4469

New Early Transition Metal Porphyrins: A New Route to **Diorgano Complexes of Zirconium and Hafnium and the Preparation of Cationic Derivatives**

Holger Brand, Joseph A. Capriotti, and John Arnold*

Department of Chemistry, University of California, Berkeley, California 94720

Received June 29, 1994[®]

The group 4 metal dialkyl chlorides $(Me_3SiCH_2)_2MCl_2(Et_2O)_2$ (M = Zr, Hf) are prepared from stoichiometric amounts of alkyllithium and metal chlorides. Reaction with dilithium porphyrinates affords $(P)M(CH_2SiMe_3)_2$ derivatives [P = dianion of p-tetratolylporphyrin(TTP), dianion of octaethylporphyrin (OEP)] in good yields. Cis-ligation in these out-ofplane derivatives can be inferred from ¹H NMR and ¹³C NMR data. Protonolysis of the OEP derivatives with 1 equiv of [HNMe₂Ph][BPh₄] generates the cationic species [(OEP)M(CH₂-SiMe₃)][BPh₄], whereas the TTP analogs remain unreactive under similar conditions. Preliminary reactivity studies show that these novel cationic compounds are unreactive toward ethylene.

Introduction

The recent interest in early transition metal porphyrins has in part been sparked by the realization that the out-of-plane nature of these derivatives induces cisligation of the attendant ligands, with resulting reactivities quite unlike those of the later transition metal porphyrins.^{1,2} Entry into organometallic derivatives is usually found by alkylating the corresponding metalloporphyrin halides. However, recently we reported a facile, one-pot synthesis of a highly functionalized organometallic porphyrin compound by reacting Me₃- $TaCl_{2}^{3}$ with $Li_{2}(OEP)(THF)_{n}$ to afford (OEP)TaMe₃ in excellent yield.⁴ Since the zirconium alkyl halides (Me₃-CCH₂)₂ZrCl₂(Et₂O)₂⁵ and (Me₃SiCH₂)₂ZrCl₂⁶ and others⁷ are known we extended this methodology to group 4 porphyrin compounds. Here we report the preparation of $(P)M(CH_2SiMe_3)_2$ derivatives [P = dianion of ptetratolylporphyrin (TTP), dianion of octaethylporphyrin (OEP)]. Furthermore, we describe the generation of some cationic porphyrin species and attempted reactions with alkenes.

Results and Discussion

Reaction of $(Me_3CCH_2)_2ZrCl_2(Et_2O)_2$ with $Li_2(OEP)$ - $(THF)_n$ does not afford $(OEP)Zr(CH_2CMe_3)_2$, nor does the interaction of $LiCH_2CMe_3$ or $Mg(CH_2CMe_3)_2$ with (OEP)ZrCl₂^{2b,d} yield the desired dialkyl. Since (OEP)-Zr(CH₂CMe₃)₂ might be inherently unstable we decided to investigate a new entry into the known (OEP)Zr(CH₂-SiMe₃)₂.^{2b,d}

 $(Me_3SiCH_2)_2ZrCl_2^6$ had been generated in situ from the stoichiometric interaction of $(Me_3SiCH_2)_4Zr$ and ZrCl₄. In order to isolate this compound we use the methodology reported by Schrock for the preparation of (Me₃CCH₂)₂ZrCl₂(Et₂O)₂ (eq 1).⁵

$$\operatorname{ZrCl}_{4} + n\operatorname{LiCH}_{2}\operatorname{SiMe}_{3} \xrightarrow{\operatorname{Et}_{2}O/\operatorname{pentane}} (\operatorname{Me}_{3}\operatorname{SiCH}_{2})_{n}\operatorname{ZrCl}_{4-n}(\operatorname{Et}_{2}O)_{2} (1)$$

(Me₃SiCH₂)₂ZrCl₂(Et₂O)₂ and (Me₃SiCH₂)ZrCl₃(Et₂O)₂ are isolated as slightly yellow, viscous oils in good yields. Attempts to prepare crystalline derivatives by addition of THF, DME, PMe₃, PMe₂Ph, or TMEDA were unsuccessful. The ¹H NMR spectrum for (Me₃SiCH₂)₂ZrCl₂- $(Et_2O)_2$ displays broad signals at 3.22, 2.25, 0.96, and 0.32 ppm with the relative intensities 8:4:12:18. By analogy to $(Me_3CCH_2)_2ZrCl_2(Et_2O)_2$, the first and third signals are assigned to the diethyl ether hydrogens and the remaining two to the silylmethylene and -methyl hydrogens, respectively. Protonolysis with MeOH affords Et₂O and SiMe₄ in a ratio of 1:1. A similar spectrum is obtained for (Me₃SiCH₂)ZrCl₃(Et₂O)₂; however, the silvlmethylene signals are shifted significantly downfield, as expected when considering the more electropositive character of the central metal in (Me₃- $SiCH_2$ / $ZrCl_3(Et_2O)_2$ vs (Me₃SiCH₂)₂ $ZrCl_2(Et_2O)_2$. A similar downfield shift for the SiCH₂ resonance has been observed for (Me₃SiCH₂)TiCl₃ vs (Me₃SiCH₂)₂TiCl₂.⁸ A ratio of 1:2 for the silyl and diethyl ether moieties was observed by integration of the corresponding signals before and after protonolysis with methanol.

Reaction of (Me₃SiCH₂)₂ZrCl₂(Et₂O)₂ with 1 equiv of $Li_2(OEP)(THF)_n$ affords $(OEP)Zr(CH_2SiMe_3)_2$ in excel-

^{*} Abstract published in Advance ACS Abstracts, October 1, 1994.

Brand, H.; Arnold, J. J. Coord. Chem. Rev., in press.
 (2) (a) Arnold, J.; Hoffman, C. G. J. Am. Chem. Soc. 1990, 112, 8620. (b) Brand, H.; Arnold, J. J. Am. Chem. Soc. 1992, 114, 2266. (c) Arnold, J.; Johnson, S. E.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992, 114, 3996. (d) Brand, H.; Arnold, J. Organometallics 1993, 12, 3655. (e) Arnold, J.; Hoffman, C. G.; Dawson, D. Y.; Hollander, F. 12, 3655. (e) Arnold, J.; Hoffman, C. G.; Dawson, D. Y.; Hollander, F.
 J. Organometallics 1993, 12, 3645. (f) Kim, H.-J.; Whang, D.; Kim,
 K.; Do, Y. Inorg. Chem. 1993, 32, 360. (g) Ryu, S.; Whang, D.; Kim,
 H.-J.; Yeo, W.; Kim, K. J. Chem. Soc., Dalton Trans. 1993, 205. (h)
 Kim, H.-J.; Whang, D.; Do, Y.; Kim, K. Chem. Lett. 1993, 807. (i)
 Brand, H.; Arnold, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 95.
 (3) Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. 1978, 100, 2389.
 (4) Dewson, D.Y. Brond, H.; Arnold, H.; A

⁽⁴⁾ Dawson, D. Y.; Brand, H.; Arnold, J. J. Am. Chem. Soc., in press.
(5) Wengrovius, J. H.; Schrock, R. R. J. Organomet. Chem. 1981,

^{205, 319.} (6) Middleton, A. R.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1980, 1888.

⁽⁷⁾ Cardin, D. J.; Lappert, M. F.; Raston, C. L. Chemistry of Organo-Zirconium and Organo-Hafnium Compounds; John Wiley: New York, 1986.

⁽⁸⁾ Beilin, S. I.; Bondarenko, G. N.; Vdovin, V. M.; Dolgoplosk, B. A.; Markevich, I. N.; Nametkin, N. S.; Poletaev, V. A.; Svergun, V. I.; Sergeeva, M. B. Dokl. Akad. Nauk SSSR 1974, 218, 1347.

Figure 1. ¹³C NMR spectra of (TTP)Zr(CH₂SiMe₃)₂ in CDCl₃ at 25 °C (bottom) and -10 °C (top).

lent yield after workup. Following the reaction in CD₂- Cl_2 by ¹H NMR spectroscopy showed product formation within 10 min at room temperature and no generation of side products. For the following large scale reactions, $(Me_3SiCH_2)_2MCl_2(Et_2O)_2$ (M = Zr, Hf) was generated in situ from 2 equiv of $LiCH_2SiMe_3$ and MCl_4 as described above or from equimolar amounts of M(CH₂SiMe₃)₄ and MCl₄ as reported by Wilkinson.⁶ In general, Li₂(OEP)- $(THF)_n$ or $Li_2(TTP)(Et_2O)_2$ was stirred with 1.2 equiv of $(Me_3SiCH_2)_2MCl_2(Et_2O)_2$ in solvents such as methylene chloride, toluene, or diethyl ether, and the pure product was isolated by crystallization (eq 2).

$$\label{eq:product} \begin{split} P = OEP, \, solv = THF; \, P = TTP, \, solv = Et_2O; \\ M = Zr, \, Hf \end{split}$$

All the compounds were isolated in good to excellent yields and were fully characterized by ¹H NMR, ¹³C NMR, UV/vis spectroscopy, mass spectrometry, and elemental analysis. The out-of-plane nature of these derivatives is easily detected by inspecting their ¹H NMR spectra. A complicated multiplet is seen for the diastereotopic octaethylporphyrin methylene hydrogens,9 and four signals are observed for the TTP-tolyl ortho- and meta-hydrogens indicating inequivalence of the two porphyrin sides.¹⁰ The ¹³C NMR spectra of the (TTP)M(CH₂SiMe₃)₂ derivatives shows only broad resonances for the ortho- and meso-carbons at room temperature. Similar results were reported for metal

porphyrin compounds with two different trans-ligands.¹¹ The signals, however, resolve to two doublets upon cooling to -10 °C (Figure 1). An upfield shift of about 0.6 ppm is observed in the ¹H NMR spectrum of the Hf derivatives relative to the Zr compounds. The same magnitude of upfield shifts is observed for group 4 metallocene as well as for homoleptic (trimethylsilyl)methyl derivatives upon substituting Hf vs Zr and is no doubt due to the lower electronegativity of Hf.^{12,13}

In attempts to use a similar methodology in order to prepare (P)M(CH₂SiMe₃)Cl derivatives, reaction of $Li_2(OEP)(THF)_n$ with 1 equiv of $(Me_3SiCH_2)ZrCl_3(Et_2O)_2$ gave only the dialkyl compound. Monitoring this reaction by ¹H NMR spectroscopy in CD₂Cl₂ shows formation of $(OEP)Zr(CH_2SiMe_3)_2$ and an unidentified porphyrin product, but no (OEP)Zr(CH₂SiMe₃)Cl.

Due to their significance in alkene polymerization processes, cationic d⁰ transition metal compounds have been subject to intense research efforts.¹⁴ Recently, Jordan and co-workers isolated a number of cationic derivatives of zirconium and hafnium tetraazamacrocycles and showed them to undergo insertion of alkynes into the M-C bonds.¹⁵ We have reported insertion of small molecules such as CO, CO_2 , and acetone into Zr-C^{2d} and insertion of alkenes into Zr-H bonds^{2b} of OEP dialkyl derivatives. Furthermore, in the case of orga-

⁽⁹⁾ Busby, C. A.; Dolphin, D. J. Magn. Res. 1976, 23, 211.

⁽¹⁰⁾ Eaton, S. S.; Eaton, G. R. J. Chem. Soc., Chem. Commun. 1974, 576

^{(11) (}a) Abraham, R. J.; Hawkes, G. E.; Smith, K. M. J. Chem. Soc., Perkin Trans. 2 1974, 627. (b) Abraham, R. J.; Hawkes, G. E.; Hudson,

M. F.; Smith, K. M. J. Chem. Soc., Perkin Trans. 2 1975, 204. (12) Collier, M. R.; Lappert, M. F.; Pearce, R. J. Chem. Soc., Dalton

⁽¹²⁾ Collier, M. R.; Lappert, M. F.; Pearce, R. J. Chem. Soc., Datton Trans. 1973, 445.
(13) Jeffery, J.; Lappert, M. F.; Luong-Thi, N. T.; Webb, M.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1981, 1593.
(14) (a) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (b) Hlatky, G. G.; Eckman, R. R.; Turner, H. W. Organometallics 1992, 11, 1413. (c) Bochmann, M.; Lancaster, S. J. Organometallics 1993.

^{12, 633. (}d) Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10, 840.

⁽¹⁵⁾ Uhrhammer, R.; Black, D. G.; Gardener, T.; Olsen, J. D.; Jordan, R. F. J. Am. Chem. Soc. 1993, 115, 8493.

Figure 2. ¹H NMR spectrum of [(OEP)Zr(CH₂SiMe₃)][BPh₄] generated in situ in CD₂Cl₂. A small amount of (OEP)Zr(CH₂- $SiMe_3)_2$ is still present.

nometallic (OEP)Ta compounds, protonolysis routes allowed the formation of the cationic derivatives [(OEP)-TaMe₂][BPh₄] and [(OEP)Ta(Me)(O^tBu)][BPh₄].⁴ These studies prompted us to find entry into cationic group 4 porphyrin derivatives and to investigate their reactivities toward alkenes.

Reaction of (OEP)Zr(CH₂SiMe₃)₂ with 1 equiv of [HNMe₂Ph][BPh₄]¹⁶ or [HNEt₂CH₂Ph][BPh₄]¹⁶ in CH₂-Cl₂ results in a slight color change to dark red. Attempts to generate crystalline material from a variety of solvents, however, failed. An oil, which turns into a foamy solid upon long exposure to vacuum, was isolated and identified as [(OEP)Zr(CH₂SiMe₃)][BPh₄] by ¹H NMR spectroscopy (eq 3).

$$(OEP)M(CH_{2}SiMe_{3})_{2} + [HNMe_{2}Ph][BPh_{4}] \rightarrow \\ [(OEP)Zr(CH_{2}SiMe_{3})][BPh_{4}] + SiMe_{4} + NMe_{2}Ph$$
(3)

$$M = Zr, Hf$$

Monitoring the protonolysis of $(OEP)Zr(CH_2SiMe_3)_2$ by ¹H NMR spectroscopy in CD₂Cl₂ shows quantitative formation of [(OEP)Zr(CH₂SiMe₃)][BPh₄], 1 equiv of SiMe₄, and free NMe₂Ph. The resonances for the methine hydrogens are shifted downfield from 10.54 to 11.01 ppm, in accordance with the presence of a positive charge. The methylene and methyl resonances of the alkyl ligands are shifted from -4.44 and -1.62 to -4.32 and -2.30 ppm (Figure 2). Two effects, acting in opposite directions, are responsible for these shifts. The alkyl ligand in the five-coordinate cationic derivative, being closer to center of the porphyrin ring, experiences increased ring anisotropy resulting in an upfield shift.¹⁷ The positive charge of the central metal induces a

downfield shift, however, which should be strongest for the methylene resonances. Addition of a slight excess of pyridine moves the resonances to 10.73, -2.25, and -4.84 ppm. However, we were not able to isolate crystalline base adducts with bases such as THF, pyridine, tert-butylpyridine, or PMe3. Treatment of [(OEP)Zr(CH₂SiMe₃)][BPh₄] with a slight excess of $LiCH_2SiMe_3$ in C_6D_6 regenerates the dialkyl precursor, therefore confirming our assignment. [(OEP)Hf(CH₂-SiMe₃)][BPh₄] can be formed similarly, but both TTP dialkyl derivatives are unreactive under these conditions. The cationic compounds are stable for days in CD_2Cl_2 , and surprisingly even in $CDCl_3$.

[(OEP)Zr(CH₂SiMe₃)][BPh₄] is unreactive toward ethylene (2-3 atm) in CD_2Cl_2 nor does any reaction occur when the cationic species are generated in situ in CD₂- Cl_2 or C_7D_8 . Attempted larger scale reactions of the cationic compound with ethylene were also unsuccessful.

Summary and Conclusions

Organometallic group 4 porphyrins can be prepared directly from dilithium porphyrinates and dialkyl metal halides in a one-pot synthesis in good yields. NMR studies show that the Zr is displaced out of the porphyrin plane with attendant ligands cis to each other. Cationic octaethylporphyrin derivatives are accessible via protonolysis routes; however, isolation of the products in crystalline form has proven difficult so far. From preliminary reactivity studies it is apparent that, unlike their metallocene analogs, cationic group 4 porphyrins are unreactive toward ethylene insertion. This contrasts with the facile insertion of small molecules into the Zr-C and Zr-H bonds of cis-ligated zirconium porphyrins. We have noted previously elongation of Zr-C bonds in these *cis*-dialkyl derivatives relative to their metallocene counterparts, which we ascribed to the steric demand imposed by the bulky porphyrin ring. In

⁽¹⁶⁾ Crane, F. E. J. Anal. Chem. 1956, 28, 1794.

⁽¹⁷⁾ Jenson, T. R.; Katz, J. J. In *The Porphyrins*; Dolphin, D., Ed.; New York, 1978; Vol. 4.

the absence of structural data we can only speculate that the relief in steric strain by going from a sixcoordinate to a five-coordinate metalloporphyrin renders the Zr-C bonds less reactive in comparison to the metallocene analogs. On the other hand, back donation from the porphyrin ring to the transition metal might also be responsible for the decreased reactivity. Work toward the isolation of crystalline cationic octaethylporphyrin derivatives is in progress.

Experimental Section

General Considerations. Inert atmosphere glovebox and Schlenk-line techniques were used throughout the preparative procedures.¹⁸ NMR tube experiments were performed either in flame-sealed or Teflon-stoppered NMR tubes, unless stated otherwise. Diethyl ether, hexanes, benzene, pentane, and toluene were all predried over 4 Å moleculer sieves and, with the exception of toluene, were all distilled from purple sodium/ benzophenone under N₂. Toluene was distilled from sodium under N₂. Dichloromethane was predried over 4 Å moleculer sieves, degassed by three freeze, pump, and thaw cycles, and distilled from calcium hydride under N₂. All NMR solvents were dried like their undeuterated counterparts, but were purified by vacuum transfer, then passed through activated alumina.

 $ZrCl_4$ and $HfCl_4$ were obtained from commercial sources and were sublimed before use. $Li_2OEP(THF)_{n,}$ ¹⁹ $Li_2TTP(Et_2O)_2$,²⁰ $LiCH_2SiMe_3$,²¹ $Zr(CH_2SiMe_3)_4$,¹² and $Hf(CH_2SiMe_3)_4$ ¹² were prepared according to the literature procedures. All other reagents were obtained from commercial sources and were used as received.

Melting points were determined in sealed capillary tubes under nitrogen and are uncorrected. UV/vis spectra were recorded in 0.2 cm quartz cells and are reported in the form λ_{max} in nm (log ϵ). Elemental analyses and mass spectra (EI, 70 eV) were performed within the College of Chemistry, University of California, Berkeley. ¹H and ¹³C{¹H} spectra were recorded at ambient temperatures. Chemical shifts (δ) for ¹H NMR spectra are reported relative to residual protons in the deuterated solvents and for ¹³C NMR spectra relative to carbons in the deuterated solvent.

Zr(CH₂SiMe₃)₂Cl₂(OEt₂)₂. LiCH₂SiMe₃ (1.21 g, 12.9 mmol) in 20 mL of Et₂O was slowly added to a stirred suspension of ZrCl₄ (1.50 g, 6.44 mmol) in 40 mL of Et₂O. The ZrCl₄ dissolved slowly, and a fine white precipitate formed. The solvent was removed in vacuo, and the crude product was extracted with 30 mL of an Et₂O/hexane (3:7) mixture. The solution was filtered, and the solvent was removed to yield 2.90 g (93%) of a viscous yellow oil, which was pure Zr(CH₂-SiMe₃)₂Cl₂(OEt₂)₂ according to ¹H NMR spectroscopy. Attempts to obtain a crystalline material by recrystallization from a variety of solvents failed. Reaction of this compound with methanol in C₆D₆ afforded Et₂O and Me₄Si in the ratio 1:1. ¹H NMR (C₆D₆): δ 3.22 (br s, 8 H, CH₂O), 2.25 (br s, 4 H, CH₂Si), 0.96 (br s, 12 H, CH₃CH₂), 0.32 (br s, 18 H, CH₃Si).

 $Zr(CH_2SiMe_3)Cl_3(OEt_2)_2$. Et₂O (20 mL) was vacuum transferred onto LiCH₂SiMe₃ (0.80 g, 8.51 mmol) and ZrCl₄ (2.82 g, 12.1 mmol). The reaction mixture was stirred for 2 h after which the solvent was removed in vacuo. A hexane/Et₂O (1: 1) mixture (20 mL) was added, and the mixture was cooled to -40 °C for 2 h in order to precipitate excess ZrCl₄ and LiCl. After filtration the solvent was removed in vacuo to give 3.21 g (87%) of a viscous yellow oil. Reaction of this compound with

methanol in C_6D_6 afforded Et₂O and Me₄Si in the ratio 2:1. ¹H NMR (C_6D_6): δ 3.29 (br q, 8 H, CH₂O), 2.80 (br s, 4 H, CH₂Si), 0.97 (t, 12 H, CH₃CH₂), 0.34 (s, 18 H, CH₃Si).

Generation of (OEP)Zr(CH₂SiMe₃)₂. Zr(CH₂SiMe₃)₂-Cl₂(Et₂O)₂ (15.0 mg, 30.5 μ mol) in 0.2 mL of CD₂Cl₂ was added to Li₂OEP(THF)_{1.5} (20.0 mg, 30.5 μ mol) in 0.2 mL of CD₂Cl₂. The ¹H NMR spectrum showed that only (OEP)Zr(CH₂SiMe₃)₂ had been formed.

Attempted Generation of (OEP)Zr(CH₂SiMe₃)Cl. Zr(CH₂SiMe₃)Cl₃(Et₂O)₂ (13.0 mg, 30.5 μ mol) in 0.5 mL of C₆D₆ was added to Li₂OEP(THF)_{1.5} (20.0 mg, 30.5 μ mol) in 0.5 mL of C₆D₆. Most of the Li₂OEP(THF)_{1.5} dissolved, and a ¹H NMR spectrum showed that only (OEP)Zr(CH₂SiMe₃)₂ and some other OEP derivative was present, but no (OEP)Zr(CH₂-SiMe₃)Cl.

(**OEP**)**Zr**(**CH**₂**SiMe**₃)₂. Zr(CH₂SiMe₃)₄ (0.223 g, 0.508 mmol) in 10 mL of Et₂O was added to ZrCl₄ (0.118 g, 0.508 mmol) in 10 mL of Et₂O at -10 °C. The reaction mixture was allowed to warm to room temperature and was then added to Li₂OEP-(THF)_{1.5} (0.633 g, 0.967 mmol) in 20 mL of CH₂Cl₂ at -78 °C. The reaction mixture was allowed to slowly warm to room temperature and stirred for 2.5 h. The solvent was then removed in vacuo and the product extracted with 10 mL of CH₂Cl₂. The filtrate was concentrated to 5 mL, and then 20 mL of pentane was added. Red crystals (0.613 g, 71%) were collected by filtration after slowly cooling the solution to -40 °C over night and identified as (OEP)Zr)CH₂SiMe₃)₂ by ¹H NMR spectroscopy.^{2d}

(**OEP**)**Hf**(**CH**₂**SiMe**₃)₂. LiCH₂SiMe₃ (0.088 g, 0.933 mmol) and $HfCl_4$ (0.150 g, 0.466 mmol) were stirred in 10 mL of Et_2O for 1 h. This mixture was then added to Li₂OEP(THF)_{1.5} (0.255 g, 0.389 mmol) in 20 mL of CH_2Cl_2 at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 12 h. The solvent was then removed under vacuum and the product extracted with 10 mL of toluene. The toluene was concentrated to 5 mL, and 15 mL of hexane was added. Red crystals (0.297 g, 82%) which contained 0.5 equiv of toluene were obtained after slow cooling to -40 °C. Mp: 125 °C dec. ¹H NMR (C₆D₆): δ 10.57 (s, 4 H, CH), 3.94 (m, 16 H, CH₂-CH₃), 1.85 (t, 24 H, CH₂CH₃), -1.13 (s, 18 H, SiCH₃), -4.47 (s, 4 H, CH₂Si). ¹³C NMR (C₆D₆): δ 147.9, 142.7, 102.5, 57.1, 20.2, 18.5, 2.8. UV/vis (CH₂Cl₂): 332 (4.27), 398 (5.47), 532 (4.11), 570 (4.42). EI/MS: 973 $(M^+ + CH_2SiMe_3, 30)$, 886 (M^+, M^+) 45). Anal. Calcd for C₇₀H_{47.5}N₄Si₂Hf: C, 61.23; H, 7.57; N, 6.01. Found: C, 61.28; H, 6.92; N, 6.61.

(TTP)Zr(CH₂SiMe₃)₂. Et₂O (75 mL) was condensed onto Li₂TTP(Et₂O)₂ (1.05 g, 1.24 mmol), LiCH₂SiMe₃ (0.279 g, 2.967 mmol), and ZrCl₄(THF)₂ (0.560 g, 1.483 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 12 h. Soon the color had changed from blue-green to orange. The solvent was then removed in vacuo, the product extracted with 20 mL of CH_2Cl_2 , and the filtrate concentrated to 5 mL. Pentane (20 mL) was added and the solution slowly cooled to -40 °C to afford 1.05 g (89%) of blue microcrystals which contained 0.25 equiv of CH₂Cl₂. Mp: 130 °C dec. ¹H NMR (C₆D₆): δ 9.10 (s, 8 H, pyrrole-H), 8.65 (br s, 4 H, Ph-H), 7.76 (br s, 4 H, Ph-H), 7.35 (br s, 4 H, Ph-H), 7.24 (br s, 4 H, Ph-H), 2.40 (s, 12 H, tol-CH₃), -0.96 (s, 18 H, SiCH₃), -3.38 (s, 4 H, CH₂Si). ¹³C NMR (CDCl₃, -10 °C) 150.3, 138.8, 137.8, 134.7, 134.0, 132.0, 127.8, 127.6, 125.7, 56.6, 21.7, 1.8. UV/ vis (CH2Cl2): 414 (5.57), 513 (3.61), 547 (4.32), 580 (3.37). EL/ MS: 847 (M⁺ - CH₂SiMe₃, 60). Anal. Calcd for C_{56.25}H_{58.5}-Cl_{0.5}N₄Si₂Zr: C, 70.69; H, 6.17; N, 5.86. Found: C, 70.19; H, 5.97; N, 6.12.

(TTP)Hf(CH₂SiMe₃)₂. Hf(CH₂SiMe₃)₄ (0.119 g, 0.226 mmol) and HfCl₄ (0.072 g, 0.226 mmol) were stirred in 20 mL of Et₂O for 1 h. This mixture was then added to Li₂TTP(Et₂O)₂ (0.320 g, 0.377 mmol) in 20 mL of Et₂O. Soon the color changed from blue-green to orange and the reaction mixture was allowed to stir for 12 h. The solvent was removed in vacuo and the crude product recrystallized from 15 mL of Et₂O at -40 °C to afford 0.299 g (79%) of blue crystals. Mp: 140 °C dec. ¹H NMR

⁽¹⁸⁾ Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds; 2nd ed.; John Wiley: New York, 1986. (19) (a) Arnold, J. J. Chem. Soc., Chem. Commun. **1990**, 976. (b)

^{(19) (}a) Arnold, J. J. Chem. Soc., Chem. Commun. **1990**, 976. (b) Arnold, J.; Dawson, D. Y.; Hoffman, C. G. J. Am. Chem. Soc. **1993**, 115, 2707.

⁽²⁰⁾ Brand, H.; Capriotti, J. A.; Arnold, J. Inorg. Chem. 1994, 33, 4334.

⁽²¹⁾ Tessier-Youngs, C.; Beachley, O. T. Inorg. Synth. 1986, 24, 95.

Early Transition Metal Porphyrins

 $\begin{array}{l} (C_6 D_6): \ \delta \ 9.12 \ (s, \ 8 \ H, \ pyrrole-H), \ 8.63 \ (br \ s, \ 4 \ H, \ Ph-H), \ 7.76 \\ (br \ s, \ 4 \ H, \ Ph-H), \ 7.34 \ (br \ s, \ 4 \ H, \ Ph-H), \ 7.24 \ (br \ s, \ 4 \ H, \ 5 \ 10.25 \ H, \ 10.25$

[(OEP)Zr(CH₂SiMe₃)][BPh₄]. CH₂Cl₂ (10 mL) was condensed onto (OEP)Zr(CH₂SiMe₃)₂ (0.153 g, 0.192 mmol) and [HNMe₂Ph][BPh₄] (0.080 g, 0.188 mmol). The reaction mixture was allowed to slowly warm to room temperature after which it was filtered. Toluene (15 mL) was added and the solution slowly cooled to -40 °C. An oily red substance precipitated at the side of the flask and was separated and dried in vacuo. The oily red residue of [(OEP)Zr(CH₂SiMe₃)][BPh₄] still contained some Me₂NPh (0.101 g, 51%). Reaction of stoichiometric amounts of [(OEP)Zr(CH₂SiMe₃)][BPh₄] and LiCH₂SiMe₃ in C₆D₆ afforded (OEP)Zr(CH₂SiMe₃)₂. ¹H NMR (CD₂Cl₂): δ 11.01 (s, 4 H, CH), 7.34 (br m, 8 H, ortho-H), 7.03 (t, 8 H, meta-H), 6.69 (t, 4 H, para-H), 4.26 (m, 16 H, CH₂CH₃), 1.98 (t, 24 H, CH₂CH₃), -2.30 (s, 9 H, SiCH₃), -4.32 (s, 2 H, CH₂Si).

[(OEP)Hf(CH₂SiMe₃)][BPh₄] was produced in a manner similar to [(OEP)Zr(CH₂SiMe₃)][BPh₄] and was isolated as a red, oily compound in 46% yield. ¹H NMR (CDCl₃): δ 10.93 (s, 4 H, CH), 7.27 (br m, 8 H, ortho-H), 6.99 (t, 8 H, meta-H), 6.83 (t, 4 H, para-H), 4.33 (m, 16 H, CH₂CH₃), 2.04 (t, 24 H, CH₂CH₃), -2.38 (s, 9 H, SiCH₃), -5.01 (s, 2 H, CH₂Si).

Generation of [(OEP)Zr(CH₂SiMe₃)][BPh₄] in Situ. (OEP)Zr(CH₂SiMe₃)₂ (10.5 mg, 12.5 μ mol) and [HNMe₂Ph]-[BPh₄] (5.3 mg, 12.5 μ mol) were reacted in CD₂Cl₂. ¹H NMR showed formation of [(OEP)Zr(CH₂SiMe₃)][BPh₄] (>90%), SiMe₄, and Me₂NPh as well as the presence of a small amount of (OEP)Zr(CH₂SiMe₃)₂.

Attempted Reaction of $[(OEP)Zr(CH_2SiMe_3)][BPh_4]$ with Ethylene. $[(OEP)Zr(CH_2SiMe_3)][BPh_4]$ (5.0 mg, 4.9 μ mol) in CD₂Cl₂ was degassed by three freeze, pump, and thaw cycles, and ethylene gas (2-3 atm) was admitted. No reaction took place within 1 day as judged by ¹H NMR spectroscopy.

Acknowledgment. We are grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Exxon Education Foundation for financial support. J.A. thanks the Alfred P. Sloan Foundation for the award of a research fellowship.

OM9405091