

Unusual Rearrangement in the Photochemical Addition of Bis(alkylidene)disilacyclobutanes to C60

Takahiro Kusukawa, Yoshio Kabe, Tomoki Erata, Bernd Nestler, and Wataru Ando Organometallics, **1994**, 13 (11), 4186-4188• DOI: 10.1021/om00023a022 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 9, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00023a022 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Unusual Rearrangement in the Photochemical Addition of Bis(alkylidene) disilacy clobutanes to C_{60}

Takahiro Kusukawa,[†] Yoshio Kabe,[†] Tomoki Erata,[‡] Bernd Nestler,[†] and Wataru Ando^{*,†}

Department of Chemistry and Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received March 28, 1994[®]

Summary: The photochemical reaction of bis(alkylidene)disilacyclobutanes 1a, b with C_{60} afforded the stable 1:1 adducts 3a,b, resulting from an unexpected rearrangement of the disilacyclobutane unit. The structures of **3a**, **b** were determined by spectroscopic methods, including ${}^{29}Si - {}^{1}H$ HMBC hetero nuclear shift correlation experiments.

Since the development of the gram-scale synthesis of C_{60}^{1-3} the chemical functionalization of this new allotropic form of carbon has attracted much interest and led to fascinating results.⁴⁻⁷ One promising approach in this direction is photochemical derivatization;^{8,9} recently, we reported a photoinduced [3 + 2] cycloaddition of a disilirane to C_{60} which resulted in the formation of a 1,3-disilolane.¹⁰ On the basis of this result it might be anticipated that the similar conversion of bis(alkylidene)disilacyclobutanes 1 should yield the corresponding C₆₀ annulated disilacyclohexane derivatives 2 (Scheme 1). Instead, adducts 3 resulting from an unexpected rearrangement of the disilacyclobutane moiety are obtained.

Irradiation of a solution of 21.0 mg (62.4 μ mol) of disilacyclobutane¹¹ 1a and 30.0 mg (41.6 μ mol) of C₆₀ in 30 mL of toluene with a high-pressure mercury lamp (filter: $\lambda < 300 \text{ nm}$) for 24 h followed by purification by means of gel-permeation chromatography afforded the brown adduct $3a^{12}$ in 61% yield. Under identical conditions **3b**¹³ was obtained from **1b** in 52% yield.

- Abstract published in Advance ACS Abstracts, October 15, 1994.
 Kroto, H. W.; Allaf, A. W.; Balm, S. P. Chem. Rev. 1991, 91, 1213. (2) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley,

(2) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
(3) (a) Krätschmer, W.; Lamb, L.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. (b) Krätschmer, W.; Fostiropoulos, K.; Huffman, D. R. Chem. Phys. Lett. 1990, 170, 167.
(4) See the entire issue: Acc. Chem. Res. 1992, 25, 98-175.
(5) (a) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byren, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C., Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. J. Phys. Chem. 1990, 94, 8634.
(b) Allemand, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich, F.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991, 113, 1050. (c) Dubois, D.; Kadish, K. M.; Flanagan, S.; Wilson, L. J. J. Am. Chem. Soc. J. Am. Chem. Soc. 1991, 113, 7773.

(7) Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters; Hammond, G., Kuck, V. J., Eds.; ACS Symposium Series 481;
 American Chemical Society: Washington, DC, 1992.
 (8) Zhang, X.; Romero, A.; Foote, C. S. J. Am. Chem. Soc. 1993, 115,

11024.

(10) Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 10366

(11) Kusukawa, T.; Kabe, Y.; Ando, W. Chem. Lett. 1993, 985.

The FAB mass spectrum of 3a exhibits one peak at m/z 1056-1059 (C₈₀H₄₀Si₂, M⁺ + 1 cluster), as well as one for C_{60} at m/z 720-723.

The UV-vis absorption of **3a** is virtually identical with that of C_{60} except for subtle differences in the area between 190 and 700 nm.¹²

The C_{60} unit of **3a** displays 52 resonances in the ¹³C NMR spectrum, which indicates the absence of any symmetry element in this molecule. One signal has a relative intensity of 4, two signals have a relative intensity of 3, and one signal has a relative intensity of 2; thus, the number of carbon atoms sums up to 60. While two fullerene carbon atoms resonate at 63.99 (Cⁱ)

© 1994 American Chemical Society

[†] Department of Chemistry.

[‡] Institute of Applied Physics.

⁽⁶⁾ Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138.

^{(9) (}a) Wilson, S. R.; Kaprinidis, N.; Wu, Y.; Schuster, D. I. J. Am. Chem. Soc. **1993**, 115, 8495. (b) Wilson, S. R.; Wu, Y.; Kaprinidis, N. A.; Schuster, D. I. J. Org. Chem. **1993**, 58, 6548.

^{(12) (}C₂₀H₄₀Si₂)C₆₀ (FAB MS, m/z 1056–1059): UV-vis (hexane) λ_{max} 210, 255, 347, 389, 416, 508, 633, 661 nm; ¹H NMR (500 MHz, C₆D₆) 210, 255, 347, 389, 416, 508, 633, 661 nm; 'H NMR (500 MHz, C₂)₂) δ 0.8-1.8 (Si-(CH₂)₂CH₃), 0.93 (t, 3H, J = 7.2 Hz, Si-(CH₂)₂CH₃), 1.01 (t, 3H, J = 7.3 Hz, Si-(CH₂)₂CH₃), 1.10 (t, 3H, J = 7.2 Hz, Si-(CH₂)₂CH₃), 1.17 (t, 3H, J = 7.2 Hz, Si-(CH₂)₂CH₃), 1.32 (d, 3H, J = 6.8 Hz, H^a), 1.33 (d, 3H, J = 6.8 Hz, H^a), 1.45 (d, 1H, J = 15.5 Hz, H^f), 2.48 (s, 3H, H^s), 2.87 (sep, 1H, J = 6.8 Hz, H^b), 3.16 (d, 1H, J = 15.5Hz, H^f); ¹³C NMR (126 MHz, C₆D₆) δ (number of carbon atoms on C₆) 127 71 (1), 124 70 (1), 125 77 (1), 126 26 (1), 126 2 132.71 (1), 134.79 (1), 135.37 (1), 136.30 (1), 138.46 (1), 139.28 (1), 142.24 (1), 142.39 (1), 142.57 (1), 142.71 (2), 142.93 (1), 143.22 (1), 143.24 (3), 143.30 (1), 143.56 (1), 144.14 (1), 144.20 (1), 143.22 (1), 144.81 (1), 144.86 (1), 145.10 (1), 145.24 (1), 145.50 (1), 145.59 (1), 145.64 (1), 145.74 (1), 146.05 (1), 146.12 (1), 146.25 (1), 146.30 (1), 146.61 (1), 146.63 (1), 146.65 (1), 146.68 (1), 146.89 (4), 147.10 (1), 147.21 (1), 147.26 (1), 147.96 (1), 149.83 (1), 157.53 (1), 157.83 (1), 160.49 (1), 161.81 (1), side chain δ 18.19 (t, $Si - (CH_2)_2 CH_3$), 18.50 (q, two carbon, $Si - (CH_2)_2 CH_3$), 18.55 (t, $Si - (CH_2)_2 CH_3$), 18.74 (q, $Si - (CH_2)_2 CH_3$), 18.81 (t, $Si - (CH_2)_2 CH_3$), 18.75 (t, $Si - (CH_2)_2 CH_3$), 18.95 (t, $Si - (CH_2)_2 CH_3$), 18.95 (t, $Si - (CH_2)_2 CH_3$), 18.97 (q, $Si - (CH_2)_2 CH_3$), 19.59 (t, $Si - (CH_2)_2 CH_3$), 18.74 (2), 18.97 (2), $Si - (CH_2)_2 CH_3$), 19.59 (1), 23.41 (0, C^n), 23.52 (t, $Si - (CH_2)_2 CH_3$), 24.00 (q, Si-(CH₂)₂CH₃), 19.59 (t, Si-(CH₂)₂CH₃), 19.73 (t, Si-(CH₂)₂CH₃), 20.05 (t, Si-(CH₂)₂CH₃), 23.41 (q, C^a), 23.52 (t, Si-(CH₂)₂CH₃), 24.00 (q, C^a), 25.34 (t, C^b), 34.32 (q, C^s), 36.08 (d, C^b), 54.64 (s, C^e), 63.99 (s, Cⁱ), 77.50 (s, C^h), 157.14 (s, C^c), 170.65 (s, C^d); ²⁹Si NMR (400 MHz, C D) $= 14.30 \pm 2.00$

and 77.50 (C^h) ppm, the signals of the other 50 all appear in the region between δ 130 and 165 ppm.

The partial structure of the fragment annulated to the C_{60} moiety is derived from the following NMR spectroscopic properties.

For one isopropyl group with two diastereotropic methyl groups two quartets at δ 23.52 (C^a) and 24.00 (C^{a'}) as well as one doublet at 36.08 (C^b) appear in the ¹³C NMR spectrum. As evidenced by homo- (¹H-¹H) and heteronuclear (¹H-¹³C) shift correlation (COSY) experiments the corresponding methyl and methine protons resonate at δ 1.33 (H^a), 1.32 (H^{a'}), and 2.87 (H^b) in the ¹H NMR spectrum.

A methylene group gives rise to a triplet at δ 25.34 in the ¹³C NMR spectrum and two doublets with a rather large shift difference at δ 1.45 (H^f) and 3.16 (H^f) in the ¹H NMR spectrum. The presence of one isolated C-C double bond is deduced from two singlets at δ 157.14 (C^o) and 170.65 (C^d) in the ¹³C NMR spectrum. Furthermore, the signals of one methyl group are observed at 34.32 (C^g) and 2.48 (H^g) ppm, respectively, in the ¹³C NMR and ¹H NMR spectra as well as a resonance of one quaternary carbon at δ 54.64 (C^e).

The connectivities between these structural elements were determined by ${}^{13}C^{-1}H$ COLOC (correlation spectroscopy via long-range coupling) and ${}^{13}C^{-1}H$ HMBC (¹H-detected multiple-bond heteronuclear multiple quantum coherence) experiments (Figure 1a). It was shown that one olefinic carbon atom (C^c) is bonded to carbon C^b of the isopropyl group, while the other olefinic carbon (C^d) is attached to the quaternary carbon (C^e). Furthermore, the latter is connected to the methyl (CH₃^g) and methylene (CH₂^f) groups, as well as to carbon C^h of the C₆₀ unit.

However, since from such shift correlation experiments it is not possible to exclude the presence of bonds, there are eight possible structures 3-10 which are in agreement with these data (Figure 1b). Of those, 9 can be excluded, since the silicon atom of the silacyclopropene ring should give a ²⁹Si NMR resonance between -100 and -80 ppm,¹⁴ while only two signals at 4.20 and -14.30 ppm were detected.

Moreover, upon irradiation of the H^a,H^{a'}-methyl and H^b methine proton resonances of the isopropyl group strong NOE enhancements of 12-19% and 17-27%, respectively, are observed for the signals of four Si-*n*-Pr methyl groups. Clearly, this indicates that the isopropyl group is flanked by the two di-*n*-propylsilyl units; of the structures depicted in Figure 1b, this is only the case for structures **3** and **6**.

Figure 1. (a, top) Connectivities derived from ${}^{1}\text{H}{-}{}^{1}\text{H}$ homo- and ${}^{1}\text{H}{-}{}^{13}\text{C}$ heteronuclear shift correlation experiments. (b, bottom) The eight possible isomers derived from the substructure depicted in (a). The arrows in structure 3 indicate the observed ${}^{29}\text{Si}{-}^{1}\text{H}$ couplings.

In order to distinguish between those two alternatives, it was essential to obtain information concerning the bonding situation at the silicon atoms. To attain this target, we developed a pulse sequence for a 29 Si- 1 H HMBC experiment, which permits a 29 Si- 1 H shift correlation over two and/or three bonds (Figure 2). 15 Besides cross-peaks between the signals of the silicon atoms and the *n*-propyl methylene protons, the spectrum uncovers couplings between the silicon resonance at -14.3 ppm and the H^b isopropyl methine proton resonance over three bonds as well as between the Si resonance at 4.20 ppm and both H^f and H^f methylene proton signals over two bonds. The connectivity requirements derived from this experiment are only met in structure **3**.

With regard to the addition pattern of the fullerene moiety a 6,6-ring junction of the silabutene fragment is most probable.¹⁶ In the case of a 5,6- or 1,4-

$${}^{1}\text{H}, \text{D0-90}^{\circ}\text{--}\tau_{1}\text{--} \text{--}\tau_{2}\text{---} \text{--}180^{\circ}\text{--}\Delta\text{---}(\text{FID})$$

$${}^{29}\text{Si}, \qquad 90^{\circ} \quad 90^{\circ} \qquad 90^{\circ}$$

D0 = 2 s; $\tau_1 = (1/2J_{Si-H})^{single \ bond} = 1/280$ s; $\tau_2 = (1/2J_{Si-H})^{long \ range} = 1/16$ s; $\Delta =$ incremental delay; DS = 8; NS = 32; 16-phase cycle. The necessary experimental time was 10 h. While our work was in progress a ¹¹⁹Sn⁻¹H HMBC experiment was reported; cf.: Kayser, F.; Biesemans, M.; Bouâlam, M.; Tiekink, E. R. T.; Khloufi, A. E.; Meunier-Piret, J.; Bouhdid, A.; Jurkschat, K.; Gielen, M.; Willem, R. Organometallics **1994**, *13*, 1098.

⁽¹³⁾ UV-vis (hexane): $\lambda_{\rm max}$ 210, 255, 327, 392, 417, 510, 632, 658 nm. $^{1}{\rm H}$ NMR (500 MHz, C_6D_6): δ 0.8–1.6 (Si–Et proton), 1.27 (d, 3H, J = 6.9 Hz, H^s), 1.30 (d, 3H, J = 6.9 Hz, H^s), 1.38 (d, 1H, J = 15.5 Hz, H^f), 2.39 (s, 3H, H^s), 2.82 (sept, 1H, J = 6.9 Hz, H^b), 3.09 (d, 1H, J = 15.5 Hz, H^f). $^{13}{\rm C}$ NMR (126 MHz, C_6D_6): δ (number of carbon atoms on C_{60}) 132.73 (l), 134.76 (l), 135.33 (l), 136.18 (l), 138.43 (l), 139.32 (l), 139.79 (l), 140.87 (l), 141.40 (l), 141.48 (l), 141.74 (l), 141.88 (l), 142.24 (l), 142.40 (l), 142.57 (l), 142.70 (3), 142.91 (l), 143.21 (3), 143.23 (l), 143.28 (l), 143.25 (l), 144.12 (l), 144.21 (l), 144.46 (l), 144.79 (2), 145.10 (l), 145.24 (l), 145.50 (l), 145.59 (l), 146.62 (3), 146.68 (l), 146.86 (l), 146.90 (4), 147.09 (l), 147.21 (l), 147.25 (l), 147.94 (l), 149.79 (l), 157.64 (l), 157.78 (l), 160.33 (l), 161.69 (l); side chain δ 7.96 (t, Si–CH2CH3), 8.67 (t, Si–CH2CH3), 8.80 (t, Si–CH2CH3), 8.43 (q, Si–CH2CH3), 12.00 (t, Si–CH2CH3), 2.32 (q, C^s), 23.84 (q, C^s), 24.47 (t, C^5), 34.06 (q, C^s), 36.16 (d, C^b), 54.24 (s, C^s), 63.96 (s, C^i), 77.50 (s, C^h), 157.22 (s, C^c), 170.05 (s, C^d). $^{29}{\rm Si}$ NMR (400 MHz, C_6D_6): δ –11.47, 8.12.

⁽¹⁴⁾ Williams, E. A. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; p 537.

⁽¹⁵⁾ Spectra were recorded on a Bruker MSL-400 (400.13 and 79.46 MHz for $^1\mathrm{H}$ and $^{29}\mathrm{Si}$, respectively) at 30 °C: 3a and 3b, 20 mg in 1.5 mL of $C_6D_6,$ 5 mm sample tube. The probe head used in this experiment was a Bruker VSP 10 mm normal BB probe head. Pulse sequence:

Figure 2. ²⁹Si-¹H HMBC NMR spectrum of 3a.

junction-the two possible alternatives-in each case the formation of two diastereomeric adducts would have to be expected.^{17,18}

The structure of adduct 3b was determined in a similar manner by use of one- and two-dimensional NMR techniques; for details cf. the supplementary material.

The mechanistic pathway for the formation of 3 is not clear at the present time. However, since 5 equiv of rubrene, a well-established triplet quencher, completely inhibits the reaction between 1a,b and C_{60} and, furthermore, the disilacyclobutanes 1a,b are stable under the reaction conditions, triplet excited C_{60} might be involved in the course of the reaction. Alternatively, the initially formed 2 might rearrange to 3 under the applied photolytic conditions.¹⁹ Further investigations to clarify the mechanistic origin of 3 are in progress.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Supplementary Material Available: Detailed NMR spectra for 3a and 3b (11 pages). Ordering information is given on any current masthead page.

OM940243Y

^{(16) (}a) Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 1605. (b) Dixon, D. A.; Matsuzawa, N.; Fukunaga, T.; Tebbe, F. N. J. Phys. Chem. 1992, 96, 6107. (17) (a) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, Ö. Science 1991, 254, 1186. (b) Prato, M.; Lucchini, V.; Maggini, M.; Stimpfl, E.; Scorrano, G.; Eiermann, M.; Suzuki, T.; Wudl, F. J. Am. Chem. Soc. 1993, 115, 8479. (c) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J. J. Am. Chem. Soc. 1993, 115, 5829. 5829

⁽¹⁸⁾ Komatsu, K.; Kagayama, A.; Murata, Y.; Sugita, N.; Kobayashi, K.; Nagase, S.; Wan, T. S. M. *Chem. Lett.* **1993**, 2163.