Transition Metal-Substituted Diphosphenes. 35.l On the Reactivity of Metallodiphosphenes $(\eta^5$ -C₅Me₅)(CO)₂FeP=PR (R = C(SiMe₃)₃, 2,4,6-t-Bu₃C₆H₂) **toward Isocyanides. Formation and Structures of Iminodiphosphiranes and 2,4=Diimino- 1,3=diphosphetanes** *Organometallies* 1994, 13, 4406-4412
 Annsition Metal-Substituted Diphosphenes. 35.¹ On the

Reactivity of Metallodiphosphenes. 35.¹ On the
 ${}^{5}C_{6}Me_{5}$)(CO)₂FeP=PR (Re C(SiMe₃), 2,4,6-t-Bu₃C₆H₂)

towa Dn the
 C_6H_2)

of
 $m,*$
 \vdots
 \vd

Lothar Weber,*,† Susanne Buchwald,† Dieter Lentz,*,‡ Oliver Stamm,‡ Dagmar Preugschat,[#] and Robert Marschall[#]

Fakultat fur Chemie der Universitat Bielefeld, Universitatsstrasse 25, 33615 Bielefeld, Germany, and Institut fir Anorganische und Analytische Chemie der Freien Universitat Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany

Received May 24, 1994@

The reaction of the metallodiphosphene $(\eta^5$ -C₅Me₅)(CO)₂FeP=PC(SiMe₃)₃ (1) with CF₃NC **(3a)** and PhNC **(3b)** afforded the red crystalline iminodiphosphiranes $(\eta^5$ -C₅Me₅)(CO)₂- $FeP\dot{C}$ (=NR) $P\dot{C}$ (SiMe₃)₃ (4a, R = CF₃; 4b, R = Ph). Similarly (η^5 -C₅Me₅)(CO)₂FePC(=NCF₃)P-Mes^{*} (5) was synthesized from $(\eta^5-C_5Me_5)(CO)_2Fe-P=P-Mes^* (2)$ (Mes^{*} = 2,4,6-t-Bu₃C₆H₂) The reaction of the metallodi

(3a) and PhNC (3b) afforded

FePC(=NR)PC(SiMe₃)₃ (4a, R =

Mes* (5) was synthesized from

and 3a. In contrast to this, the

P(Mes*)-C=NR (7b, R = Ph;

treatment of 2 with an excess c

ph

and $3a$. In contrast to this, the 2,4-diimino-1,3-diphosphetanes $(\eta^5\text{-}C_5\text{Me}_5)(\text{CO})_2\text{Fe-P-C}(\text{=NR})$ -

P(Mes^{*})-C=NR (7b, R = Ph; 7c, R = 2-MeC₆H₄; 7d, R = C₆F₅) were produced by the treatment of **2** with an excess of the isocyanides. In these reactions, transient iminodiphosphiranes were detected by 31P-NMR spectroscopy. The novel compounds **4, 5,** and **7** were characterized by elemental analyses and spectroscopic data $\text{(IR, 1H, 13C, 19F, and 31P NMR)}$ and MS). The molecular structures of **4a** (space group $P2_1/n$, $a = 8.823(6)$ Å, $b = 17.844(9)$) A, $c = 20.757(8)$ A, $\beta = 101.7(5)$ °) and **7c** (space group $P2_12_12_1$, $a = 15.43(2)$ A; $b = 17.082(8)$ \AA ; $c = 17.160(1)$ Å) were determined by complete single-crystal diffraction studies.

Introduction

Investigations on the synthesis and chemical properties of compounds with low-coordinated heavier main group elements $(n \geq 2)$ have provided a major contribution to the renaissance of main group chemistry within the last three decades.2 Our studies were concerned with the chemistry of metal-functionalized diphosphenes3 (metallodiphosphenes, diphosphenyl complexes) and phosphaalkenes (metallophosphaalkenes, phosphaalkenyl complexes).⁴ Motivated by West's synthesis of iminodisiliranes via $[2 + 1]$ cycloaddition of isocyanides to disilenes, 5 we envisaged the synthesis of the rare class of iminodiphosphiranes by a similar cycloaddition involving diphosphenes. **A** few representatives of this ring system have recently been synthesized from dimetallodiphosphanes and isocyanide dichlorides⁶ (Scheme 1).

The stability of the three-membered heterocycles was crucially dependent on the steric demand of the aryl

(2) Reviews: (a) Regitz, M.; Scherer, O. J., Eds. Low Coordination
and Multiple Bonding in Phosphorus Chemistry; Thieme: Stuttgart,
1990. (b) Appel, R.; Knoll, F. Adv. Inorg. Chem. 1989, 33, 259. (c)
Markovskii, L. N.; Rom

(3) Weber, L. *Chem. Rev.* 1992,92,

Commun. 1987, 1605. (6) Baudler, M.; Simon, J. *Chem. Ber.* 1987, 120, 42.

Scheme 1

substituent. Only those species with at least one *o-tert*butyl substituent at the aryl ring proved to be stable at 20 °C, whereas the derivatives with aryl = 2,4,6- $Me₃C₆H₂$, 2-Me-C₆H₄, and 4-Cl-2-MeC₆H₃ were subject to slow decomposition with the formation 2,4-diimino-1,3-diphosphetanes **.6**

The latter class of heterocycles is also accessible by the reaction of isocyanide dichlorides,⁷ phenyl isocyanate, and phenyl isothiocyanate with organo(disily1) phosphanes. Here reactive iminomethylene phosphanes were invoked as intermediates.⁸ Recently some of us gave an account on the reaction of the diphosphene (Me3- $\sin_{3}CP=PC(\sin_{3})_{3}$ with $CF_{3}N=C$, which afforded the expected iminodiphosphirane. 9 On the other hand a 1:3 cycloadduct was obtained from the treatment of $Mes*P=PMes*$ with the same isocyanide⁹ (Scheme 2).

Here we report on the reaction of the metallodiphosphenes $(\eta^5$ -C₅Me₅)(CO)₂FeP=PC(SiMe₃)₃ (1) and (η^5 -C₅- $Me₅$ $(CO)₂FeP=PMes* (2)$ with the isocyanides $CF₃NC$ $(3a)$, **PhNC** $(3b)$, $2\text{-}MeC_6H_4$ $(3c)$, and C_6F_5NC $(3d)$.

[†] Fakultät für Chemie der Universität Bielefeld.
‡ Institut für Anorganische und Analytische Chemie der Freien Universitat Berlin.

⁸ Abstract published in *Advance ACS Abstracts*, October 1, 1994.

(1) Part 34: Weber, L.; Misiak, H.; Buchwald, S.; Stammler, H.-G.; Neumann, B. *Organometallics* **1994**, 13, 2194.

metallics 1993, 12, 4653. (5)Yokelson, H. B.; Millevolt, A. J.; West, R. *J. Chem. SOC. Chem.* (4) Weber, L.; Riihlicke, A.; Stammler, **H.-G.;** Neumann, B. *Orgao-*

⁽⁷⁾ Appel, R.; Laubach, B. *Tetrahedron Lett.* 1980,21, 2497.

⁽⁸⁾ (a) Becker, G.; Harer, J.; Uhl, G.; Wessely, H.-J. *2. Anorg. Allg. Chem.* 1986,520,120. (b) Becker, G.; Riffel, H.; Uhl, W.; Wessely, H.-

J. *2. Anorg. Allg. Chem.* 1986, 534, 31. (9) Lentz, D.; Marschall, R. *2. Anorg. Allg. Chem.* 1992, 617, *53.*

Scheme 2

Experimental Section

General Information. Standard inert-atmosphere techniques were used for the manipulation of all reagents and reaction products. Infrared spectra were recorded on a Mattson Polaris (FT-IR)/Atari 1040 STF and on a Perkin-Elmer 883 spectrometer. 'H, 13C, 19F, and 31P NMR spectra were taken in C_6D_6 at 22 °C on Bruker AC 100 (¹H, 100.131; ¹³C, 25.180; 31P, 40.539 MHz), Bruker Ah4 300 ('H, 300.1; 13C, 75.5; 31P, 121.7 MHz) and JEOL FX 90 Q ('H, 89.55; 19F, 84.25; 31P, 36.23 MHz) instruments. Spectral standards were SiMe4 ('H, ¹³C), CFCl₃ (¹⁹F), and 85% H₃PO₄ (³¹P). Electron impact mass spectra were recorded on Varian MAT CH5-DF (70 eV, *T* = 250 "C) and Finnigan MAT 711 (80 eV) spectrometers. Elemental analyses were obtained from the Microanalytical Laboratory Kolbe, Mülheim/Ruhr, Germany. 83 spectrometer. ¹H, ¹³C, ¹⁹F, an
aken in C₆D₆ at 22 °C on Bruker 15.180; ³¹P, 40.539 MHz), Bruker Al
¹P, 121.7 MHz) and JEOL FX 90 Q
6.23 MHz) instruments. Spectral s³C), CFCl₃ (¹⁹F), and 85% H₃PO₄

Materials. The complexes **(r5-C5Me5)(C0)2FeP=PC(SiMe3)3** $(1)^{10}$ and $(\eta^5$ -C₅Me₅) $(CO)_2$ FeP=PMes^{*} $(2)^{11}$ and the isocyanides $CF₃NC¹² C₆F₅NC¹³ PhNC¹⁴ and 2-MeC₆H₄NC¹⁴ were pre$ pared as described in the literature. All solvents were rigorously dried with an appropriate drying agent and distilled before use.

Preparation of Compounds: $(\eta^5$ -C₅Me₅)(CO)₂Fe-

 $PP[C(SiMe₃)₃]C=NCF₃$ (4a). Gaseous $CF₃NC$ (2a) (143) mbar, **0.8** mmol) was condensed on a solution of 0.42 g (0.8 mmol) of $(\eta^5$ -C₅Me₅)(CO)₂FeP=PC(SiMe₃)₃ (1) in 40 mL of pentane at -78 °C. The well-stirred solution was allowed to warm up to 0° C within a period of 20 h and then filtered. The filtrate was concentrated *in vacuo* to about 20 mL and stored at -30 °C. Dark red microcrystalline $4a$ (0.15 g (31%)) separated overnight. IR (KBr, cm⁻¹): 2003 vs [ν (CO)], 1974 vs [ν (CO)], 1616 m [ν (CN)], 1574 w, 1386 w, 1262 vs [δ (SiMe₃)], 1207 s, 1143 s, 849 vs [$\varrho(SiMe_3)$], 674 m, 579 m. ¹H NMR: δ 0.47 (s, 27H, SiMe₃), 1.34 (s, 15H, C₅Me₅). ¹³C{¹H} NMR: δ 5.2 (s, Si(CH₃)₃), 9.9 (d, ³J_{PC} = 6.7 Hz, C₅(CH₃)₅), 97.2 (s, C₅-(CH₃)₅), 214.3 (s, FeCO), 215.6 (d, ²J_{PC} = 13.6 Hz. FeCO). Resonances for the CNCF3 building block could not be detected. NMR: δ -66.7 (dq, ${}^{1}J_{PP}$ = 56.0, ${}^{4}J_{PF}$ = 13.0 Hz, FeP), -157.0 ¹⁹F{¹H} NMR: δ -60.70 (dd, ⁴J_{PF} = 13.0, 5.8 Hz). ³¹P{¹H} $(dq, {}^{1}J_{PP} = 56.0, {}^{4}J_{PF} = 5.8 \text{ Hz}, \text{PCSi}_3$. MS/EI: m/z 635 (M⁺), $\texttt{Gq}, \texttt{J}_{\text{PP}} = 56.0, \texttt{J}_{\text{PF}} = 5.8 \text{ Hz}, \text{PCS1}_3$). MS/E1: m/z 635 (M⁺), 579 (M⁺ - 2CO), 540 (M⁺ - CF₃NC), 512 (M⁺ - CF₃NC - 679 (M⁺ - 2CO), 540 (M⁺ - CF₃NC), 512 (M⁺ - CF₃NC - CO), 484 (M⁺ - CF₃NC - 2CO), 253 (Cp*FePP⁺), 191 $(Cp*Fe⁺)$, 135 $(Cp*⁺)$. Anal. Calcd for $C_{24}H_{42}FeF_3NO_2P_2Si_3$ (635.65): C, 45.35; H, 6.66; N, 2.20. No reliable C, H, N analyses of **4a** could be obtained.

 $(\eta^5$ -C₅Me₅)(CO)₂FePP[C(SiMe₃)₃]C=NPh (4b). An excess of C_6H_5NC (3b) (1 mL) was added to a solution of 1 (0.30 g) , **0.55** mmol) in 20 mL of n-pentane at 20 "C with stirring. The color of the solution changed from brown to red within the period of 1 h. Solvent and volatiles were removed in *vacuo.* The red residue was dissolved in **50** mL of n-pentane. The filtered solution was concentrated to about 20 mL and stored at -30 "C for 3 d to give 0.22 g (63%) of red crystalline **4b.** IR (KBr, cm^{-1}) : 2002 vs [$\nu(CO)$], 1994 vs [$\nu(CO)$], 1958 vs [$\nu(CO)$], 1599 m [v(CN)], 1568 m [v(CN)], 1484 m, 1445 m, 1384 m,

1252 s $[\delta(SiMe_3)]$, 1024 s, 848 vs $[\varrho(SiMe_3)]$, 754 m, 692 m, 662 w, 619 w, 580 m, 543 w, 504 w. 'H NMR: 6 0.53 (s, 27H, SiMe₃), 1.31 (s, 15H, C_5Me_5) (Ph-H are obscured by C_6D_5H). ¹³C{¹H} NMR: δ 5.4 (s, Si(CH₃)₃), 10.0 (s, C₅(CH₃)₅), 96.6 (s, $C_5(CH_3)_5$, 214.8 (s, FeCO), 216.4(m, Fe(CO)). (The ring carbon atom and the quarternary carbon of the $C(SiMe₃)₃$ -group could not be located unambigiously.) ³¹P{¹H} *NMR:* δ -79.6 (d, ¹J_{PP} $= 49.4$ Hz, FeP), -158.7 (d, $^{1}J_{PP} = 49.4$ Hz, PCSi₃). MS/CI: m/z 541 (MH⁺ - PhNC), 525 (M⁺ - PhNC - CH₃), 484 (M⁺ -PhNC, $-2CO$). Anal. Calcd for $C_{29}H_{47}FeNO_2P_2Si_3$ (643.75): C, 54.11; H, 7.36; N, 2.18. Found: C, 54.12; H, 7.33; N, 2.27.

 $(\eta^5\text{-C}_5\text{Me}_5)(CO)_2\text{FePP}(\text{Me}^*)C=\text{NCF}_3$ **(5a).** Gaseous CF₃-NC **(2a)** (1.75 mmol) was condensed on a solution of 1.04 g (1.75 mmol) of **2** in 50 mL of 2-methylbutane at -78 °C. The solution was stirred overnight with warming up to 0 "C and filtered thereafter. The filtrate was concentrated *in vacuo* to about 20 mL. Crystallization at -30 °C yielded 0.66 g (54%) of **5a** as red fan-shaped crystals. IR (Nujol, cm-'1: 1992 vs [ν (CO)], 1947 vs [ν (CO)], 1602 s [ν (CN)], 1195 vs, 1138 vs, 1022 m, 875 w, 859 s, 781 w, 745 w, 682 **w,** 618 m, 578 s, 562 m, C_5Me_5), 1.88 (s, 18H, o-t-Bu), 7.42 (d, 2H, $^4J_{\text{PH}} = 2.1$ Hz, m-aryl-H). 13C{lH} NMR: facile decomposition of **5a** in solution thwarted a useful ¹³C NMR spectrum. ¹⁹F{¹H} NMR: δ ${}^{1}J_{PP} = 32.0, \, {}^{4}J_{PF} = 13.0 \text{ Hz}, \text{ Fe-P}, \, -168.7 \text{ (dq, } {}^{1}J_{PP} = 32.0; \,$ 499 W, 432 W. 'H NMR: 6 1.18 **(s,** 9H, p-t-Bu), 1.27 **(s,** 15H, -58.60 (dd, ${}^4J_{PF} = 13.0$, 4.8 Hz). ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR: $\delta -71.0$ (dq, $^{1}J_{\text{PP}} = 32.0, \, ^4J_{\text{PF}} = 13.0 \text{ Hz}, \, \text{Fe-P}, \, -168.7 \, (\text{dq}, \, ^1J_{\text{PP}} = 32.0; \, ^4J_{\text{PF}} = 4.8 \text{ Hz}, \, \text{P-Mes*}. \quad \text{MS/EI: } m/z \, 649 \, (\text{M}^+), \, 593 \, (\text{M}^+ -$ 2CO), 592 (M⁺ - t-Bu), 573 (M⁺ - t-Bu - F), 554 (M⁺ - t-Bu - 2F), 517 (M⁺ - t-Bu - 2CO - F), 247 (Cp*Fe(CO)₂⁺), 135 (Cp^{*+}) , 57 (*t*-Bu⁺). Anal. Calcd for $C_{32}H_{44}F_{3}FeNO_{2}P_{2}$ (649.49): C, 59.18; H, 6.83; Fe, 8.60; N, 2.16. Found: C, 59.29; H, 6.76; Fe, 8.51; N, 2.21.

 $(\eta^5\text{-}C_5\text{Me}_5)(CO)_2\text{FeP}$ C(=NPh)P(Mes^{*})C=NPh (7b). One milliliter of PhNC **(2b)** (excess) was added to a solution of 0.35 g (0.63 mmol) of **2** in 30 mL of benzene at 20 "C. Within 1 h of stirring the color of the solution turned red. Solvent and volatiles were removed in *vacuo.* The residue was stirred with pentane **(50** mL), and the resulting slurry was filtered. The red filtercake was washed with **5** mL of ether and dried in *vacuo.* This material is a 2:l mixture of isomers A and B of 7b (0.30 g, 63%). IR (KBr, cm⁻¹): 2000 vs [ν (CO)], 1958 vs $[\nu(CO)]$, 1589 w $[\nu(CN)]$, 1557 s $[\nu(CN)]$, 1483 w, 1261 m, 1098 m,1025 m,903 w,869 w,802 m, 755 w,693 w,534w. 'H 1.33 (s, $C_5Me_{5,A}$), 1.80 (s, $o-t-Bu_A$), 1.92 (s, $o-t-Bu_B$), 7.34 (d, 8) Hz) and 7.54 (d, 8 Hz, $m-H$ aryl_{A+B}), 6.30-7.73 (m, H phenyl_{A+B}). ¹³C{¹H} NMR: δ 8.8 (d, ³J_{PC} = 3.5 Hz, C₅(CH₃)_{5,B}) NMR: δ 0.95 (s, C₅Me_{5,B}), 1.19 (s, p-t-Bu_A), 1.22 (s, p-t-Bu_B), 9.4 (d, ${}^{3}J_{\text{PC}} = 5.8 \text{ Hz}, C_5(CH_3)_{5,\text{A}}$), 31.2 (s, p-C(CH₃)_{3,A}), 31.3 (s, p-C(CH₃)_{3,B}), 34.1 (s, o -C(CH₃)_{3,A+B}), 35.0 (s, p -C(CH₃)_{3,A+B}), 39.2 $(s, o\text{-}C(CH_3)_{3,A+B}), 96.5 (s, C_5(CH_3)_{5,B}), 96.8 (s, C_5(CH_3)_{5,A}), 120.6$ s, 120.9 s, 121.4 s, 123.1 s, 123.5 s, 128.4 s, 129.0 s, 129.2, 152.5 (s, C-phenyl and C-aryl), 158.1 (d, $J_{PC} = 12.4$ Hz, C=N_A), 158.7 (d, $J_{\text{PC}} = 12$ Hz, $C=N_B$), 215.1 (s, Fe(CO)_{A}), 215.6 (s, Fe(CO)_B). ³¹P{¹H} NMR: δ 66.4 (d, ²J_{PP} = 40.0 Hz, FeP_A), 34.7 (d, ${}^{2}J_{PP} = 24.4$ Hz, FeP_B), 17.9 (d, ${}^{2}J_{PP} = 24.4$ Hz, $PMes*_{B}$), 7.4 (d, ${}^2J_{\rm PP} = 40.0$ Hz, PMes^{*}_A). MS: m/z 760 (M⁺), 704 (M⁺) $-$ 2CO), 657 (M⁺ - PhNC), 629 (M⁺ - PhNC - CO), 601 (M⁺ - PhNC - 2CO), 554 (M⁺ - 2PhNC), 441 (M⁺ - 2PhNC - $2CO - t$ -Bu), 381 (Cp*(CO)₂FePCNPh⁺), 379 (Mes*PCNPh⁺), 325 (Cp*FePCNPh⁺), 278 (Cp*(CO)₂FeP⁺), 276 (Mes*P⁺), 219 (Cp*FeCO+), 191 (Cp*Fe+), **135** (Cp*+), 103 (PhNC+), **57** *(t-*Bu⁺). Anal. Calcd for C₄₄H₅₄FeN₂O₂P₂ (760.72): C, 69.47; H, 7.16; N, 3.68. Found: C, 68.61; H, 7.16; N, 3.89.

 $(\eta^5\text{-}C_5Me_5)(CO)_2FePC(=N-o\text{-}Tol)P(Mes*)C(=N-o\text{-}Tol)$ (7c). An excess of 2-MeC₆H₄NC (2c) (1 mL) was added to a solution of 0.49 g (0.88 mmol) of **2** in 30 mL of benzene at 20 "C and stirred for 2 h. The color of the mixture changed to red. The solution was freed from volatiles, and the residue was dissolved in **50** mL of n-pentane. After filtration and concentration to

⁽¹⁰⁾ Weber, L.; **Kirchhoff,** R.; **Boese,** R.; **Stammler, H.-G.; Neumann, B.** *Organometallics* **1993,** *12, 731.*

⁽¹¹⁾ Weber, L.; **Reizig,** K.; **Bungardt, D.; Boese,** R. *Organometallics* **1987,** *6, 110.*

⁽¹²⁾ Lentz, D. *J. Fluor. Chem.* **1984,24,** *523.*

⁽¹³⁾ Lentz, D.; Graske, K.; Preugschat, D. *Chem. Ber.* **1988,** *121, 1445.*

⁽¹⁴⁾ **Weber, W. P.; Gokel, G. W.; Ugi, I. K.** *Angew. Chem.* **1972,84,** *587;Angew. Chem., Int. Ed. Engl.* **1972,** *11, 530.*

Table 1. JIP{lH} NMR Data of **4a,b, Sa-d, and 7b-d in** C_6D_6 , δ in ppm (85% H_3PO_4 Standard)

compd	δ (P-Fe)	$J_{\rm PP}$	$J_{\rm PF}$	δ (P-C)	$J_{\rm PP}$	$J_{\rm PF}$
4а	$-66.7 dq$	56.0	13.0	-157.0 dq	56.0	5.0
4b	$-79.6d$	49.4		$-158.6 d$	49.4	
5a	-71.0 da	32.0	13.0	-168.7 da	32.0	4.0
5b	$-91.2d$	24.3		$-178.7d$	24.3	
5c	$-94.0d$	22.5		175.9 d	22.5	
5d	-79.3 m			-149.85 m		
$anti-7b$	66.4 d	40.0		7.4d	40.0	
$syn-7b$	34.7 d	24.5		17.9 d	24.5	
anti-7c	65.2 d	43.5		5.3 d	43.5	
$syn-7c$	33.5 d	26.8		21.8d	26.8	
anti-7d	79.9 dt	73	44	1.0 _{dt}	73	31:5
$syn-7d$	96.5 d	56		13.4 dquint	56	10

Table 2. Experimental Data for **the** X-ray **Diffraction** Study of **4a and 7c**

about **20** mL, the solution was stored at **-30** "C to yield **0.33** g **(48%)** of **7c** as a **2:1** mixture of two isomers **A** and B. IR (KBr, cm-l): **2090** m, **2006** vs [v(CO)I, **1959 vs** [v(CO)I, **1589** w [v(CN)], **1537 s** [v(CN)], **1480** w, **1459** sh, **1210** W, **1111** W, **1028** w, **887** w, **757** m, **718** w, **585** m, **563** w. 'H **NMR:** 6 **1.00** $o-t-Bu_A$), 1.93 *(s, br, o-t-BuB), 2.55 <i>(s, o-CH_{3A+B})*, 2.59 *(s,* o-CH_{3,A}), $6.6-7.3$ (m, H-o-tolyl_{A+B}), 7.61 (m, m-H-aryl_{A+B}). ¹³C-**(s,** CsMes,~), **1.21** *(8,* ~-.~-BuA+B), **1.38** *(8,* C5Mes,~), **1.78 (9,** br, $\{^1H\}$ NMR: δ 9.4 (d, $J_{PC} = 5.7$ Hz, $C_5(CH_3)_{5,A}$), 10.1 (d, $J_{PC} =$ 8.5 Hz, C₅(CH₃)_{5,B}), 17.3 (s, o-CH_{3,B}), 18.5 (s, o-CH_{3,A}), 31.3 (s, p-C(cHs)s,~+~), **39.0 S** and **39.1 (S,** O-C(CH&,A+B), **96.8 (S, c5-** $(CH₃)_{5,A+B}$), **116.25** (m), **122.8 (s)**, **123.1 (s)**, **123.9 (s)**, **126.1 (s)**, **128.9** *(s),* **130.6** *(s),* **130.7 (s), 133.25 (s), 152.5** (d, Jpc = **2.8** Hz, C-tolyl and C-aryl), **157.9** (d, Jpc = **12** Hz, C=NA), **158.7** $dm, J_{PC} = 12$ Hz, C=N_B), 192.5 m and 194.6 $(m, N\text{-}C\text{-}aryl_{A+B}),$ **214.8** (s, Fe(CO)_{A+B}). ³¹P_{¹H} NMR: δ 65.2 (d, ²J_{PP} = 43.5 Hz, FeP_A), 33.5 (d, $^{2}J_{PP} = 27.2$ Hz, FeP_B), 21.8 (d, $^{2}J_{PP} = 26.8$ Hz, PMes^{*}_B), 5.3 (d, ² J_{PP} = 43.3 Hz, PMes^{*}_A). MS: m/z 788 (M+), **671** (M+ - TolNC), **643** (M+ - TolNC - CO), **615** (M+ p -C(CH₃)₃), 33.9 **s** and 34.0 **(s,** o -C(CH₃)_{3,A+B}), 35.0 **(s,**

Scheme 3

 $[Fe] = (C_5Me_5)(CO)_2 Fe$

 $R^1 = R^2 = H$, $R^1 = R^2 = Me$, $R^1 = H$, $R^2 = Me$

 $TolNC - 2CO$), 554 $(M^+ - 2TolNC)$, 441 $(M^+ - 2TolNC - 2CO)$ - t-Bu), **395** (Cp*(CO)ZFePCNTol+), **393** (Mes*PCNTol+), **³³⁹** (Cp*FePCNTol+), **278** (Cp*(C0)2FeP+), **276** (PMes*+), **219** (Cp*(CO)Fe+), **191** (Cp*Fe+), **135** (Cp*+), **117** (ToWC'), **57** *(t-* Bu^+). Anal. Calcd for $C_{46}H_{58}FeN_2O_2P_2$ (788.77): C, 70.04; H, **7.41;** N, **3.55.** Found: C, **69.01;** H, **7.48;** N, **3.75.**

 $(\eta^5\text{-}C_5\text{Me}_5)(CO)_2\text{FeP}\text{C} (= NC_6F_5)\text{P}(\text{Me}^*)\text{C}=NC_6F_5$ (7d). **To** a solution of **0.60** g **(1.08** mmol) of **2** in **40** mL of toluene at -78 °C was added 2 mL of a 1 M solution of C_6F_5NC **2d** in n-pentane. **The** mixture was warmed up to **20** "C with stining. After evaporation to dryness the residue was dissolved in **50** mL **of** n-pentane and filtered. Concentration to ca. **20** mL and crystallization at **-40** "C afforded **0.47** g **(46%)** of red microcrystalline **7d. IR** (Nujol, cm-'): **2020** vs [v(CO)I, **1965 vs** *[Y-* (CO)], **1550** m [v(CO)], **1378 s, 1365** *s,* **1130 s, 996** m, **975** w, **15H,** CsMes), **1.70 (s,** 18H, o-t-Bu), **7.27** (d, 4JpH = **2.0** Hz, m -aryl-H). ¹³C{¹H} **NMR** (C₆D₆, 22 °C): δ 9.1 (d, ³ $J_{PC} = 5.3$ Hz , $\text{C}_5(\text{CH}_3)_5$, 30.9 **(s, p-C(CH₃)₃)**, 33.9 **(d, ⁴J**_{PC} = 2.0 Hz, o-C(CH3)3), **34.6** (d, *4Jpc* = **1.7** Hz, o-c(m3)3), **35.0 (S,** P- $C(CH_3)_3$, 39.1 **(s, o-C(CH₃)₃)**, 39.3 **(s, o-C(CH₃)₃)**, 97.5 **(s, C₅**-**585** W, **555** W, **505** W. 'H **NMR:** 6 **1.17** (s,gH,p-t-Bu), **1.29 (s,** (CH&), **122.7** s, **123.0 s, 129.0** *s,* **133.1** *s* br, **133.5** s br, **143** s br, **153.6** s, **153.8** *(s,* aryl-C), **159.7** (dd, *'Jpc* = **13,0.5 Hz,** C=N), **213.5 (m, CO), 213.7 (m, CO).** ¹⁹F{¹H} **NMR**: $\delta = -147.3$ m, -162.5 m, -163.6 m (C_6F_5). ${}^{31}P\{{}^{1}H\}$ NMR (-50 °C, toluene \mathcal{R} , \mathcal{R} **N**

II N **R'** b

'c' **'Mas***

They were stored under an inert atmosphere at ambient temperature without significant decomposition. The course of the reaction was monitored by 31P NMR spectroscopy. The low-field doublets of the educts **1** and **2** were replaced by two signals in the characteristic high-field region for three-membered rings. In **4b** two doublets were observed at δ -79.6 (P-Fe) and -158.7 $(P\text{-CSi})$ (¹ J_{PP} = 49.4 Hz). For **6**, resonances at δ -137.1 and -176.4 ($J_{AB} = -38.3$ Hz) were reported.⁶ In the spectra of **4a** and **Sa** the metalated phosphorus atoms show stronger couplings to fluorine $({}^{\overline{4}}J_{PF} = 13$ Hz) than the organically substituted ones **(4a, 5; Sa,** 4 Hz), suggesting that the CF_3 group is oriented toward the complex fragment.

The thermolability of **Sa** thwarted the registration of a useful 13C NMR spectrum. In the 13C NMR spectrum of **4a,b** resonances of the CNCFs-building block were not observed. From the IR spectra of $4a \left(\nu(CO) = 2003\right)$, 1974 cm⁻¹) and **4b** $(v(CO) = 2002, 1958$ cm⁻¹) it is evident that the iminodiphosphiranyl ligand in **4** is a less powerful donor than the iminophosphiranyl unit in $8 (v(CO) = 1985 - 1995$ and $1933 - 1948$ cm⁻¹).⁴ Bands of medium-strong intensity at $1599-1602$ cm⁻¹ are assigned to the ν (CN) stretch of the exocyclic iminofunction of **4a,b** and **5.**

In contrast to the situation in metallophosphaalkene ~hemistry,~ the metallodiphosphene **2** reacts with two molecules of the isocyanides **3b-d** in benzene or toluene solution to give the red crystalline 2,4-diimino-1,3 diphosphetanes **7b-d.** It was not possible to analogously convert &phosphene **1 into** the 2,4-diiminodiphosphetanes. When subjected even to large excesses of **3a** or **3b** compound **1** only adds one equivalent of isocyanide to afford **4a** or **4b,** respectively (Scheme 4).

At the beginning of the reaction between **2** and the isocyanides $3b-d$ the iminodiphosphiranes $5b$ $(\delta =$ -91.2 d; -178.7 d, $^{1}J_{PP} = 24.3$ Hz), 5c ($\delta = -94.0$ d; -175.9 d, $^{1}J_{PP} = 22.5$ Hz), and 5e ($\delta = -79.3$ m; -149.9 m) were detected by 31P NMR spectroscopy. The isolation of these compounds, however, failed.

From 31P NMR evidence (Table 1) it is clear that the four-membered rings **7b,c** were formed as a 2:l mixture of isomers. For **7d** a **6:l ratio** of isomers was determined. The isomers differ in the orientation of the substituents at the nitrogen atoms. In the major isomers A they possess an anti configuration. For the minor products B two possible syn configurations (B-1; B-2) are conceivable (Scheme **5).**

From **NMR** evidence anti configurations are assigned to the major isomers of *7b,* **7c,** and **7d.** Thus in the **'H** NMR spectrum of **7c** two singlets at δ 2.55 and 2.59 in

d₈): δ 96.5 (d, ²J_{PP} = 56 Hz, P-Fe_B), 79.9 (dt, ²J_{PP} = 73, ⁵J_{PF} = **44 Hz,** P-FeA), 13.4 (dquint, **2Jp~** = 56, 'JPF = 10 **Hz,** P-MeS*B), 1.0 (dtt, ${}^2J_{PP} = 73$, ${}^5J_{PF} = 31$ and 5 Hz, P-Mes^{*}_A); A:B $\simeq 6:1$. MS/EI: m/z 940 (M⁺), 498 (M⁺ - $2C_6F_6NC - 2CO$), 471 (Cp^{*}- $(CO)_2FePCNC_6F_5^+$, 415 $(Cp*FePCNC_6F_5^+)$, 276 (PMes*+), 193 $(C_6F_5NC^+), 135 (C_5Me_5^+), 57 (t-Bu^+).$ Anal. Calcd for $C_{44}H_{44}F_{10^-}$ $FeN₂O₂P₂$ (940.62): C, 56.15; H, 4.72; N, 2.98; Fe, 5.95. Found: C, 56.36; H, 4.89; N, 2.89; Fe, 5.96.

X-ray *Crystal* **Structure Determinations.** Suitable crystals of **4a** and **7c** were obtained by crystallization from n-pentane at -40 °C. The crystals were mounted ot the end of a glas fiber. Details on data collection and structure solution are summerized in Table 2. Data were reduced to structure factors by correction for Lorentz and polarization effects. The space groups $P2_1/n$ (No. 14) for **4a** and $P2_12_12_1$ (No. 19) for **7c** were uniquely defined by systematic absences. Empirical absorption corrections, DIFABS,¹⁵ were applied. The structures were solved by direct methods, SHEIXS 86.16 Successive, difference Fourier maps, and least-squares refinement cycles, SHEIX 76, revealed the position of all non-hydrogen atoms. Inversion of the atomic coordinates of **7c** on a leastsquares refinement with isotopic thermal parameters results in an increase if the *R* factor. SCHAKAL 88 was used for molecular drawings.17

Results and Discussion

The metallodiphosphenes $(\eta^5$ -C₅Me₅)(CO)₂FeP=PR (1; $R = C(SiMe₃)₃$, $R = 2,4,6-t-Bu₃C₆H₂=Me₃$ smoothly react with equimolar amounts of the isocyanides CF₃-NC **(3a)** and PhNC **(3b)** in *n*-pentane **(20** °C) to afford the red crystalline iminodiphosphiranes **4a,b** and **Sa.** The treatment of **1** with o-tolyl isocyanide **(3c)** under similar conditions led to decomposition (Scheme 3).

The air- and moisture-sensitive compounds **4a,b** and **5a** were isolated by crystallization from n-pentane.

⁽¹⁵⁾ Walker, **N.;** Stuart, D. *Acta Cytallogr. Sect.* **A 1963,39, 158. (16)** Sheldrick, **G.** M. SHEW **86,** A Program **for** Crystal Structure

Solution, Göttingen, 1986.

 (17) Keller, E. SC**HAKAL** 88, FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models, Freiburg, **1988.**

the ratio of **2:l** were observed for the methyl protons of the o-tolyl rings. Both resonances are caused by the major isomer **A.** The double intensity of the high-field singlet is due to the fortituous superposition with the singlet of the minor isomer **B-1** or B-2. The anti orientation of the major isomer of **7c** is underlined by an X-ray analysis.

In the ³¹P NMR spectrum the major product of **7d** displays a doublet of triplets at δ 79.9 ($^2J_{PP}$ = 73.0; $^5J_{PF}$ $= 44$ Hz) for the metalated phosphorus which reflects a PF coupling to the ortho fluorines of the one C_6F_5 ring which is oriented toward this phosphorus atom in the anti configuration. The arylated phosphorus center gives rise to a doublet of triplet of triplets at 6 **1.0 (2Jpp** $= 73, \, 5J_{PF} = 31; 5 Hz$, which reflects $5J_{PF}$ couplings to one Z-oriented and one E-oriented C_6F_5 group, respectively.

In the minor isomer the metalated phosphorus is observed as a doublet at δ 96.5 ($^2J_{\text{PP}} = 56$ Hz), whereas a doublet of quintets is attributed to the arylated phosphorus (δ 13.4, $^2J_{PP} = 56$, $^5J_{PF} = 10$ Hz). A coupling to four equivalent fluorines is only possible in the syn-B **2** geometry. By analogy it is conceivable that the major isomer of *7b* also possesses the anti geometry **A.** The assignment of the signals of the ring carbons in the 13C NMR spectra of **7b-7d** is not straightforward. This is not only due to the unsatisfactory solubility of the products in C_6D_6 but also to absorptions of aryl carbons in the respective region. In line with Becker's findings on the 2,4-diimino-1,3-diphosphetanes 9 and 10,^{8b 13}C signals at δ 157.9–159.7 were tentatively assigned to the ring carbons atoms (Scheme **6).**

The presence of the $Cp*(CO)_2Fe$ fragment in **7b-7d** is documented by two intense CO stretches at $\nu = 2000 -$ 2020 cm^{-1} and $\nu = 1958 - 1965 \text{ cm}^{-1}$. Two bands of medium to weak intensity in the range of **1550-1589** $cm⁻¹$ are attributed to the symmetric and antisymmetric C-N stretches of the **2,4-diimino-l,3-diphosphetanes.**

It is reasonable that the formation of the iminodiphosphiranes is initiated by the electrophilic attack of the metalated phosphorus at the carbene-like carbon atom of the isocyanide. The attack of the negatively polarized carbon atom of the isocyanide fragment at the positively polarized arylphosphorus center in the intermediate **I** leads to compounds **4** and **5.** The ring

Figure 1. SCHAKAL plot of the molecular structure of **4a** in the crystal.

expansion from iminodiphosphiranes to **2,4-diimino-1,3** diphosphetanes resulted from the electrophilic attack of the carbon atom of the isocyanide at the metalated phosphorus in **4** or **5.** Carbon attack at the arylated phosphorus and cleavage of the $P-P$ bond of intermediate **I1** afforded compounds **7** (Scheme **7).**

The reaction of 2 with an excess of $CF₃NC$ in *n*pentane gave rise to the precipitation of transparent orange platelets. Spectroscopic evidence agreed with an **1:2** adduct. MS: *mle* **744** (M+). 31P NMR: 6 **110.0** (dq, $^{1}J_{PP} = 142, \, ^{4}J_{PF} = 20$ Hz, PFe), 136.5 (d, $^{1}J_{PP} = 142$ Hz , P-aryl). ¹⁹F-NMR: δ -52.6 (d, ⁴J_{PF} = 22 Hz , CF₃), **-56.6** (s, CF3). IR (Nujol): **2012** vs, **1970** vs [v(CO)I, 1630 s $[\nu(CN)]$, cm⁻¹. Purification and a full characterization of this product, however, was not possible as yet.

X-ray Structure Analysis of 4a. An X-ray structure analysis was necessary to unambigiously determine the stereochemistry of the iminodiphosphiranes. Single crystals of **4a** were grown from *n*-pentane at -40 °C. The results of the structural determinations are shown in Figure **1.** Positional parameters for the complex are given in Table **3,** and selected distances and angles are presented in Table **4.** The analysis confirms the presence of an iminodiphosphirane system linked to the metal by an Fe-P single bond **(2.303(1) A),** which is lengthened as compared to the corresponding bond length in **1 (2.261(3) A),** but compares will with the Fe-P distance in 11 $[2.310(1)$ Å¹⁸ Usually Fe-P bond distances in low-valent carbonyl iron complexes fall in the range $2.11-2.37 \text{ Å}^{19}$ The organophosphorus ligand could be regarded as one leg in a distorted three-legged

Table 3. Final Positional Parameters and Equivalent Temperature Factors (\hat{A}^2) **for 4a**

atom	x	y	z	$B_{\rm eq}$
Fe(1)	0.1089(1)	0.1365(0)	0.9563(0)	2.97
C(10)	0.1682(11)	0.0463(4)	0.9438(3)	5.01
O(1)	0.2117(9)	$-0.0129(3)$	0.9371(2)	8.23
C(20)	$-0.0869(11)$	0.1154(5)	0.9465(3)	6.03
O(2)	$-0.2150(8)$	0.1007(4)	0.9414(3)	9.33
P(1)	0.0751(2)	0.1622(1)	0.8458(1)	2.25
P(2)	0.0036(2)	0.0572(1)	0.7899(1)	2.34
Si(1)	$-0.1466(2)$	0.0183(1)	0.6529(1)	3.30
C(11)	$-0.1147(9)$	$-0.0341(5)$	0.5791(3)	6.36
C(12)	$-0.2442(8)$	$-0.0458(4)$	0.7012(3)	4.35
C(13)	$-0.2917(8)$	0.0920(4)	0.6226(3)	5.04
Si(2)	0.0926(2)	0.1512(1)	0.6703(1)	3.46
C(21)	$-0.0300(9)$	0.2325(4)	0.6818(3)	4.58
C(22)	0.0797(10)	0.1440(5)	0.5789(3)	6.18
C(23)	0.2934(8)	0.1803(4)	0.7070(3)	4.66
Si(3)	0.2063(2)	$-0.0112(1)$	0.7129(1)	3.73
C(31)	0.3631(8)	0.0119(5)	0.7854(4)	5.38
C(32)	0.1442(10)	$-0.1075(4)$	0.7281(4)	6.14
C(33)	0.2953(10)	$-0.0139(5)$	0.6390(4)	6.69
C(1)	$-0.1133(7)$	0.1354(3)	0.8027(3)	2.68
N(1)	$-0.2532(7)$	0.1539(3)	0.7834(3)	4.80
C(2)	$-0.3021(12)$	0.2225(7)	0.8065(6)	8.12
F(1)	$-0.4207(8)$	0.2101(4)	0.8344(3)	12.39
F(2)	$-0.3595(7)$	0.2659(3)	0.7536(4)	9.68
F(3)	$-0.2049(7)$	0.2596(4)	0.8477(4)	15.34
C(3)	0.0391(6)	0.0583(3)	0.7043(2)	2.29
C(1R)	0.2711(15)	0.2249(6)	0.9741(4)	7.23
C(2R)	0.1381(14)	0.2482(4)	0.9877(3)	5.83
C(3R)	0.0994(8)	0.2046(4)	1.0371(3)	3.78
C(4R)	0.2129(8)	0.1499(3)	1.0549(3)	3.02
C(5R)	0.3224(8)	0.1637(5)	1.0144(4)	4.91
C(1M)	0.3592(18)	0.2599(8)	0.9277(5)	18.78
C(2M)	0.0539(20)	0.3162(4)	0.9556(6)	16.56
C(3M)	$-0.0371(11)$	0.2155(8)	1.0696(6)	11.74
C(4M)	0.2234(14)	0.0951(4)	1.1098(3)	7.67
C(5M)	0.4729(11)	0.1236(7)	1.0210(8)	14.95
т.ьь. 1	Balaatad Tnt	smia Diato	\sim λ and	A nolon

Table 4. Selected Interatomic Distances (A) and Angles (deg) for 4a

piano stool arrangement. The three angles the ligands form with the metal center are $C(10)-Fe-C(20) = 95.8$ -(4)°, $C(10)-Fe-P(1) = 91.3(2)$ °, and $C(20)-Fe-P(1) =$

Figure 2. SCHAKAL plot **of** the molecular structure of **7c** in the crystal.

89.1 $(2)^\circ$. Two legs of the piano stool are represented by terminal, nearly linear carbonyl groups.

The most interesting feature of **4a** is the geometry of the iminodiphosphirane unit. In the P_2C triangle the $P(1)-P(2)$ distance $(2.232(2)$ Å) is expectedly longer than the P-C distances $[P(1)-C(1) = 1.801(6)$ Å; $P(2)-C(1)$ $= 1.783(6)$ Å]. This causes a widening of the angle $P(1)-C(1)-P(2)$ to 77.1(3)°, whereas the endocyclic angles at the phosphorus atoms are compressed to 51.1- (2)" and 51.8(2)". **A** similar situation was encountered in 11^{18} and in the tetraphospha[2.2]spiropentane (*t*- $BuP₂C(t-BuP)₂$ (12).²⁰ There, however, the P-P single bond is considerably shortened **(11,** 2.206(2) A; **12,** 2.175(2) A) as compared to **4a. A** value of 2.225 A represents an average phosphorus-phosphorus single

Scheme *8*

bond distance of numerous structures.²¹ The endocyclic P-C bonds $(P(1)-C(1) = 1.801(6)$ Å; $P(2)-P(1) = 1.783 (6)$ Å) are markedly shorter than the exocyclic distance $P(2)$ -C(3) [1.860(5) Å]. The exocyclic angles at $P(1)$ $[Fe-P(1)-C(1) = 112.3(2)$ °; $Fe-P(1)-P(2) = 108.8(1)$ °] and at P(2) $[P(1)-P(2)-C(3) = 114.0(2)$ °; C(1)-P(2)- $C(3) = 109.8(2)°$] indicate a slight ψ -tetrahedral distortion. In the starting material 1 the atoms Fe, P(1), P(2), and C(3) are located in the same plane. This is no longer true for **4a,** where C(3) deviates from the plane of the remaining atoms by $-0.61(1)$ Å (torsion angle Fe- $P(1)-P(2)-C(3) = -159.2(2)°$.

The planar ring carbon atom (sum of angles 359.9") is linked to the exocyclic nitrogen atom by a $C=N$ double bond of $1.270(8)$ Å. The corresponding value in **8**

⁽¹⁸⁾ Weber, L.; Lücke, E.; Boese, R. Organometallics 1988, 7, 978.

(19) (a) Knoll, K.; Huttner, G.; Wasiucionek, M.; Zsolnai, L. Angew.

Chem. 1984, 96, 708; Angew. Chem., Int. Ed. Engl. 1984, 23, 739. (b)

Lal De, R.; V R.; Rheingold, A. L. *J. Am. Chem.* Soc. **1985,107, 729.** *(0* Weber, L.; Frebel, M.; Boese, R. *New J. Chem.* **1989, 13, 303. (20)** Tebbe, K-F.; Heinlein, T.; FehBr, M. *Z. Kristallogr.* **1985,172,**

^{89.}

⁽²¹⁾ Tebbe, K.-F. Z. Anorg. Allg. Chem. 1980, 468, 202 and literature cited herein.

Table **5.** Final Positional Parameters and Equivalent Temperature Factors **(A2)** for 7c

atom	x	у	z	$B_{\rm eq}$
Fe(1)	0.0461(1)	0.7932(1)	0.5547(1)	3.35
P(1)	0.0910(2)	0.6673(1)	0.5659(1)	3.46
P(2)	-0.0093(1)	0.5438(1)	0.5197(1)	2.98
C(1C)	0.1059(9)	0.8851(7)	0.4940(7)	5.66
C(2C)	0.1715(7)	0.8344(6)	0.5226(8)	5.13
C(3C)	0.1609(8)	0.8359(6)	0.6072(7)	5.29
C(4C)	0.0938(8)	0.8844(6)	0.6282(8)	5.40
C(5C)	0.0581(7)	0.9154(5)	0.5565(10)	6.22
C(1CM)	0.0942(14)	0.9076(13)	0.4079(10)	14.20
C(2CM)	0.2405(8)	0.7923(8)	0.4778(9)	8.48
C(3CM)	0.2204(11)	0.7980(9)	0.6647(9)	10.68
C(4CM)	0.0676(12)	0.9060(10)	0.7065(9)	10.44
C(5CM)	0.0159(11)	0.9762(7)	0.5469(16)	13.24
C(1)	0.0736(6)	0.6069(5)	0.4787(5)	3.46
N(1)	0.1107(6)	0.6173(4)	0.4124(5)	4.59
C(1T)	0.0980(8)	0.5641(5)	0.3504(5)	4.44
C(2T)	0.0161(7)	0.5354(6)	0.3319(5)	4.46
C(3T)	0.0079(8)	0.4795(7)	0.2726(6)	5.62
C(4T)	0.0757(9)	0.4552(7)	0.2329(7)	6.31
C(5T)	0.1641(9)	0.4826(6)	0.2498(6)	6.22
C(6T)	0.1738(8)	0.5409(6)	0.3100(6)	5.38
C(7T)	0.2617(8)	0.5757(9)	0.3273(7)	8.42
C(2)	0.0180(6)	0.5929(5)	0.6106(5)	3.40
N(2)	0.0125(5)	0.5779(4)	0.6779(4)	4.15
C(8T)	0.0143(9)	0.6234(5)	0.7439(6)	4.97
C(9T)	$-0.0503(10)$	0.6467(6)	0.7972(6)	6.06
C(10T)	-0.0259(16)	0.6888(8)	0.8627(7)	9.86
C(11T)	0.0673(14)	0.7025(9)	0.8801(9)	8.68
C(12T)	0.1230(11)	0.6772(9)	0.8297(8)	8.08
C(13T)	0.1012(9)	0.6366(7)	0.7599(7)	6.07
C(14T)	–0.1462(9)	0.6301(9)	0.7794(8)	8.04
C(1S)	$-0.0010(6)$	0.4378(4)	0.5039(5)	3.13
C(2S)	0.0775(5)	0.3949(5)	0.4968(5)	3.19
C(3S)	0.0778(6)	0.3290(5)	0.4461(6)	3.74
C(4S)	0.0037(6)	0.3034(5)	0.4074(5)	3.75
C(5S)	-0.0752(6)	0.3364(5)	0.4305(5)	3.55
C(6S)	$-0.0783(5)$	0.4029(5)	0.4783(5)	3.02
C(1B)	0.1630(6)	0.4091(5)	0.5443(7)	4.70
C(2B)	0.2125(9)	0.3338(7)	0.5521(11)	10.32
C(3B)	0.2214(9)	0.4713(9)	0.5081(12)	10.83
C(4B)	0.1375(12)	0.4331(14)	0.6283(9)	14.43
C(5B)	0.0068(7)	0.2337(5)	0.3503(5)	4.40
C(6B)	$-0.0080(10)$	0.1590(6)	0.3945(8)	7.43
C(7B)	0.0959(9)	0.2263(8)	0.3118(8)	7.91
C(8B)	$-0.0619(9)$	0.2443(8)	0.2892(7)	7.71
C(9B)		0.4332(5)	0.5006(6)	3.72
C(10B)	$-0.1717(5)$ $-0.2051(7)$	0.4941(6)	0.4434(8)	6.07
				6.07
C(11B) C(12B)	$-0.1731(7)$ $-0.2365(7)$	0.4659(7) 0.3628(7)	0.5845(7) 0.4985(8)	6.44
			0.4715(7)	5.33
C(10) C(20)	$-0.0117(8)$ $-0.0422(8)$	0.7679(6) 0.7790(5)	0.6191(7)	5.26
	$-0.0511(7)$	0.7552(5)	0.4136(6)	8.19
O(1)			0.6594(6)	7.85
O(2)	$-0.1011(6)$	0.7711(5)		

amounts to 1.273(7) **A.4** The N atom is arranged in the same plane as the ring atoms, which is also given for the carbon atom $C(2)$ of the CF_3 substituent. The latter is directed to the metal complex fragment. Similarly in 8 the N-phenyl group points to the $Cp^*(CO)_2Fe$ moiety. In both ring systems the angles at the nitrogens compare well **[4a,** 117.3(6)"; **8,** 117.9(6)"1.

X-ray Structure Analysis of *7c. An* X-ray structure determination of **7c** was carried out in order to get some insight into the nature of the two spectroscopically observed isomers. Single crystals suitable **for** the analysis were grown from *n*-pentane at -40 °C. The analysis features a planar 1,3-diphosphetane ring with the $(\eta^5$ -C₅Me₅)(CO)₂Fe fragment at P(1) and the super-

Table *6.* Selected Interatomic Distances **(A)** and Angles (d_{00}) for $7c$

(0.2) IVI ℓ						
Bond Distances						
$Fe(1)-C(1C)$	2.10(1)	$C(1C) - C(2C)$	1.42(2)			
$Fe(1)-C(10)$	1.74(1)	$C(1C) - C(5C)$	1.40(2)			
$Fe(1)-C(2C)$	2.13(1)	$C(1T) - N(1)$	1.41(1)			
$Fe(1)-C(20)$	1.77(1)	$C(10)-O(1)$	1.18(1)			
$Fe(1)-C(3C)$	2.12(1)	$C(1S)-P(2)$	1.835(7)			
$Fe(1)-C(4C)$	2.14(1)	$C(2C) - C(3C)$	1.46(1)			
$Fe(1)-C(5C)$	2.095(9)	$C(20)-O(2)$	1.15(1)			
$Fe(1) - P(1)$	2.269(2)	$C(3C) - C(4C)$	1.37(2)			
$C(1)-N(1)$	1.29(1)	$C(4C) - C(5C)$	1.45(2)			
$C(1)-P(1)$	1.837(9)	$C(8T) - N(2)$	1.44(1)			
$C(1)-P(2)$	1.814(9)					
$C(2)-N(2)$	1.27(1)					
$C(2)-P(1)$	1.863(9)					
$C(2)-P(2)$	1.821(9)					
		Bond Angles				
$P(1)$ -Fe (1) -C (10)	89.4(4)	$C(10)-Fe(1)-C(20)$	94.8(5)			
$P(1) - Fe(1) - C(20)$	93.0(3)	$Fe(1)-P(1)-C(1)$	114.8(3)			
$P(1)-C(2)-P(2)$	95.8(4)	$Fe(1)-P(1)-C(2)$	119.8(3)			
$P(1)-C(2)-N(2)$	137.3(7)	$C(1)-P(1)-C(2)$	82.2(4)			
$P(2)-C(2)-N(2)$	126.8(7)	$C(1)-P(2)-C(2)$	84.0(4)			
$C(2)-N(2)-C(8T)$	120.0(8)	$C(1)-P(2)-C(1S)$	118.7(4)			
$P(1) - C(1) - P(2)$	97.0(4)	$C(2)-P(2)-C(1S)$	124.4(4)			
$P(1) - C(1) - N(1)$	125.3(7)	$Fe(1)-C(10)-O(1)$	176(1)			
$P(2)-C(1)-N(1)$	137.6(7)	$Fe(1)-C(20)-O(2)$	178(1)			
$C(1)-N(1)-C(1T)$	121.0(8)					

mesityl substituent at $P(2)$ in the trans position. The nitrogen atoms $N(1)$ and $N(2)$ as well as the ipso carbon atoms C1T and C8T are also located in the plane defined by the atoms $P(1)$, $C(1)$, and $C(2)$. The exocyclic C=N double bonds $(1.29(1)$ and $1.27(1)$ Å) are well matching the sum of the covalent radii of sp2-hybridized C (0.66 A) and N (0.60 A). The o-tolyl substituents are *E*oriented with angles $C(1)-N(1)-C1T$ and $C(2)-N(2)-$ C8T of $121.0(8)^\circ$ and $120.0(8)^\circ$, respectively. The endocyclic PC bond distances of $(1.814(9)-1.863(9)$ Å) closely resemble those found in **9** (1.838-1.862 A) and 10 $(1.828(2)-1.852(2)$ Å $).$ ^{8b} The average P-C single bond determined from a number of structures is 1.85 \AA ²¹

The endocyclic angles at the phosphorus atoms are markedly more acute $(82.2(4)-84.0(4)°)$ in respect to the angles at the $C(1)$ (97.0(4)°) and $C(2)$ (95.8(4)°). In 9 and **10** the corresponding angles are 82' and 98" and 81° and 99°, respectively.^{8b} The exocyclic angles at $P(2)$ $[C(1S)-P(2)-C(1) = 118.7(4)$ °; $C(1S)-P(2)-C(2) = 124.4$ $(4)^\circ$ are more obtuse than the corresponding exocyclic angles at P(1) $[Fe-P(1)-C(1) = 114.8^{\circ}$ and $Fe-P(1) C(2) = 119.8(3)$ ^o], which reflects the increased steric demand of the supermesityl group as compared to the $Cp*(CO)_2$ Fe fragment. The exocyclic angles $P(2)-C(1) N(1)$ [137.6(7)^o] and P(1)-C(2)-N(2) [137.3(7)^o] are considerably widened as compared to the exocyclic angles $P(1) - C(1) - N(1)$ [125.3(7)°] and $P(2) - C(2) - N(2)$ $[126.8(7)$ ^o], which is presumably due to steric interactions between the phosphorus atoms and the o-tolyl rings.

Supplementary Material Available: Crystallographic data and **ORTEP** diagrams for **7c** and **4a** (20 pages). Ordering information is given on any current masthead page.

OM940399Y