Preparation of New Lithium Organotrihydroaluminates: Crystal Structure of $\{(C_4H_8O)_2Li(\mu-H)_2AlH[C(SiMe_2Ph)_3]\}_2$

Colin Eaborn,* Ian B. Gorrell, Peter B. Hitchcock, J. David Smith,* and Kayumars Tavakkoli

School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K.

Received July 8, 1994[®]

Summary: Reaction of RLi $(R = (Me_3Si)_3C$ or $(Me_2 PhSi_{3}C$) with $Li[AlH_{4}]$ in tetrahydrofuran (THF) gives the new, stable alkyltrihydroaluminates Li[AlRH₃]-2THF, which are dimeric both in the solid state and in solution and are important starting materials for the synthesis of a range of organoaluminum compounds bearing bulky substituents.

Previous attempts to obtain well-characterized trihydroaluminates, i.e. salts containing the anion [AlRH₃]⁻, have failed owing to the facile rearrangement described in eq 1 (e.g. R = Me, Et).¹ Only limited evidence, from

$$2[AlRH_3]^- \rightarrow [AlH_4]^- + [AlR_2H_2]^-$$
(1)

aluminum analyses and infrared spectra, has been used to identify Li[AlEtH₃],² Na[AlBuⁱH₃],³ and HMg[AlRH₃] $(R = Et^{4,5} \text{ or } Bu^{n})$ in the solid state, and no structure of a crystalline compound has been determined. In contrast, alkali metal trihvdroborates are well-known⁶ and are used as selective reducing agents in organic synthesis⁷ and ligand-transfer reagents in transition metal chemistry.8

We now describe the first well-defined organotrihydroaluminates, which are stabilized by the attachment of a bulky silvl-substituted alkyl group, $R (R = (Me_3 - Me_3))$ $Si_{3}C$ or $(Me_{2}PhSi_{3}C)$, to the aluminum center.

The reaction of RLi with an excess of Li[AlH₄] in THF at 60 °C, followed by removal of solvent and extraction with toluene, gave Li[AlRH3] 2THF.9,10 Crystals of compound 1 ($\mathbf{R} = (Me_3Si)_3C$) were unsuitable for X-ray analysis, but those of the (Me₂PhSi)₃C derivative, 2, obtained from a toluene solution at -30 °C, were found to consist of dimers, as shown in Figure 1. The X-ray data were collected at -100 °C so that loss of THF was inhibited and hydrogen atoms could be located. The

[®] Abstract published in Advance ACS Abstracts, September 15, 1994. (1) Gavrilenko, V. V.; Vinnikova, M. I.; Antonovich, V. A.; Zakharkin, L. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1982, 2084-2087.

(2) Clasen, H. Angew. Chem. 1961, 73, 322-331

(3) Zakharkin, L. I.; Gavrilenko, V. V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1965, 624-628.

(4) Srivastava, S. C.; Ashby, E. C. Inorg. Chem. 1971, 10, 186-192. (5) Ashby, E. C.; Schwartz, R. D. Inorg. Chem. 1972, 11, 919-924. (6) See, for example: Brown, H. C.; Singaram, B.; Singaram, S. J.

(c) See, in Example. Brown, H. C., Singaram, B., Singaram, S. J., Organomet. Chem. 1982, 239, 43-64 and references therein. Biffar, W.; Nöth, H.; Sedlak, D. Organometallics 1983, 2, 579-585. Singaram, B.; Cole, T. E.; Brown, H. C. Organometallics 1984, 3, 774-777.
 (7) Kim, S.; Moon, Y. C.; Ahn, K. H. J. Org. Chem. 1982, 47, 3311-

3315.

(8) See, for example: Paetzold, P.; Geret, L.; Boese, R. J. Organomet. Chem. 1990, 385, 1-11. Kot, W. K.; Edelstein, N. M.; Zalkin, A. Inorg. Chem. 1987, 26, 1339-1341. Brennan, J.; Shinomoto, R.; Zalkin, A.; Edelstein, N. Inorg. Chem. 1984, 23, 4143-4146.

structure¹¹ of 2 is based on an eight-membered ring, in contrast to the analogous boron compound,¹² which has the monomeric structure $(THF)_3Li(\mu-H)_3BC(SiMe_2Ph)_3$,

and to an indium compound,¹³ $(Me_3Si)_3CIn(H)(\mu-H)Li$ -

 $(THF)_2(\mu\text{-}H)In(\mu\text{-}\dot{H})(H)C(SiMe_3)_3,$ which was obtained by reduction of Li[(Me₃Si)₃CInCl₃]·3THF with Li[AlH₄] and has a six-membered-ring structure. Each dimer in 2 comprises two [AlRH₃]⁻ anions and two [(THF)₂Li]⁺ cations. The steric requirements of the alkyl group

(10) Li[(Me₂PhSi)₃CAlH₃]2THF, 2: A solution of (Me₂PhSi)₃CLiTHF $made^{20}$ from $(Me_2PhSi)_3CH$ (3 g, 7.16 mmol) in THF (15cm³) was added to a stirred suspension of Li[AlH₄] (0.38 g, 10 mmol) in THF (10cm³), and the mixture was stirred at 60 °C for 4 h and then allowed to cool and the mixture was stirred at 60 °C tor 4 h and then allowed to cool to room temperature. The solvent was removed, and the residue was extracted with toluene (40 cm³) at 60 °C. Filtration through Celite and concentration of the filtrate to ca. 10 cm³ gave colorless, air-sensitive crystals of 2. Yield: 2.4 g, 56%. Mp: ca. 131 °C. Anal. Found: C, 62.1; H, 8.7; Al, 4.5. Calcd for C₆₆H₁₀₄Al₂Li₂O₄Si₆: C, 66.2; H, 8.7; Al, 4.5. IR: ν (Al-H) (cm⁻¹) 1721 br. ¹H NMR (360 MHz, C₇D₈): δ 0.65 (18H, s, CH₃), 1.42 (8H, m, CH₂), 3.68 (8H, m, OCH₂), 6.39-7.15, 7.47-7.58 (15H, m, C₆H₃). ¹³C NMR (62.88MHz, C₇D₈): δ 4.3 (CH₂) 25.5 (CH₂) 69 (OCH₃) 128 6 (m) 129 1(m) 137.5 (other solution of the solution of 4.3 (CH₃), 25.5 (CH₂), 69.1 (OCH₂), 128.6 (m), 129.1 (p), 137.5 (o), 144.5 (ipso C). ⁷Li NMR (97.253 MHz, C₇D₈): δ =0.76. ²⁹Si NMR (99.36 MHz, C₇D₈): δ -8.44. ²⁷Al NMR (MHz, C₇D₈): δ 115.0 ppm.

© 1994 American Chemical Society 0276-7333/94/2313-4143\$04.50/0

⁽⁹⁾ Li[(Me₃Si)₃CAlH₃]-2THF, 1: A solution of $(Me_3Si)_3$ CLi-2THF made¹⁹ from $(Me_3Si)_3$ CH (3 g, 12.9 mmol) in THF (20 cm³) was added to a stirred suspension of Li[AlH₄] (0.6 g, 15.8 mmol) in THF (10 cm³), and the mixture was stirred at 60 °C for 2 h and then allowed to cool to room temperature. The solvent was removed and the residue extracted with toluene (40 cm^3) at 60 °C. Filtration through Celite and concentration of the filtrate to ca. 10 cm³, followed by storage at -30 °C, gave colorless, air-sensitive crystals of 1. Yield: 3.4 g, 64.2%. Mp: 207-213 °C. Anal. Found: C, 49.2; H, 9.2; Al, 6.6. Calcd for $C_{36}H_{92}Al_{2}L_{12}O_{4}Si_{5}$: C, 52.4; H, 11.2; Al, 6.5. IR: $\nu(Al-H)$ (cm⁻¹) 1729 NMR (65.223 MHz, C_7D_8 , relative to aqueous Al(NO₃)₃): δ 113.0 ppm.

- 1 $R = (Me_3Si)_3C, L = THF$
- 2 $R = (Me_2PhSi)_3C, L = THF$

inhibit the approach of cation and anion and cause the eight-membered ring to buckle, with the two aluminum atoms ca. 0.9 Å above and below and the two lithium atoms ca. 0.16 Å above the mean ring plane, giving a distorted chair arrangement. The O-Li-H angles involving H(4) (95, 119°) and H(5) (96, 125°) are distorted from the tetrahedral value. The mean Al-H distance, 1.61(2) Å, is shorter than that in the trialkylaluminate, 3(1.75(3) Å),¹⁴ and the mean Li-H distance, 1.93(4) Å, is similar to that of the longer bond of the asymmetrical Li_2H_2 ring (1.92(3) Å) in 3. The Al-C and Li-O bond lengths are normal. An eight-membered ring was recently shown to be present in the (amido)aluminum compound [(Et₂O)₂Li(µ-H)₂AlHN(SiMe₃)₂]₂,¹⁵ but the lower steric requirements of the (Me₃Si)₂N group compared with those of the (Me₂PhSi)₃C group in 2 give a planar ring, with shorter Li-H bonds, 1.78(4) Å, and smaller H-Li-H angles, $107(2)^{\circ}$ (cf. $117(1)^{\circ}$ in 2). Interestingly, the carbene adduct 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-AlH₃ which can be represented as R^+ -Al H_3^- is monomeric.¹⁶

It seems likely that compounds containing the $[AlRH_3]^-$ anion can be isolated only when R is so large

(12) Eaborn, C.; El-Kheli, M. N. A.; Hitchcock, P. B.; Smith, J. D. J.
 Chem. Soc., Chem. Commun. 1984, 1673-1674.
 (13) Avent, A. G.; Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan,
 A. C. J. Chem. Soc., Chem. Commun. 1986, 988-989.
 (14) Uhl, W. Z. Anorg. Allg. Chem. 1989, 570, 37-53.
 (15) View A. Scelle D. Accenter Chem. Int. Ed. Engl. 1999, 24

(15) Heine, A.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1992, 31, 854-855.

(16) Arduengo, A. J., III; Dias, H. V. R.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. 1992, 114, 9724-9725.

that formation of $[AlR_2H_2]^-$ is inhibited. When we treated Bu^tLi with 1 molar equiv of Li[AlH₄] in THF, we isolated only Li[AlBut₂H₂]2THF.¹⁷ Crystals suitable for an X-ray diffraction study have so far not been obtained.

The new organotrihydroaluminates 1 and 2 are highly soluble in diethyl ether, THF, and toluene and sparingly soluble in light petroleum. Cryoscopic molecular weight measurements suggest that the structure of 1 is preserved in benzene (RMM, 825; found 915).

Compounds 1 and 2 are valuable starting materials for the synthesis of a wide range of new compounds of aluminum containing bulky alkyl groups. Previous attempts to make various tris(trimethylsilyl)methylaluminum derivatives directly from (Me₃Si)₃CLi·2THF in THF were frustrated by ring opening reactions of THF,¹⁸ but the reactions of 1 in toluene with HCl, HBr, Br₂, or I₂ have given the new compounds (Me₃Si)₃CAlX₂·THF (X = Cl, Br, I, respectively), opening the way to much new aluminum chemistry. We have also found that HF-pyridine reacts with 1 in toluene to give a compound of composition Li[(Me₃Si)₃CAlF₃] THF, which contains, as far as we are aware, the first alkyltrifluoroaluminate anion.

Acknowledgment. We thank the SERC for financial support.

Supplementary Material Available: Tables listing crystal structure details, complete fractional atomic coordinates and thermal parameters, bond distances and angles, anisotropic thermal parameters, and least squares planes and ORTEP figures (18 pages). Ordering information is given on any current masthead page.

OM940535Z

nomet. Chem. 1983, 239, 23-31.
(19) Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem. Commun. 1983, 827-828.
(20) Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem. Commun. 1983, 1390-1391.
(21) Buttrus, N. H.; Eaborn, C.; El-Kheli, M. N. A.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C.; Tavakkoli, K. J. Chem. Soc., Dalton Trans. 1988, 381-391.

⁽¹¹⁾ Crystal data for 2: $C_{66}H_{104}Al_2Li_2O_4Si_6$, M = 1197.9, monoclinic, a = 22.625(8) Å, b = 12.206(3) Å, c = 27.217(5) Å, $\beta = 111.30(2)^\circ$, V = 7003.0 Å³, space group $P2_1/n$, Mo Ka radiation, $\lambda = 0.710$ 69 Å, Z = 4, $D_c = 1.14$ g cm⁻³, F(000) = 2592, crystal dimensions $0.5 \times 0.4 \times 0.4$ mm, $\mu = 1.8$ cm⁻¹, CAD4 diffractometer, $\theta - 2\theta$ mode, T = 173 K, Z = 4, $\Phi < 25^\circ$, 19921 with the second second and 2007 with |E| > 2heta < 25°, 12931 unique reflections measured and 8087 with $|F^2|$ > 2 σ - (F^2) used, no decay or absorption correction. Structure analysis was by direct methods using SHELXS-86. Full-matrix least-squares refinement proceeded using Enraf-Nonius MOLEN programs with non-H atoms anisotropic, hydride H atoms refined isotropically, and the rest fixed at calculated positions with $U_{\rm iso} = 1.3U_{\rm eq}$ for the parent atom. Final R = 0.063 and R' = 0.067. S = 1.7. The alkyl group on Al(1) is disordered in a way commonly found for (Me₃Si)₃C derivatives²¹ but not previously observed for a (Me₂PhSi)₃C compound.

⁽¹⁷⁾ Li[Bu^t₂AlH₂]·2THF: A solution of Bu^tLi (1.7 M) in pentane (10 cm³) was added dropwise to a well-stirred suspension of Li[AlH₄] (0.65 g, 17.1 mmol) in THF (25 cm³) at room temperature. The mixture was stirred for 16 h, solvent was removed, and the residue extracted with toluene (40 cm³). The extract was filtered, solvent removed, and the toluene (40 cm³). The extract was filtered, solvent removed, and the residue crystallized from heptane to give a colorless, crystalline solid. Yield: 2.05 g, 80%. Mp: 108 °C. Anal. Found: C, 64.9; H, 12.0. Calcd for $C_{16}H_{36}AlLiO_2$: C, 65.3; H, 12.3. IR: $\nu(Al-H)$ (cm⁻¹) 1643 bd. ¹H NMR (360 MHz, C₆D₆): δ 1.30 (CH₂, m, 8H), 1.48 (CH₃, s, 18H), 3.56 (OCH₂, m, 8H). ¹³C NMR (125.76 MHz, C₆D₆): δ 15.0 ((CH₃)C), 25.3 (CH₂), 32.35 (CH₃), 68.7 (OCH₂). ⁷Li NMR (97.263 MHz, C₆D₆): δ -0.36. ²⁷Al NMR (65.223 MHz, C₆D₆): δ 141.4 pm. (18) Eaborn, C; El-Kheli, M. N.; Retta, N.; Smith, J. D. J. Orga-nomet. Chem. **1983**, 249, 23-31. (19) Eaborn, C; Hitchcock, P. B: Smith, J. D.; Sullivan, A. C. J.