2.329(5); Ru-(3)-C(19) = 2.060(5); Ru(4)-C(19) = 2.247(6); C(12)-C(13)= 1.482(8); C(13)-C(14) = 1.349(7); C(14)-C(15) = 1.548(7); C(15)-C(18) = 1.520(7); C(18)-C(19) = 1.428(8); C(19)-C(20) = 1.423(8); C(20)-C(21) = 1.200(8); C(12)-Ru-(1)-P(1) = 78.8(2); C(12)-Ru(2)-P(1) = 78.8(2); C(13)-Ru-(3)-P(1) = 72.6(1); C(13)-Ru(4)-P(1) = 77.5(1); C(14)-Ru-(3)-P(1) = 106.9(1); C(18)-Ru(4)-P(1) = 128.4(2);C(19)-Ru(3)-P(1) = 98.3(1); C(19)-Ru(4)-P(1) = 95.9(1);C(11)-C(12)-C(13) = 116.6(4); C(12)-C(13)-C(14) = 128.0-C(14) = 128.0-(5); C(13)-C(14)-C(15) = 117.6(5); C(14)-C(15)-C(16) =113.0(4); C(14)-C(15)-C(18) = 109.2(4); C(17)-C(18)-C-(19) = 124.5(5); C(18)-C(19)-C(20) = 124.2(5); C(19)-C-(20)-C(21) = 174.3(6); C(20)-C(21)-C(22) = 176.4(6).

butadiyne remains uncoordinated. The C–C distances of the 3,6-dimetalated 1,4,5,8-tetraphenylocta-1,7-diyn-3-ene ligand vary considerably, in accordance with the

bonding nature of the generated hydrocarbyl (C(12)–C-(13) = 1.482(8) Å; C(13)–C(14) = 1.349(7) Å; C(14)–C-(15) = 1.548(7) Å; C(15)–C(18) = 1.520(7) Å; C(18)–C-(19) = 1.428(8) Å; C(19)–C(20) = 1.423(8) Å; C(20)–C(21) = 1.200(8) Å) although the short distance between atoms C(13) and C(14) is unusual.

There are several notable and distinctive features of the synthesis of butatriene, enyne, and enediyne ligands from 1 and diynes. Formation of trans-1,4-diphenylbutatriene and *trans*-1,4-diphenvlbut-3-en-1-vne (PhC= CCH=C(H)Ph) occurs via 1,4- and 1,2-dihydrometalation reactions from the cluster $(\mu$ -H)₂Ru₄(CO)₁₂ $(\mu_3$ -PPh). This reaction sequence may have potential for the synthesis of less accessible butatrienes and enynes. Moreover, the synthesis of 5 from a coordinated envne and free diyne shows that ene-yne coupling can be mediated at a polynuclear site. Finally, it has become evident from this and previous work⁸ that alkynealkyne and alkyne-ene couplings on Ru₄ clusters with square M_3P or M_4 faces yield noncyclic unsaturated hydrocarbon products. We are currently examining the potential of this cluster-mediated chemistry for the generation of other saturated and unsaturated hydrocarbon chains via ene-ene, ene-yne, and related coupling sequences.

Acknowledgment. The support of the Natural Sciences and Engineering Research Council of Canada for operating (A.J.C.) and equipment (A.J.C.) grants and scholarships (J.F.C.) is greatly appreciated.

Supplementary Material Available: For complexes 2-5, details of the structure determination (Tables S1, S7, S13, and S19, non-hydrogen atomic positional parameters (Tables S2, S8, S14, and S20), bond distances (Tables S3, S9, S15, and S21), bond angles (Tables S4, S10, S16, and S22), anisotropic thermal parameters (Tables S5, S11, S17, and S23), and hydrogen atom positions (Tables S6, S12, S18, and S24) (38 pages). Ordering information is given on any current masthead page. Observed and calculated structure factors are available from the authors upon request.

OM940391O

⁽¹⁷⁾ Selected data for 5. Anal. Calcd for $C_{48}H_{27}O_{10}PRu_4$: C, 48.08; H, 2.27. Found: C, 48.34; H, 2.22. IR (ν (CO), cm⁻¹, $C_{6}H_{12}$): 2075 m, 2051 vs, 2032 s, 2022 s, 2015 m, 2005 w, 1989 w. ³¹P{¹H} NMR (81.0 MHz, CDCl₃, δ): 473.3 (s). ¹H NMR (200 MHz, CDCl₃, δ): 8.21–7.00 (mult, H_{phenyl}), 5.19 (s, -CH-), 4.98 (s, -CH-) ppm. ¹³C{¹H} NMR (50.3 MHz, CDCl₃): 197.9 (d, $J_{PC} = 4.2$ Hz, CO), 198.6 (d, $J_{PC} = 15.6$ Hz, CO), 198.2 (d, $J_{PC} = 30.2$ Hz, CO), 196.2 (d, $J_{PC} = 7.5$ Hz, CO), 195.9 (d, $J_{PC} = 11.6$ Hz, CO), 194.9 (d, $J_{PC} = 10.6$ Hz, CO), 183.1 (s, C_{alkyne}), 175.5 (d, $J_{PC} = 4.5$ Hz, C_{alkyne}), 154.9 (d, $J_{PC} = 3.0$ Hz, C_{alkyne}), 144.4 (d, $J_{PC} = 19.6$ Hz, C_{ipso}), 141.1 (s, C_{ipso}), 140.9 (s, C_{ipso}), 133.7–124.8 (mult, C_{phenyl}), 123.4 (s, C_{ipso}), 122.0 (d, $J_{PC} = 4.0$ Hz, C_{alkyne}), 118.1 (s, C_{ipso}), 113.4 (d, $J_{PC} = 6.0$ Hz, C_{alkyne}), 107.4 (s, -CH-=), 98.3 (s, C_{alkyne}), 62.0 (s, -CH-) ppm.

⁽¹⁸⁾ Red-brown prisms of **5** were grown from the slow evaporation of CH₂Cl₂/n-hexane solutions at 295 K. Crystals of Ru₄(CO)₁₀(μ_4 -PPh)-[PhCCC(H)C(H)PhC(Ph)CCCPh] are monoclinic, space group $P2_1/n$, with a = 11.491(2) Å, b = 31.812(7) Å, c = 12.465(4) Å, $\beta = 102.68(2)^\circ$, T = 295 K, V = 4445.3(14) Å³, $d_{calc} = 1.791$ g cm⁻³, and Z = 4. Data were collected as for **2** on in the 2θ range $4.0-50.0^\circ$. The structure was solved (Patterson/Fourier) and refined using 5033 observed reflections (7868 independent data collected) to yield R = 0.0329 and $R_w = 0.0316$.