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Extended Huckel molecular orbital calculations on the silicon cation [(HC=C-SiH2)Co2- 
(Co)s]+ reveal that the favored geometry for this silylium ion requires the SiH2 group to 
lean toward a CO(CO)~ vertex. This parallels the known behavior of carbocations with metal 
cluster vertices whereby the electron-deficient center is stabilized by a direct interaction 
with an  organometallic fragment. These calculations also show that replacement of the 
CO(CO)~ vertices by isolobal CpMo(C0)z groups noticeably enhances the stabilization of the 
silylium moiety. A number of possible precursors to metal-stabilized silylium ions have been 
synthesized, and the clusters (Me3SiC~C-SiPhzH)Moz(CO)4Cp2,9, and [(Me3SiC4%3iMe2)- 
co2(co)&o, 15, have been characterized by x-ra crystallograph . 9 crystallizes in the 
monoclinic space group P21/c with a = 17.061(2) 1, b = 9.756(2) 1, c = 17.922(3) A , p = 
96.64(3)3", V = 2963.1(8) A3, and 2 = 4. 15 crystallizes in the monoclinic space group C2/c 
with a = 14.093(2) A , b = 10.285(1) A , c = 27.689(3) A , p = 92.153(9)", V = 4010.6(5) A3, 
and 2 = 4. 

Introduction 

Potential routes to stable silylium ions continue to  
attract much attention,' and the recent crystallographic 
characterizations of [Et3Si.tolueneI+[B(C&'5)41-, by Lam- 
bert,2 and of [i-Pr3Si]+[CB11HsBrs]-, by Reed,3 have 
eloquently stated the case for a non-silicophilic coun- 
t e r i ~ n . ~  The ability of transition metals to delocalize 
the positive charge from carbocationic ligands has been 
amply d~cumented;~ moreover, Tilley has characterized 
numerous complexes in which a transition metal is 
coordinated to an sp2-hybridized silicon center.6 These 
data support the idea that the stability of sp2-hybridized 
silylium species might be enhanced by anchimeric 
assistance from an electron-rich transition metal center. 
Indeed, nearly 20 years ago, an attempt was made to 
generate a silylium ion bearing an a-ferrocenyl sub- 
stituent.' However, this claim has been strongly chal- 
lenged6 and, in the absence of crystallographic evidence, 
must remain questionable. More recently, the com- 
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plexes (PhsSiOH)[Cr(CO& where n = 1, 2 or 3, have 
been reported, but protonation does not yield chromium- 
stabilized silylium ions.g 

It is noteworthy that, at least for carbocations, there 
is a hierarchy of organometallic fragments capable of 
stabilizing an electron-deficient site.1° For example, in 
[(CE,H~)F~(C~H~)-CH-(C=CR)MO~(CO)~C~~I+, 1, the 

R 

1 2 

cationic carbon could, in principle, interact directly with 
either a ferrocenyl group or an alkyne-dimolybdenum 
cluster; in fact, the x-ray crystal structure of 1 reveals 
that it is the latter which preferentially bonds to the 
C+ centerell 

We here present molecular orbital calculations which 
show that a silylium ion can be markedly stabilized by 
interaction with a transition metal center, as in 2. 
Subsequently, we describe the synthesis and charac- 
terization of a number of clusters (MesSi-C=C--SiRzH)- 
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Metal-Stabilized Silylium Cations 

(L,M-ML,), where ML, = CpMo(C0)n or Co(C0)3, 
which are potential precursors to metal-stabilized silyl- 
ium ions. 
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Results and Discussion 
EHMO Calculations. Following an initial sugges- 

tion by Seyferth that the vinylidene capping group in 
[Co3(CO)&-CR2]+ would adopt the bent structure 3a 
rather than the more symmetrical isomer 3b with its 

3a 3b 

pseudo-3-fold axis,12 this concept has received both 
theoretical and experimental support.13J4 Extended 
Huckel molecular orbital calculations by Schilling and 
Hoffmann showed that, when the a-carbon is allowed 
to lean toward a cobalt vertex, the vacant p orbital on 
the sp2-hybridized -CH2+ fragment can accept electron 
density from a filled metal d orbital. The net result is 
not only enhanced stabilization of the cationic center, 
via delocalization of the positive charge onto the metal 
vertex, but also a larger HOMO-LUMO gap.13J5 

Replacement of the Co(CO)3 vertices by isolobal 
CpMo(C0)z fragments yields cationic clusters, [CpaMoz- 
(C0)4(RC=C-CR2)1+, many of which have been char- 
acterized by x-ray crystallography. Very recently, we 
have computed an energy hypersurface for the migra- 
tion of a C=CH2 fragment over a [Cp2Moz(COhCHI+ 
triangular base, and it was shown that the structure in 
which the CH2 group is oriented directly over a metal 
vertex lies a t  the bottom of the potential energy we11.16 
Moreover, the calculated trajectory along which the 
methylene group migrates from one metal vertex to the 
other is beautifully paralleled by a series of x-ray crystal 
structures of cations [C~~MO~(CO)~(RC=C-CR'R'')I+, in 
which the groups R and R '  range from H, methyl, and 
ferrocenyl to terpenoid and steroidal sub~tituents. '~J~ 

We here present the analogous hypersurface for a 
C-SiH2 fragment sited above a [Co2(CO)&H]+ basal 
triangle. The molecular geometry was based on a 
typical (alkyne)Co2(CO)6 cluster with co-co, co-c, 
and C-C values of 2.49,1.99, and 1.35 A ,  respectively. 
To define the geometry of the cationic cluster which 
undergoes rearrangement, we place the origin, 0, of our 
coordinate system at the centroid of the Co(l)-Co(2)-C- 
(3) basal triangle. The carbynyl capping atom, C(2), is 
defined by a vector starting at the origin and making 
an angle of 71" with the line C(3)-0. The distance was 
taken as 0.81 .& (for the C02C2 clusters) and as 1.25 A 
(12) Seyferth, D. Adv. Organomet. Chem. 1976,14,97. 
(13) Schilling, B. E. R.; H o h a n n ,  R. J. Am. Chem. SOC. 1979,101, 

3456. 
(14) Edidin, R. T.; Norton, J. R.; Mislow, K Organometallics 1982, 

1, 561. 
(15) D'Agostino, M. F.; Mlekuz, M.; Kolis, J. W.; Sayer, B. G.; Rodger, 

C. A.; Halet, J.-F.; Saillard, J.-Y.; McGlinchey, M. J. Organometallics 
1986,5,2345. 
(16) Girard, L.; Lock, P. E.; El h o u r i ,  H.; McGlinchey, M. J. J.  

Organomet. Chem., in press. 
(17) Btirgi, H. B.; Dunitz, J. D. ACC. Chem. Res. 1983, 16, 153. 
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(73) 
Figure 1. Definition of the coordinate system used in the 
EHMO calculations. 

(for the Mo2C2 clusters).l8 The coordinates of the a-EH2 
unit, where E = C or Si, are defined in terms of the 
C(2P-E distance (1.45 and 1.85 .& for CH2 and SiH2, 
respectively) and the three angles e,@, and w. As shown 
in Figure 1, 8 is the angle 0-C(2)-E which decreases 
from 180" as the CH2 or SiH2 unit is allowed to lean 
toward the metal-metal bond. As the EH2 group 
swivels away from the mirror plane which bisects the 
metal-metal bond and contains C(1) and C(2), the 
dihedral angle 4 opens up from 0 toward go", at  which 
point the C(2)-E bond is parallel to the metal-metal 
vector. The third degree of freedom, the twist angle w ,  
defines the orientation of the EH2 plane with respect 
to the basal plane. When all three components of the 
EH2 unit lie in the molecular mirror plane (4 = O"), the 
o values are 0" for Hendo and 180" for bo, where Hendo 
is defined as the hydrogen closer to the M-M vector. 
As the EH2 fragment swivels toward MU), one might 
anticipate that the values w(l&,do) and w ( H d  would 
gradually evolve toward +90 and -go", respectively. To 
generate the hypersurface shown in Figure 2, the angles 
8 and 4 were incremented in units of 2"; a t  each point 
defined by a (0, 4) pair, the torsion angle w was varied 
from 0 to  180" in 15" increments and the minimum 
energy w value for each (8,  4) position was plotted. 
These data not only allow the evaluation of a global 
minimum (i.e. the structure which presumably would 
be found by x-ray diffraction if the metal-stabilized 
silylium ion could be isolated as a single crystal) but 
also yield the favored pathway by which the cation can 
migrate from one metal vertex to the other. 

In the molybdenum-stabilized carbocations previously 
studied both by EHMO calculations and by a Burgi- 
Dunitz analysis of a series of x-ray crystal stru~tures, '~ 
the a-CH2 group is found to pass through a symmetrical 
transition state in which the methylene moiety lies in 
the molecular mirror plane and perpendicular t o  the 
Mo-Mo bond vector. In contrast, in [C02(CO)6- 
(HCsC-SiH2)1+ the SiH2 fragment can rotate freely 
about the C(2)-Si axis when C#J = 0". At this point, the 
SiH2 group is found to bend only slightly (6" toward the 

(18) These distance and angle parameters are derived from the x-ray 
crystd strudure of [ ( fu lva l ene )Ms(C0)4 (Me~C~H~) l+ :  El h o u r i ,  
H.; Vaissermann, J.; Besace, Y.; Vollhardt, K. P. C.; Ball, G. E. 
Organometallics 1993, 12, 605. 
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Figure 2. EHMO-calculated energy hypersurface for the 
migration of SiH2 in [Co2(CO)s(HC=C-SiH2)1+. 

Figure 3. Migration pathway of the SiH2+ group on a 
cobalt cluster. 

Co-Co bond, presumably to allow some stabilization of 
the electron-deficient silicon center by both cobalt atoms. 
As 4 increases and the SiH2 unit moves toward one Co- 
(CO)3 vertex, the molecule falls into a potential well. 
As the cluster cation descends into this well, increases 
in 4 are accompanied by a smooth decrease in the bend 
angle 8, from 174" at 4 = 0" to 164" at  4 = 32". We 
have previously shown for the migration of the CH2+ 
group in [ (C~H~-C~H~)MO~(CO)~(  R-C=C-CH2)1+ that 
the migrating cation orients itself (as a function of m )  
so as to best align the vacant p orbital with the nearest 
metal center; this behavior can also be seen in Figure 
3. The EHMO-derived energetically most favorable 
structures for both carbenium and silylium ions stabi- 
lized on either a cobalt or molybdenum center are 
depicted in Figure 4. 

Another factor which was considered involved the 
pyramidalization of the EH2 fragments when bonded to 
a transition metal center. It was shown previously that 
an 8" "folding-back" of the methylene hydrogens in 
[(C~H~-C~H~)MO~(CO)~(R-C=C-CH~)]+ led to a slight 
stabilization. In [( CsH&Mo2( C0)4(HC=C--EH2)1+, the 

Ruffolo et al. 
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Figure 4. Calculated structures for carbenium and silyl- 
ium ions stabilized by dimetallic clusters. 

system is stabilized to the tune of 5.8 or 5.0 kJ mol-l 
for E = C or Si, respectively. The corresponding values 
for the analogous [CO~(CO)~(HC~C-EH~)]+ systems are 
1.9 kJ mol-l for the carbenium ion and zero for the 
SiH2+ complex. Overall, according to the EHMO cal- 
culations, the energetic advantage arising from allowing 
the EH2+ fragment to lean toward a metal vertex is 41 
kJ mol-l for Mo2-CH2+, 22 kJ  mol-l for Mo2SiH2+, 24 
kJ mol-l for Co2-CH2+, and =3 kJ  mol-l for Co2-SiH2+. 
The predicted M-EH2+ distances for the above-listed 
cations are Mo-C 2.65 A, Mo-Si 2.99 A, Co-C 2.53 
A, and Co-Si 3.08 A , respectively. 

Of course, these EHMO-calculated energies should 
not be regarded as definitive values; however, such 
semi-empirical approaches are valuable indicators of 
trends. Other computationally more demanding meth- 
ods, such as density functional theory, while they give 
more reliable energies, are not amenable to the conve- 
nient generation of hypersurfaces without continued 
access to a supercomputer. EHMO, Fenske-Hall cal- 
culations, and other such approaches are still valuable 
components of the experimentalist's armory. One can 
summarize the situation for metal-stabilized silylium 
systems as follows: the stabilization of an Si+ center 
by a CpMo(CO)2 fragment is comparable to that found 
for a Co( CO)s-stabilized carbocation. In contrast, the 
anchimeric assistance provided to an Si+ center by a 
Co(CO)3 vertex is expected to be rather minimal. It is 
evident that carbenium ions are better stabilized by 
metals than are silylium ions and also that a (C5H5)- 
Mo(C0)2 vertex is more effective than a Co(CO)3 group. 
This latter facet is amply illustrated by the recently 
reported x-ray crystal structure of the [(2-propynyl- 
~o~~~~)Mo(CO)~(C~H~)CO(CO)~]+ cation in which the 
carbocationic charge is alleviated by direct interaction 
with the molybdenum atom.1° 

Synthetic Aspects. It is known that alkynylsilanes, 
such as Ph-C=C-SiMeaH or Ph-C=C-SiH(Me)Cl, 
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Metal-Stabilized Silylium Cations 

Scheme 1. Reaction of an (allryne)Co2(CO)6 
Cluster To Give a Siloxy Derivative 

Organometallics, Vol. 13, No. 11, 1994 4331 

react with dicobalt octacarbonyl to yield the correspond- 
ing (alkyne)Cop(CO)6 tetrahedral clusters, 4. However, 
one must take care to avoid the addition of excess Cop- 
(C0)s; otherwise cleavage of the Si-H linkage leads to 
the formation of a silicon-cobalt bond, as in 5. Fur- 
thermore, as shown in Scheme l, these latter molecules 
are readily susceptible to nucleophilic attack, especially 
by alcohols, giving siloxy derivatives 6.19-21 

The CpMo(C0)z vertex is perhaps the most favorable 
organometallic fragment for the stabilization of car- 
bocations;1° however, these species may also be regarded 
as alkenes coordinated to a molybdenum cation, as in 
1. Similarly, the ruthenium-stabilized silaalkene, (C5- 
Mes)Ru(H)(yz-PhzSi=CHp)P(C6H11)3, 7,  has been syn- 

Ph Ph \; 
Me Si , S L H  

PqC=sH2 'c-c I 1 \ / 1  

7 9 ML, = CpMo(CO), 

thesized and crystallographically characterized by 
Tilley.22 These results suggest that a molybdenum- 
stabilized silylium moiety, 2, might be a viable objective, 
and so our initial goal was to prepare a precursor 
possessing a potential leaving group. 

The reaction of the silaalkyne Me3Si-C=C-SiPhpH 
with Cop(C0)~ or with the metal-metal triple-bonded 
dimer Cp(CO)pMo=Mo(CO)pCp yields the tetrahedral 
clusters Coz(CO)s(Me3Si-C=C-SiPhpH), 8, and Cpz- 
Mop(C0)4(Me3Si-C=C-SiPhpH), 9, which were readily 
identifiable by their lH, 13C, and 29Si NMR spectra, and 
also by their characteristic V S ~ - H  stretches at  2144 and 
2171 cm-l, respectively. Recrystallization of the dimo- 
lybdenum complex, 9, from THFhexane gave red paral- 
lelepipeds suitable for an x-ray diffraction study. The 
silaalkyne cluster 9 crystallizes in the monoclinic space 
P21/c, and a view of the molecule appears as Figure 5. 
The Mo-C distances within the tetrahedral core vary 
from 2.142 to 2.237 A and are within the normal 

(19) Corriu, R. J .  P.; Moreau, J. J. E.; Praet, H. Ofgunometullics 
1909, 8, 2779. 
(20) Lay, U.; Lang, H. J.  Orgunomet. Chem. 1991, 418, 79. 
(21) Lang, H.; Lay, U.; Zsolnai, L. J. Orgunomet. Chem. 1991,417, 

nnn a i l .  
(22) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. SOC. 

1988,110, 7558. 

CI1 

(111 

Figure 6. View of 9 showin the atomic numbering 

Mo( 1)-C(2) 2.223(3), Mo( 1)-C(3) 2.142(3), Mo(2)-C(2) 
2.146(3), Mo(2)-c(3) 2.237(3), C(2)-C(3) 1.42061, C(2)-Si- 
(1) 1.901(3), C(3)-Si(4) 1.923(3). 

scheme. Salient bond lengths ( R ): Mo(l)-Mo(2) 2.783(1), 

range.23 However, the complexed alkyne linkage, 
C(2)-C(3) = 1.420(5) A , is rather long compared to  
analogous bonds found in other CppMop(C0)4(RC=CR) 
clusters, where the C=C distances normally lie in the 
range 1.35-1.37 A .23 This effect presumably arises as 
a result of the bulk of the trimethylsilyl and diphenyl- 
silyl substituents and is also seen in the angles Si(l)-C- 
(2)-C(3) and C(2)-C(3)-Si(4) which are 140 and 149", 
respectively, rather than the normal C-C-R value of 
~ 1 3 7 " .  The lengthened C(2)-C(3) distance is counter- 
balanced by the rather short Mo(l)-Mo(2) distance of 
2.7830) A, considerably shorter than the Mo-Mo bond 
length of ~ 2 . 9 7  A normally found in these CpzMop(C0)4- 
(RCECR) clusters. The crystallographic data were of 
sufficient quality to  allow the hydrogen attached to Si- 
(4) to be located; it lies 4 A from the nearest molybde- 
num, and apparently, there is no tendency toward a 
Si-H-Mo agostic interaction in this molecule. This 
observation is in accord with the 29Si NMR data which 
yield a lJ(Si-H) value of 211 Hz; for comparison, in the 
free ligand, Me3Si-C=C-SiPhpH, lJ(5Ii-H) is 212 Hz. 

A common feature of CppMoz(C0)4(RC=CR) systems 
is the presence of one semibridging carbonyl and three 
clearly terminal CO ligands.24 However, such is not the 
case in Cp~Moz(C0)4(Me3Si-C=C-SiPhpH), 9; all four 
molybdenum-carbonyl linkages are terminal with 
M-CzO angles of 175 f 2". Indeed, when viewed along 
the metal-metal bond (see Figure 61, the CpzMop- 
(C0)4C2 moiety is seen to have almost idealized C2 
symmetry. Again, one may attribute the adoption of 
this structure to the presence of the two bulky substitu- 
ents on the alkyne. This behavior is reminiscent of 

(23) Davis, R.; &ne-Maguire, L. A. P. In Comprehensive Organo- 
metallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; 
Pergamon Press: New York, 1982; Vol. 3, pp 1240-1241 and references 
therein. 
(24) Bailey, W. I., Jr.; Chisholm, M. H.; Cotton, F. A,; Rankin, L. A. 

J. Am. Chem. SOC. 1978,100,5764. 

D
ow

nl
oa

de
d 

by
 N

A
T

 L
IB

 U
K

R
A

IN
E

 o
n 

A
ug

us
t 5

, 2
00

9
Pu

bl
is

he
d 

on
 M

ay
 1

, 2
00

2 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

om
00

02
3a

04
1



4332 Organometallics, Vol. 13, No. 11, 1994 Ruffolo et al. 

ligand, i.e. octamethyl-3,5,8,1O-tetrasila-4,9-dioxacyclo- 
deca-1,6-diyne, 14, has been crystallographically char- 
a ~ t e r i z e d . ~ ~  

In the course of his pioneering studies, Seyferth 
described the syntheses of numerous alkynylsilanes 
(including Me3Si-CHX3iMezH) and their general 
reaction to yield tetrahedral clusters when treated with 
COZ(CO)S.~* However, no further mention was made of 
the product(s) derived from MeaSi-c~C-SiMezH. We 
find that treatment of l-(dimethylsilyl)-2-(trimethylsi- 
1yl)ethyne with an equimolar quantity of COZ(CO)S in 
pentane yields the siloxane 15. The product was 

0 0 c 4 9 O  c L? 
Figure 6. Newman projection of 9, viewed along the 
molybdenum-molybdenum bond. 

Knox's C~~MO~(CO)~(M~~S~-C=C-S~M~~) cluster, which 
also adopts a CZ structure with terminal carbonyls.25 

In an attempt to generate a molybdenum-stabilized 
silylium ion, C~ZMOZ(CO)~(M~~S~-C=C--S~P~ZH), 9, 
was treated with Ph&+ BF4- but the complex was 
recovered unchanged. One can speculate that the steric 
problems engendered by the approach of the bulky trityl 
cation in its attempt to abstract a hydride from the Ph2- 
Si-H moiety in 9 thwarted the process. This result 
should be contrasted with the report by Corriu that the 
reaction of COZ(CO)~(P~-CIC-S~M~ZH), 10, with Ph&+ 

Me Me 
\: 

Me Me 
\ ./ 

l / \ l  (oc)3co-co(co)3 
10 

l / \ l  (oc)3co-co(co)3 
11 

BF4- led to the isolation of the fluorosilane complex COZ- 
(CO)s(Ph-C~C-SiMe2F), 11.26 However, in the latter 
case, the potential steric problems are likely to be less 
severe than for 9. 
As shown in Scheme 1, addition of more than 1 equiv 

of CO~(CO)S to an alkynylsilane not only yields a C02C2 
tetrahedral cluster but also leads to the formation of a 
silicon-Co(CO)4 linkage, which is itself very susceptible 
to  hydrolysis, and leads to  siloxane^.^^-^^ Furthermore, 
it has been noted that siloxanes are also obtained upon 
hydrolysis of cobalt clusters bearing SiMezH or SiMezCl 
substituents. Typically, aqueous hydrolysis of (XSi- 
M~Z-CEC-S~M~~X)COZ(CO)~, 12, where X = H or C1, 

1 / \ 1  
Me Si'c-lSiM% I / P 0 
/ H2O * 

12 

14 

is reported to yield the cyclic dimer 13, but only mass 
spectroscopic evidence is available. However, the free 

(25) Beck, J. A.; Knox, 5. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; 
Winter, M. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1982, 195. 

(26) Corriu, R. J. P.; Moreau, J. J. E.; Praet, H. Organometallics 
1990,9,2086. 

initially identified by its NMR and mass spectra; the 
latter revealed the presence of two cobalt cluster frag- 
ments and their associated carbonyl ligands. Recrys- 
tallization from hexane gave black parallelepipeds 
suitable for an x-ray diffraction study. The siloxane 
cluster 15 crystallizes in the monoclinic space group C2 / 
c, and a view of the molecule appears as Figure 7. 

The bond lengths within the CozCz tetrahedron 
(CO-CO, 2.491(1) A ; CO-C, 1.99-2.00 A ; C-C, 1.326- 
(3) A) are within the normal ranges for such molecules.29 
As with the dimolybdenum cluster, 9, the Si-CEC 
angles are wider than normal (144" vs =135"), but there 
are no unusual bond lengths. The Si-0-Si angle of 
151.5' is typical of siloxanes bearing bulky substitu- 
e n t ~ . ~ ~  The molecule possesses a 2-fold axis, and a view 
along the Si(l)-Si(la) vector is entirely analogous to a 
staggered ethane in which the largest substituents are 
aligned almost antiparallel. Figure 8 provides such a 
"Newman projection" along the silicon-silicon axis. The 
dihedral angle between the two cluster capping carbons, 
C(2) and C(2a), is 172". 

The closest structurally characterized analogue to  15, 
of which we are aware, is CO~(CO)~(P~-C~C-S~C~(M~)- 
Co(C0)4), and its dimensions closely match those found 
for 15.21 One can readily envisage a route to 15 which 
involves generation of a tetrahedral cluster Coz(CO)s(Mes- 
Si-C=C-SiMezH), oxidative addition to give c o ~ ( C 0 ) ~ -  
( M ~ ~ S ~ - C E C - S ~ M ~ ~ - C O ( C O ) ~ ) ,  and finally, hydrolysis 
to the siloxane. 

To conclude, we have presented evidence from mo- 
lecular orbital calculations at the extended Huckel level 
that a silylium ion would be stabilized by interaction 
with a metal fragment; in this respect, a (CsHs)Mo(CO)z 
moiety is shown to be better able to alleviate the 
electron deficiency at silicon than is a Co(CO13 fragment. 
However, this stabilization of an SiRZ+ unit will be less 
than that observed already for carbocations. Routes to  

~ ~~ ~~ ~ 

(27) Kloster-Jensen, E.; Rfimming, C. Acta Chem. Scand. 1986, B40, 

(28) Seyferth, D.; White, D. L. J. Organomet. Chem. 1971,32, 317. 
(29) Kemmit, R. D. W.; Russell, D. R. In Comprehensiue Organo- 

metallic Chemistry; Wilkinson, G., Stone, F. G. A,, Abel, E. W., Eds.; 
Pergamon Press: New York, 1982, Vol. 5, p 195 (see also references 
therein). 

(30) Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular 
Geometry; Allyn and Bacon: Needham Heights, MA, 1991; pp 90-91 
(see also references therein). 
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V 

Figure 7. View of 15 showing the atomic numbering scheme. Salient bond lengths (4: Co(l)-C0(2) 2.491(1), Co(l)-C(2) 
1.991(2), Co(l)-C(3) 1.995(2), C0(2)-C(2) 2.001(2), Co(2)-C(3) 1.991(2), C(2)-C(3) 1.326(3), C(P)-Si(l) 1.851(2), C(3)-Si- 
(4) 1.853(2), Si(1)-O(1) 1.628(1). Salient bond angles (deg): Si(l)-C(2)-C(3) 144.6(2), C(2)-(C3)-Si(4) 144.6(2). 

Figure 8. Newman projection of 15, viewed along the 
silicon-silicon vector. 

metal-stabilized silylium systems require the juxtaposi- 
tion of the organometallic fragment prior to generation 
of the silicon cation; subsequent removal of an appropri- 
ate leaving group should lead to silylium ion formation. 
However, the steric demands of the conventional hy- 
dride-abstracting reagents are severe, and we are cur- 
rently exploring the use of other potential leaving 
groups, as well as counterions of lower silicophilicity. 

Experimental Section 

All preparations were carried out under an atmo- 
sphere of dry nitrogen, using standard Schlenk tech- 
niques. Solvents were dried according to standard 
procedures. Fast atom bombardment (FAB) mass spec- 
tra were obtained on a VG analytical ZAB-SE spectrom- 
eter with an accelerating potential of 8 kV and a 
resolving power of 10 000. NMR spectra were obtained 
using Bruker AM 500, AC 300, and AC 200 spectrom- 
eters. 'H, 13C, and 29Si chemical shifts were reported 
relative to tetramethylsilane. Infrared spectra were 
obtained on a Bio-Rad FTS-40 spectrometer, using NaCl 
windows. 

MesSiCSC-SiMeaH. n-Butyllithium (11.08 mL of 
a 1.6 M hexane solution, 17.72 mmol) was added 

dropwise to a solution of (trimethylsily1)ethyne (1.737 
g, 17.72 mmol) in THF (30 mL) at  -78 C via cannula 
over a 30 min period, and the solution was then allowed 
to warm to room temperature. After stirring for 2 h, 
the solution was cooled to -78 "C and dimethylchlo- 
rosilane (2 mL, 1.94 g, 17.72 mmol) in THF (5 mL) was 
added dropwise; the solution was allowed to warm to 
room temperature and stirred for 24 h. The desired 
product was extracted by using a buffer solution (NaH2- 
POdKHP04) of pH 6.8. After removal of hexane the 
organic phase yielded MesSiCC-SiMezH (2.66 g, 17.0 
mmol; 96%) as an oil. 'H N M R  (CDC13,200 MHz): 4.10 
(septet, 2JSi-H = 5.4 Hz, 1H, Si-HI, 0.20 (d, 2Jsi-H = 
5.4 Hz, 6H, SiMez); 0.14 (s, 9H, Me&). 13C NMR 
(CDC13,50.3 MHz): 115.78, 110.54 (CEC); -0.18 (Me3- 
Si); -3.05 (SiMez). 29Si NMR (CHzC12, 59.6 MHz): 
-39.1 (doublet of septets, 'JSi-H = 200 Hz, MezSiH), 
-18.9 (decet, 2 J ~ i - ~  = 6.7 Hz, Measi). IR (neat liquid): 
Y S ~  2134 cm-l. 

[MesSiC~C-SiMe~(u~-Coz(CO)s)lzO (15). Dicobalt 
octacarbonyl(3.40 g, 10 mmol) dissolved in THF (30 mL) 
was added dropwise to MesSiCW-SiMezH (1.56 mL, 
10 mmol) in THF (30 mL) over a 30 min period. The 
solution was allowed to stir for 24 h at room tempera- 
ture. After removal of solvent in uacuo, the residue was 
subjected to flash chromatography on silica gel. Elution 
with hexane gave dark red crystals of 15 (3.59 g, 4 
mmol; 80%). 'H NMR (CDzC12, 200 MHz): 0.38 (s, 6H, 
SiMez), 0.30 (8, 9H, Me&). 13C NMR (CDzC12, 125 
MHz): 6 202.9 (Co-CO's); 93.2, 91.0 (cluster C's); 3.8 
(Me&); 1.9 (MezSi). 29Si NMR (CHzC12, 59.6 MHz): 
-3.1 (septet, 2Jsi-H = 6.8 Hz, MezSi), 0.79 (decet, dSi-H 
= 6.7 Hz, MesSi). IR (hexane): YCO 2087, 2049, 2020 
cm-l. Mass spectrum DEI, mlz  (%I: 814 (35) [(M - 
3CO)]+, 758 (30) [(M - KO)]+, 702 (68) [(M - 6CO)1+, 
674 (100) [(M - 8CO)]+, 646 (20) [(M - 9CO)1+, 618 (20) 
[(M - 10 CO)l+. 

MesSiCEC-SiPhzH. Analogously to the synthesis 
of Me3SiC=C-SiMezH, (trimethylsilyllethyne (1.74 g, 
17.72 mmol) in THF (30 mL), n-butyllithium (17.72 
mmol), and diphenylchlorosilane (3.86 g, 17.72 mmol) 
in THF (5 mL) gave MesSiCW-SiPhzH (3.97 g, 14.18 
mmol; 80%). lH NMR (CDzC12,200 MHz): 6 7.85 (m, 
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Table 1. X-ray Structure Summary 
9 15 

Ruffolo et al. 

Table 2. Atomic Coordinates (x  10 and Equivalent 
Isotropic Displacement Coefficients (A2 x 103) for 9 

~ ~~~ ~~ ~~ 

Crystal Data 
empirical formula C ~ I H ~ O M O Z ~ ~ S ~ Z  Cz6H30C04013Si4 
color red black 
habit parallelepiped parallelepiped 
cryst size, mm 
cryst syst monoclinic monoclinic 

a, '4 17.06 l(2) 14.093(2) 
b, '4 9.756(2) 10.285( 1) 
c, A 17.922(3) 27.689(3) 
/3, deg 96.64(3) 92.153(9) 
v, ' 43  2963.1(8) 4010.6(5) 
Z 4 4 
fw 714.6 898.6 
d (calc), Mg/m3 1.602 1.488 
p,  cm-l 9.62 17.97 
F(000) 1440 1816 

diffractometer used Siemens P4 Siemens P4 
radiation (1, .$) 
temp, K 300 300 
monochromator highly oriented graphite crystal 
20 range, deg 5.0-60.0 4 .O - 60 .O 

scan speed, deg/min in w var; 4.00-40.00 VU; 2.00-40.00 

index ranges 

0.3 x 0.3 x 0.2 0.36 x 0.34 x 0.27 

space group P21k c2lc 

Data Collection 

Mo K a  (0.7 10 73) 

scan type 0-20 0-20 

no. of std r f l n s  3 measured every 97 rflns 
-1 5 h 5 23, -1 d h i 19, 

-1 5 k i 13, 
-25 i 15 25 

-1 5 k 5  14, 
-38 5 15 38 

no. of rflns collcd 10 440 7184 

no. of obsd rflns 
abs corr Difabs Difabs 

system used 
so 1 uti o n 
refinement method full-matrix least squares 

no. of ind rflns 8627 (Rmt = 2.34%) 5850 (R,,t = 2.13%) 
6090 ( F  z 4.0a(R)) 

Solution and Refinement 

4245 (F z 4.0a(F)) 

Siemens SHELXTL PLUS (PC version) 
direct methods 

quantity minimized E.~(lFol - IFcI)' 
weighting scheme 
no. of params refined 415 274 
R, % 3.93 3.69 
Rw, % 4.5 1 3.76 
GOF 1.10 1.43 
&a (max) 0.277, 0.01 1 0.046, 0.007 
data-to-param ratio 14.7:l 15.5:l 
largest diff peak, e k3 0.50 0.37 
largest diff hole e A-3 -0.50 -0.33 

w-1 = d ( F )  + 0.0000Fz 

4H, aromatic), 7.58 (m, 6H, aromatic), 0.43 (s, 3H, Mea- 
Si). 13C NMR (CD2C12, 50.3 MHz): 6 135.50, 128.57 
b e t a  and ortho C's); 132.37 (ipso); 130.61 (para); 120.44, 
106.22 (CEC); -0.16 (MesSi). 29Si NMR (CH2C12, 59.6 
MHz) -42.08 (decet, l J s i - ~  = 212 Hz, SiPhzH), -18.74 
ppm (doublet, 2JSi-H = 6.4 Hz, MesSi). IR (THF): YSiH 
2143 cm-l. 
[(MesSiC=C-SiPhzH)Co2(CO)sl (8). Analogously 

to the synthesis of 15, MesSiC=C-SiPhnH (475 mg, 1.70 
mmol) and dicobalt octacarbonyl (580 mg, 1.70 mmol) 
yielded 8 (0.796 g, 1.41 mmol; 83%). lH NMR (CD2C12, 
200 MHz): 6 7.45 (m, 4H, aromatic), 7.14 (m, 6H, 
aromatic), 0.30 (s, 9H, Me$%). 13C NMR (CD2C12, 50.3 
MHz): 6 200.6 (Co CO's); 135.3, 128.5 (meta and ortho 
C's); 134.5 (ipso); 130.6 (para); 1.1 (MesSi). 29Si NMR 
(CH2C12): 6 -17.9 (doublet, 'JS1-H = 252 Hz, PhzSi), 2.5 
(decet, MesSi). IR (hexane): Y co 2020,2050,2087 cm-l; 
YSiH 2145 cm-'. Mass spectrum DEI mlz  (%): 482 (5) 
[(M - 3CO)1+, 454 (35) [(M - 4CO)]+, 426 (80) [(M - 
5CO)1+, 398 (100) [(M - 6CO)1+. 

[ ( M ~ $ ~ ~ C = C - S ~ P ~ ~ H ) M O ~ ( C O ) ~ ( C ~ H S ) ~ ~ ( ~ ) .  Me3- 
SiC=C-SiPhzH (1.4 g, 10 mmol) in dry THF (30 mL) 

X Y z WeqY 
Mo(1) 1671(1) 1971(1) 115(1) 300) 
Mo(2) 3307(1) 2137(1) 1881) 29(1) 

Si(4) 2527(1) -107(1) 1685( 1) 31(1) 
C(2) 2562(2) 393(3) -87(2) 30(1) 
C(3) 2532(2) 627(3) 691(2) 2% 1 ) 
(25) 2403(4) -618(6) -1814(3) 93(3) 
C(6) 2079(3) -2568(4) -560(3) 66(2) 
C(7) 3654(3) -1677(5) -632(4) 83(2) 
C(8) 1634(2) -1039(4) 1828(2) 36(1) 
C(9) 1429(3) -2299(5) 1495(3) 57(2) 
C(10) 786(3) -2970(5) 1664(3) 68(2) 
C(11) 326(3) -2384(6) 2146(4) 72(2) 
C(12) 506(3) - 1168(7) 2469(5) 980)  
~ ( 1 3 )  1159(3) -494(5) 2322(3) 78(2) 
C(14) 3368(2) -1224(4) 1973(2) 35(1) 
C ( W  39 14(2) -776(5) 2562(3) 48(1) 
C(16) 4554(3) -1534(6) 2774(3) 62(2) 
C(17) 4665(3) -2752(6) 2407(3) W 2 )  
C(18) 4139(3) -3202(5) 1835(4) 74(2) 
C(19) 3502(3) -2458(5) 1616(3) 58(2) 
C(20) 3683(3) 4291(4) -192(3) 572)  
C(21) 4303(3) 3407(5) -170(3) 59(2) 
C(22) 4132(3) 2418(5) -764(3) W 2 )  
C(23) 3425(3) 2694(5) -1153(3) 4 W )  
(324) 3142(3) 3856(4) -799(3) 48( 1) 
C(25) 1130(3) 4 134(5) 133(3) 57(2) 
C(26) 579(2) 3148(5) 256(3) 58(2) 
(327) 801(3) 25 14(5) 981(3) 54(2) 
C(28) 1479(3) 3116(5) 1303(3) 50(1) 
C(29  1679(3) 4 106(4) 776(3) 54(2) 

Si(1) 2664(1) -1070(1) -771(1) 40( 1 ) 

~ ( 3 0 )  3296(2) 2882(4) 1253(2) 40( 1 ) 
C(31) 4092(2) 847(4) 670(2) 4 0 ~  
C W )  1034(2) 351(4) - 187(3) 50(1) 
C(33) 1669(2) 2195(4) -1020(3) 46( 1 ) 
O(30) 3337(2) 3381(4) 1865(2) 63(1) 
O(31) 4586(2) 187(3) 920(2) 63U) 
O ( W  644(2) -532(4) -386(3) 93(2) 
0 0 3 )  16 19(2) 2409(4) -1688(2) 68U) 

"Equivalent isotropic LI defined as one-third of the trace of the 
orthogonalized U, tensor. 

was added dropwise via cannula to a freshly prepared 
solution of (CbH&(C0)4Mo2 (4.40 g, 11 mmol) over 45 
min. The solution was allowed to stir at room tempera- 
ture for 24 h. After removal of the solvent, the residue 
was recrystallized from THFhexane (2:l) to yield red 
crystals of 9 (5.57 g, 7.8 mmol; 78%). IH NMR (CD2- 
Cl2,200 MHz): 6 7.25 (m, 10H, aromatic), 4.78 (s,11H, 
C,-Hs and Si-HI, 0.07 (s, 9H, MesSi). 13C NMR (CD2- 
Cl2, 50.3 MHz): 6 229.0 (Mo-CO's); 137.2 (ipso); 135.7, 
128.1 (meta and ortho (7s); 129.9 (para); 90.2 (C,-C's); 
3.5 (MesSi). 29Si NMR (CH2Cl2,59.6 MHz): 6 6.6 (decet, 
MesSi), -10.8 (doublet, 'JSi-H = 211 Hz, SiPhzH). IR 
(hexane): YCO 1883, 1950, 1981 Cm-'; YSiH 2171 Cm-'. 
X-ray Crystallography. X-ray crystallographic data 

were collected on a Siemens P4 diffractometer, equipped 
with a rotating anode and using graphite-monochro- 
mated Mo Ka radiation (A = 0.710 73 A). The back- 
ground measurements were obtained by using a sta- 
tionary crystal and stationary counter at the beginning 
and end of the scan time. The two compounds were 
solved by using the direct methods routine contained 
in the SHEIXTL-Plus program library.31 All hydrogen 
atoms for both structures, 9 and 15, were found in the 
Fourier difference maps and were refined individually. 
The riding model of hydrogen atoms with fured isotropic 

(31) Sheldrick, G. M. SHELXTLPC, Release 4.1; Siemens Crystal- 
lographic Research System: Madison, WI, 1990. 
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Metal-Stabilized Silylium Cations 

Table 3. Atomic Coordinates (~10")  and Equivalent 
Isotropic Displacement Coefficients (Az x lol) for 15 

X Y Z U(@" 
1177(1) 
1536( 1) 
1880(1) 
4523(1) 
2269(3) 
1995(2) 
2806(2) 
3091(5) 

211(4) 
5086(4) 
5487(4) 
4630(4) 
-495(3) 
11 15(3) 
1656(3) 
- 106(3) 
1682(3) 
2391(3) 

-1531(2) 
106 l(3) 
1970(3) 

-1124(2) 
1783(3) 
2932(3) 

3815(1) 
4174( 1) 
2918( 1) 
3953 1) 

2500 
3512(1) 
3835(1) 
29 16( 1) 
2810(1) 
3433(2) 
40 12(2) 
4522(2) 
3625(1) 
4376(1) 
3437(1) 
4104(1) 
4800(1) 
4212( 1) 
3503(1) 
4721(1) 
3202(1) 
4063(1) 
5194(1) 
4245(1) 

"Equivalent isotropic U defined as one-third of the trace of the 
orthogonalized Ut, tensor. 

U values is employed for all solutions. The method of 
refinement was full-matrix least-squares in each case. 

Organometallics, Vol. 13, No. 11, 1994 4335 

The scattering factors were taken from ref 32. Crystal- 
lographic data are collected in Tables 1 through 3. 

Molecular orbital calculations were performed via 
the extended Huckel method using weighted Hi 
orbital drawings were obtained by use of the program 
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