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Summary: 18-crown-6 reacts with A1X3 (X = Cl, 1, X = 
I, 2) in  an  excess of  AlMe3 in  toluene to form the liquid 
clathrate species [AlMe2(18-crown-6)AlMe~l[AlMeX3/. 
The AlMeZ+ ion is coordinated to the interior of  the 
macrocycle, while the neutral species is coordinated to 
the exterior, via an  inverted crown oxygen atom. 

Crown ethers are best known for their ability to 
complex alkali,' alkaline-earth,2 and lanthanide met- 
a l ~ . ~ ~ ~  In these situations the metal is invariably 
coordinated through the crown oxygens within the 
cavity of the crown ether. A few reports have shown 
that complexes with early transition or with 
aluminum8 exist in which crown ethers function as 
ligands by placing the oxygen atoms on the exterior of 
the macrocyclic ring. Indeed, 15-crown-5 is able to use 
four of its oxygen atoms in this manner in the formation 
of [(15-~rown-5)(AlMe3)4],~ while thia crown ethers typi- 
cally adopt the conformation where the sulfur atoms are 
exodentate (directed out of the macrocyclic rir~g).~JO Our 
group has demonstrated the stabilization of unusual 
coordination chemistry for aluminum complexes bound 
on the interior of crown ethers.11J2 One example was 
the stabilization of AlMe2+ by coordination to three 
oxygen atoms of 18-crown-6 and all five oxygen atoms 
of 15-cr0wn-5.l~ In this contribution we show that the 
[AlMez+(18-crown-6)3 cation can further bond a neutral 
organoaluminum moiety on the outside of the macro- 

cycle. In this fashion, in one compound cationic, neu- 
tral, and anionic organoaluminum species are found. 

The organoalumium complexes [AlMe2(18-crown-6)- 
AlMe&I[AlMe&] (X = C1,l; X = I, 2) were prepared in 
moderate yield according to Scheme l.13J4 In both 
cases, a vigorous exothermic reaction occurred upon 
addition of AlMe3 to the reaction mixture. After the 
reaction mixture was stirred for approximately 2 h, a 
pale yellow liquid c1athratel5-l7 separated from the 
solvent layer. Colorless crystals of both complexes 
deposited from the liquid clathrate layers and were 
analyzed by X-ray crystallographic techniques.l* 

Scheme 1 
toluene AK3 + 18-crown-6 + AlMe, (excess) - 

[AlMe2( 18-crown-6)AlMe&I[AlMeX31 
x = c1, 1; x = I, 2 

In the structure of the [AlMezf(18-crown-6)1 cation 
the aluminum atom was found to be strongly coordi- 
nated to one oxygen at 1.929(5) A and more weakly to 
two others at 2.181(5) and 2.435(5) A.12 The decision 
to refer to the last distance as a bond was based in part 
on the Me-Al-Me bond angle of 140.6(3)".19 The three 
nonbonding Al-0 separations were 3.09,3.46, and 3.80 
A.12 The geometry of the AlMe2+ group in the title 
complexes, where the chloride and iodide analogues are 
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Figure 1. Structure of the [AlMeZ+( 18-crown-6)AlMe~Cll 
cation in 1. The iodide species is isostructural. Al-0 
distances (A) and angles (deg) are as follows (data for the 
iodide analogue are given in brackets): Al-O(l), 2.129(9) 
[2.16( 111; Al-0(2), 1.966(9) [ 1.94( 111; Al-0(3), 2.135(9) 

(61, 3.07 13.081; Al-Me-AI, 152.1(5) [152.5(6)1. 

isostructural (Figure l), exhibits many overall features 
in common with that in [AlMe2+(18-crown-6)1, but with 
significant differences. The Al center resides in a highly 
distorted trigonal bipyramidal environment. The rota- 
tion of O(5) to the exterior of the crown has apparently 
caused a tightening of the bonding of the AlMe2+ ion to 
the remaining oxygen atoms. The three bonded oxygen 
atoms are Al-0(2) (1.966(9) A), Al-0(3) (2.135(9) A), 
and Al-0(1) (2.129(9) A) for 1 and Al-0(2) (1.94(1) A), 
Al-0(3) (2.13(1) A), and Al-O(l) (2.16(1) A) for 2. The 
nonbonded Al-0 separations have also shortened to 2.95 
and 3.07 A for the chloride and 2.97 and 3.08 %, for the 
iodide derivatives, while the oxygen external to the 
cavity is 4.83 and 4.82 A from the cavity-bound alumi- 
num atom in 1 and 2, respectively. This tightening of 
the binding of the macrocycle has forced the Me-Al-Me 
angle to open to 152.1(5) and 152.5(6)" for 1 and 2, 
respectively. There is a surprisingly large difference 
between the Al-Me bond distances for 1 and 2. In 1 
the Al-Me distances are 2.00(1) A while in 2 the 
distances are much shorter at 1.95(1) A. Torsion angles 

[2.13(1)1; Al-0(4), 2.95 L2.971; Al-0(5), 4.83 L4.821; Al-0- 
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Table 1. Torsion Angles (deg) around the Crown in 
Compounds 1 and 2 

angle 1 2 18-cr0wn-6~~ 

Ol-C2-C3-02 47 51 74.7 
02-C3-C4-04 -50 -49 -65.1 
03-C5-C6-04 65 59 173.7 
04-C7-C8-05 -73 -78 74.7 
05-C9-C10-06 - 80 -79 -65.1 
06-C11-C12-01 -66 -66 173.7 
c1-c2-02-c3 172 169 - 154.9 
c2-02-c3-c4 -175 -172 165.6 
c3-c4-03-c5 -172 - 173 175.2 
C4-03-C5-C6 163 169 172.4 
C5-C6-04-C7 94 104 169.2 
C6-04-C7-C8 -176 -177 -80.3 
C7-C8-05-C9 82 81 - 154.9 
C8-05-C9-C10 73 74 165.6 
C9-C10-06-C11 -159 -159 175.2 
C 10-06-C 1 1 -C 12 179 179 172.4 
c 11-c12-01-c1 -153 -161 169.2 
c12-01-c1-c2 -178 -178 -80.3 

about the 18-crown-6 moiety are severely distorted from 
those in 18-crown-6 (see Table 1). These angles exem- 
plify the shift of O(5) from an endodentate conformation 
to an exodentate conformation to accommodate coordi- 
nation of the neutral species. They also highlight the 
conformational mobility of the 18-crown-6 molecule. 

The AlMe2X unit which is bonded to  06) at an Al-0 
distance of 1.922(8) 8, in 1 and 1.908(9) %, in 2 resulted 
from the exchange of methyl and halide groups in the 
mixture of and AlMe3. Indeed, the existence of the 
[AlMe2+(18-crown-6)AlMe~l cation opens the question 
as to  the range of Lewis acids which can form such a 
bimetallic cation. The structures of the anions in each 
species were unexceptional, and there were no cation 
to anion contacts less than 3.5 A. 
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