

Subscriber access provided by American Chemical Society

Inter- and Intramolecular Oxidative Coupling of Manganese Carbene Anions in the Presence of Copper Salts. Synthesis of (.mu.-Bis(carbene))dimanganese Complexes

Alain Rabier, Noeel Lugan, Rene Mathieu, and Gregory L. Geoffroy Organometallics, **1994**, 13 (12), 4676-4678• DOI: 10.1021/om00024a010 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on March 9, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00024a010>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Inter- and Intramolecular Oxidative Coupling of Manganese Carbene Anions in the Presence of Copper Salts. Synthesis of (p-Bis(carbene))dimanganese Complexes

Main Rabier, **Noel** Lugan,* and Ren6 Mathieu

Laboratoire de Chimie de Coordination du CNRS (UPR 8241), 205 route de Narbonne, 31077 Toulouse Cedex, France

Gregory L. Geofioy

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received August 17, 1994@

Summary: The carbene anions resulting from in situ deprotonation of the "Fischer-type" carbene complexes Cp'(CO)zMn=C(OEt)CH,& (R = *H, Me) and Cp'(C0)z-*

Mn=CN(Ph)CH(Ph)CHz undergo oxidative coupling in the presence of copper salts to produce the corresponding neutral (p-bis(carbene))dimanganese complexes ${ \frac{C_p}{C_p}}$ *cO₂Mn*₂ ${ \mu$ -*=C(OEt)CH(R)CH(R)(OEt)C=*} and $\label{eq:1} \begin{array}{c} \textbf{A} \textbf{lain} \text{ }\textbf{R}\\ \textbf{A} \textbf{lain} \text{ }\textbf{R}\\ \textbf{Laboratoire de Chimie de}\\ \textbf{D} \textbf{epartment} \text{ } \textbf{c}\\ \textbf{u} \\ \textbf{a} \\ \textbf{r} \\ \textbf{or} \\ \textbf{a} \\ \textbf{r} \\ \textbf{or} \\ \textbf{a} \\ \textbf{on} \\ \textbf{a} \\ \textbf{on} \\ \text$ Alain Rabier, Noël Lugar

ire de Chimie de Coordination du Cl

31077 Toulouse (

Gregory L.

Department of Chemistry, The Pe

University Park, Pen

Received Augus

e anions resulting from in situ

Fischer-type" carbene co

 ${ {Cp'}(CO)_2Mn }_2{\mu=-CN(Ph)CH(Ph)CHCHCH(Ph) }.$

 $N(Ph)C=\}$. Double deprotonation of $\{Cp'(CO)_{2}Mn\}_{2}\{\mu-1\}$

 $\equiv C(\overline{OEt})CH_2CH_2OEt/C=\}$ gives a dianionic species that *undergoes an intramolecular oxidative coupling in the presence of copperfII) to give the (p-vinylbis(carbene))* dimanganese complex (E) -{Cp'(CO)₂Mn}₂{ μ -C(OEt)-*CH=CH(OEt)C=}. Controlled reduction of the latter* gives a Mn^0/Mn^I mixed-valence complex which has been *characterized by EPR.*

It is well established that hydrogen atoms α to the carbene carbon atom in "Fischer-type" carbene complexes are acidic' and can be easily removed upon treatment with bases to form carbene anions² or carbene "enolates", which possess in some aspects a chemistry similar to that of ketone or ester enolates. 3 This chemistry includes oxidative coupling induced by Cu(1) or Cu(I1) salts.4 Following investigations of the alkylalkoxycarbene complexes $Cp'(CO)_2Mn=C(OEt)CH_2R,5$ we were interested in determining whether their deprotonated form would undergo oxidative coupling in the presence of copper salts to give bridging bis(carbene) complexes. **6,7**

The treatment of a solution of the carbene anion [Lil- $[Cp'(CO)_2Mn=C(OEt)CHR]$ ([1a]⁻, R = H; [1b]⁻, R = Me), generated in situ by reaction of $Cp'(CO)_2Mn=C$ - $(OEt)CH₂R$ (1a, R = H; 1b, R = Me) with "BuLi in THF at -60 °C,^{5a} with 0.6 molar equiv of Cu(I) iodide⁸ followed by molecular oxygen yields the new $(\mu$ -bis-(carbene))dimanganese complexes ${Cp'(CO)_2Mn}_2{\mu$ - $=$ C(OEt)CH(R)CH(R)(OEt)C=} (2a, R = H; 2b, R = Me) $(eq 1).^{10,11} Complex 2b, which bears two asymmetric$

carbon atoms, forms as an **-50:50** mixture of diastereoisomers. The use of a copper(II) salt, $CuCl₂$, as the oxidative coupling reagent is also effective in the reac-

[@] Abstract published in *Advance ACS Abstracts,* November **15,1994.** (1) (a) Kreiter, C. G. *Angew. Chem., Int. Ed. Engl.* 1968, 7, 390. (b) Casey, C. P.; Anderson, R. L. J. *Am. Chem. Soc.* 1974, 96, 1230. (c) Casey, C. P.; Brunsvold, W. R. J. Organomet. Chem. 1976, 118, 309. (d) Bernasconi, C. F.; Sun, W. T. *J. Am. Chem. SOC.* **1993,115,12526. (2)** Veya, P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. *Organometallics* **1994, 13, 214.**

 (3) (a) Fischer, H.; Kreissel, F. R.; Schubert, U.; Hoffman, P.; Dötz, K. H.; Weiss, K. Transition Metal Carbene Complexes; VCH: Weinheim, Germany, 1983. (b) Wulff, W. D. In Comprehensive Organic Dignitesi; Trost, B. M. **215** and references therein.

⁽⁴⁾ (a) Kauffmann, T.; Beissner, G.; Berg, H.; Koppelmann, J. L.; Schonfelder, M. *Angew. Chem., Int. Ed. Engl.* **1968,7,540.** (b) Rathke, M. W.; Lindert, A. *J. Am. Chem. SOC.* **1971,93,460.** (c) **Ito,** Y.; Konoike, T.; Saegusa, T. J. *Am. Chem. SOC.* **1975,97,2912.** (d) **Ito,** Y.; Konoike, 1.; Saegusa, 1.*3. Ant. Chem.* Soc. 1976, 97, 2912. (d) 10, 1.; Annouce, T.; Harada, T.; Saegusa, T. J. Zam. Chem. Soc. 1977, 99, 1487. (e)
Kobayashi, Y.; Taegushi, T.; Morikawa, T. Tetrahedron Lett. 1978, 3555.
(f) Kobay

⁽⁵⁾ (a) Kelley, C.; Lugan, N.; Terry, M. R.; Geofioy, G. L.; Haggerty, B. *S.;* Rheingold, A. L. J. *Am. Chem. SOC.* **1992, 114, 6735.** (b) Terry,

M. R.; Mercado, L. A.; Kelley, C.; Geoffroy, G. L.; Lugan, N.; Nombel, P.; Mathieu, R.; Haggerty, B. S.; Owens-Waltermire, B. E.; Rheingold, A. L. Organometallics 1994, 13, 843.

(6) (a) Macomber, D. W.; Hung, M.-H.; Madhu

⁽⁷⁾ Lattuada *et al.* have briefly mentioned the formation of the $(\mu$ bis(carbene))dichromium complex ${ (CO)_5Cr}_{2}$ { μ =C(OMe)CH₂CH₂- $(OMe)C =$ } as a side product in the reaction of the anionic carbene [Li]-
[(CO)₅Cr=C(OMe)CH₂] with oxiranes preactivated by TiCl₄. The authors suggested that TiCl₄ could be responsible for the observed oxidative co H.; Papagni, A. *Organometallics* **1991, 10, 807.**

Communications

tion.12 Finally, the oxidative coupling of the carbene anion $[1a]^-$ was also achieved by electro-oxidation.¹³

The overall reaction sequence shown in eq 1 can be viewed as a "dehydrodimerization"¹⁴ reaction of *alkylalkoxycarbene* complexes. The reaction has been extended to the cyclic *amimcarbene* complex Cp'(CO)zMn= $CN(Ph)C(H)PhCH₂$ (3),^{5b} which afforded the dehydrodimerization products **4** and *4'* in **74%** overall yield (eq 2). Communications

ion.¹² Finally, the oxidative coupline ion.¹² Finally, the oxidative due

The overall reaction sequence sliewed as a "dehydrodimerization
 alkoxycarbene complexes. The reended to the cyclic *aminocar*

Considering the structure of **3,** a mixture of six different stereoisomers distinguishable by NMR could *a priori* form: two *meso* forms and four *dl* pairs. After the reaction, only two stereoisomers are observed, **4** and **4', in a 66:33 ratio.^{10,15}** They could be partially separated by fractional crystallization, and the structure of 4 has been determined by X-ray crystallography.^{10,16} Compound **4** possesses a crystallographic inversion center, as seen in eq 2. Therefore, it is one of the two possible *meso* forms. The structure of the second stereoisomer *4,* one of the *dl* pairs, has been deduced from the NMR data.

achieve the coupling but its use significantly shortens the reaction time and improves the yield.¹⁰

Saegusa *et al.* have shown that copper(I1) salts promote the formation of olefinic diketones from 1,4 diketone dienolates.^{4c} Considering this reaction, we anticipated that a similar treatment of the $(u$ -bis-(carbene))dimanganese complexes 2 could lead to $(\mu$ **vinylbis(carbene))dimetal** complexes. Indeed, the treatment of complex 2a at low temperature with 2.2 molar equiv of n BuLi followed by 2.2 molar equiv of copper(II) chloride gives the new $(\mu$ -vinylbis(carbene))dimanganese complex ${Cp'(CO)_2Mn}_2{\mu}$ =C(OEt)CH=CH(OEt)C=} **(5)** in 36% yield.1°J7 The yield of **5** could be significantly improved by bubbling O_2 into the solution at low temperature after the addition of $CuCl₂.^{10,19}$ In that manner, complex **5** could be isolated in 62% yield (Scheme 1). Attempts to extend that reaction to complex 2b failed, probably because hydrogen atoms α to the carbene atom are not acidic enough to be removed either by KH or "BuLi.¹⁹

The structure of **5** has been determined by X-ray crystallography (Figure 1).²⁰ It has an E configuration around the $\widetilde{C}=C$ bond. The $C(7)-C(8)$ bond is significantly longer than the C=C distance of an isolated double bond $(1.299 \text{ Å})^{21}$ and compares well with the C=C distance found in conjugated systems $(1.330 \text{ Å})^{21}$ illustrating a substantial delocalization of the double bond over the $Mn(1)-C(5)-C(7)-C(8)-C(6)-Mn(2)$ chain.

It is likely that the formation of **5** from 2a under the reaction conditions shown in Scheme 1 proceeds via the initial formation of a μ -bis(carbene) dianion resulting from a double deprotonation of $2a$, [Li]₂[2a], followed by an intramolecular oxidative coupling induced by the $Cu(II)$ salt.^{4c} Although we have not been able to directly observe that dianionic complex due to its thermal instability, its formation has been assayed by its reaction at low temperature with MeI, which afforded complex 2b in nearly quantitative yield as a 60:40 mixture of diastereoisomers.1°

(15) Selected data for **4:** IR (v (CO), Et₂O) 1935, 1865 cm⁻¹; ¹H NMR (CsDs) 6 **6.13** *(8,* 1H, -CHPh), **3.75** (5, **1fi,** -CH'); l3C NMk (C6D.5) 6 **296.1** (Mn=C(NPh)-), **78.7** (-CHPh-), **65.6** *(-CH-).* Selected data for 4': IR (ν (CO), Et₂O) 1935, 1865 cm⁻¹; ¹H NMR (C₆D₆) 5.71 (s, 1H, -CHPh), 3.95 (s, 1H, -CH-); ¹³C NMR (C₆D₆) δ 295.5 (Mn=C(NPh)-), **75.7** (-CHPh-), **65.3** (-CIA-). Anal. Calcd for C46H38Mn2N204: C.

69.7; H, 4.83; N, 3.53. Found: C, 69.39; H, 5.29; N, 3.53.

(16) Crystal data for 4: monoclinic, C_{2h} ⁵-P2₁/n, $a = 10.039(2)$ Å, b = 8.523(1) Å, $c = 22.821(2)$ Å, $\beta = 94.56(1)$ °, $V = 1946.5(5)$ Å³, $Z = 2$, $R = 0.060$, $R_w = 0.060$ for **1806** observations and **184** variable parameters.¹⁰

(17) Selected data for 5: IR $(\nu(CO), THF)$ 1940, 1885 cm⁻¹; ¹H NMR (C_6D_6) δ 6.85 (s, 2H, $-HC=CH-$); ¹³C NMR (C_6D_6) δ 319.6 (Mn=*C*), 129.1 (s, $-HC=CH-$). Anal. Calcd for $C_{24}H_{26}Mn_2O_6$: C, 55.38; H, 5.00

(18)At the present stage of our investigation, we do not fully understand the role of oxygen in that reaction. Note that, in the absence of Cu(II), oxygen alone readily decomposes $[2a]^{2-}$ to several unidentified compounds.

(19) (a) Although Casey *et al.* have reported that even a tertiary carbon atom attached to the carbene carbon atom in *chromium* Fischertype carbene complexes can be deprotonated,^{1c} the Cp'(CO)₂Mn frag-
ment presents a poorer acceptor ability than the (CO)₅M (M = Cr, W) fragment^{19b} and is less likely to stabilize tertiary carbanions that would form upon deprotonation of 2b. (b) Dotz, K. H.; Bottcher, D.; Jendro,

M. *Inorg. Chim. Acta* 1994, 222, 291.

(20) Crystal data for 5: triclinic, C_i^1 -P $\bar{1}$, $a = 10.172(6)$ Å, $b = 11.356$ -

(3) Å, $c = 11.095(3)$ Å, $\alpha = 105.42(2)$ °, $\beta = 93.07(5)$ °, $\gamma = 108.06(5)$ °, $V = 1162(1)$ Å³, **289** variable parameters.1°

(21) Allen, F. H.; Kennard, *0.;* Watson, D. G.; Brammer, L.; Orpen, **A.** G.; Taylor, R. *J. Chem. Soc., Perkin Trans.* 2 1987, **S1.**

⁽⁸⁾ Examination of the literature concerning the copper-salt-mediated oxidative coupling of ester or ketone enolates,⁴ or more generally oxidative coupling of carbanions,⁹ shows that 0.5 molar equiv of cuprous salt (usually followed by reaction with O_2), or 1 molar equiv of a cupric salt (sometimes followed by reaction with O_2), is usually required to

obtain the best yields in coupling products.

(9) (a) Whitesides, G. M.; SanFilippo, J., Jr.; Casey, C. P.; Panek,
E. J. J. Am. Chem. Soc. 1967, 89, 5302. (b) Jukes, A. E. Adv. *Organomet. Chem.* 1974, *12,* **215.** (c) Kauffman, **Th.** *Angew. Chem., Int. Ed. Engl.* 1974, *5,* **291.**

⁽¹⁰⁾ The detailed experimental, spectroscopic, and crystallographic information are provided in the supplementary material.

⁽¹¹⁾ The carbene complex 1a (1.9 mmol) was dissolved in 10 mL of THF, the solution was cooled to -60 **°C, and ⁿBuLi (2.1 mmol) was** THF, the solution was cooled to **-60** "C, and "BuLi **(2.1** mmol) was added. After it was stirred for **30** min, the solution was cooled to **-78** "C, and CUI (1.1 mmol) was added. When all of the solid CUI disappeared **(-2** h), dry oxygen was bubbled into the solution for **30** s. The solvent was then removed under vacuum while the reaction flask was allowed to reach room temperature. The residue was extracted with ether and filtered on a short column of alumina. The filtrate was evaporated to dryness, and recrystallization of the residue from diethyl ether/hexane left complex 2a as an orange microcrystalline compound
in 63% yield. Selected data for 2a: IR $(v(CO), THF)$ 1940, 1880 cm⁻¹;
¹H NMR $(C_6D_6) \delta$ 3.02 (s, 4H, $-H_2CCH_2$); ¹³C NMR $(C_6D_6) \delta$ 338.53
(Mn=C), 57 Hz, $-CH$ – $(2b)$, 3.71 (AA'(X₃X₃) pattern, 2H, $J_{AA'} = 10.7$ Hz, $J_{AX} = 6.5$ Hz, $-CH$ – $(2b')$, 0.96 ((AA')X₃X'₃ pattern, 3H, $-CH(CH_3)$ – $(2b')$), 0.96 ((AA')X₃X'₃ pattern, 3H, $-CH(CH_3)$ – $(2b')$), 0.96 ((AA')X₃X'₃ Calcd for $C_{26}H_{32}Mn_2O_6$: C, 56.74; H, 5.86. Found: C, 56.27; H, 5.86. (12) In the present instance, molecular oxygen is not required to NMR (C_6D_6) δ 3.93 $(AA'(X_3X_3)$ pattern, $2H, J_{AA'} = 6.7$ Hz, $J_{AX} = 6.9$

⁽¹³⁾ Cyclic voltammetry of a solution of the carbene anion [la]- at **-20** "C displayed an irreversible oxidation wave at 0.040 **V** (vs SCE) at a scan speed of 0.1 V/s. Bulk oxidation of [1a]⁻ in THF/["Bu4N][PF₆] medium at **0.600** V (vs SCE) led to the formation of 2a, which was isolated in **42%** yield.

⁽¹⁴⁾ Kauffman, T.; Kuhlmann, D.; Sahm, W.; Schreken, H. *Angew. Chem., Znt. Ed. Engl.* 1968, *7,* **541.**

Figure 1. Perspective view of the complex (E) -{Cp'-(CO)~Mn}&--C(OEt)CH-CH(OEt)C==} **(6).** Selected bond distances and angles: $Mn(1)-C(5) = 1.893(3)$ Å; $C(5)-C(7)$
= 1.471(4) Å; $C(7)-C(8) = 1.323(4)$ Å; $Mn(2)-C(6) = 1.891-$ (3) Å; $C(6)-C(8) = 1.472(4)$ Å; $C(5)-C(7)-C(8) = 124.2$ (2) °; C(6)-C(8)-C(7) = 124.9(2)°.

The dianion $[K]_2[2a]$, generated by reaction of 2a with 2.2 equiv of **KH,22** was found to be more stable. In comparison to 2a, its **IR** spectrum displays two bands shifted by $75-100$ cm⁻¹ toward lower frequencies. The relative thermal stability of $[K]_2[2a]$ allowed us to investigate its electrochemical behavior. Cyclic voltammetry (CV) of the complex $[K]_2[2a]$ at 0 °C in THF/ [nBuy][pF6] medium (scan rate 0.1 V/s) displays **two** quasi-reversible one-electron-oxidation waves at **-0.95** and -1.15 V (vs SCE). Under the same conditions, CV of **5** shows two quasi-reversible one-electron-reduction waves at the same potentials as for $[2a]^2$ ⁻. Both controlled reduction of **5** and controlled oxidation of $[2a]^{2-}$ on the plateau between the two oxidationreduction waves leads to the formation of the same radical anion $[2a]$ ⁻. The room-temperature EPR spectrum of this complex shows a hyperfine pattern that consists of an undecet of triplets ($g = 2.007$; $A_{\text{Mn}} = 16.2$ G ; $A_H = 4.3$ G).¹⁰ This pattern is consistent with a type III^{23} Mn⁰/Mn^I mixed-valence complex in which the unpaired electron is delocalized on the **EPR** time scale over the two manganese atoms. The electrochemical behavior of complexes $[2a]^{2-}/5$ is reminiscent of that of closely related diiron or dirhenium complexes in which a Cq unsaturated hydrocarbon chain spans the two metal centers.24

In summary, we have shown that carbene anions generated by deprotonation of alkoxy- or aminocarbene complexes of manganese bearing primary or secondary carbon atoms in the a position relative to the carbene carbon atom can undergo oxidative coupling in the presence of copper salts to give $(\mu$ -bis(carbene))dimanganese complexes in satisfactory yields. The oxidative coupling may also take place in an intramolecular fashion within a $(\mu$ -bis(carbene))dimanganese dianion to form a $(\mu$ -vinylbis(carbene))dimanganese complex. Further investigations of the reactivity of the unusual **(p-bis(carbene))dimanganese** dianion and in the direction of $(\mu$ -bis(carbyne))dimanganese complexes are in progress.

Acknowledgment. We gratefully acknowledge NATO for a travel grant to N.L. and G.L.G. Thanks are due to Dr. D. de Montauzon for the electrochemical studies and to Dr. A. Mari for recording the **EPR** spectra and for helpful discussions.

Supplementary Material Available: Text giving experimental and spectroscopic data for all the new complexes, full experimental data for the X-ray studies and tables of atomic coordinates, anisotropic temperature factors, and bond distances and angles for **4** and **5,** and figures showing a perspective view of 4 and both experimental and simulated EPR spectra of **[2a]'- (13** pages). Ordering information is given on any current masthead page.

OM9406557

⁽²²⁾ THF (10 mL) was added at 0 'C to **a** solid mixture of **2a (0.150** g, 0.29 mmol) and KH (0.027 g, 0.69 mmol). The reaction was monitored
by IR until the bands due to 2a totally disappeared (\sim 2 h) and
substituted by those of [K]₂[2a]. [K]₂[2a]: IR (ν (CO), THF) 1865, 1780 cm-1. As far as the intramolecular coupling reaction is concerned, the reactivity of $[K]_2[2a]$ is the same as that of $[Li]_2[2a]$. Nevertheless, from a practical point of view, it is better to use "BuLi to deprotonate **2a.**

⁽²³⁾ Robin, **M.** B.; Day, **P.** *Adu. Inorg. Chem. Radwchem.* **1967,10, 247**

⁽²⁴⁾ (a) Seyler, J. W.; Weng, W.; Zhou, Y.; Gladysz, J. A. *Organo-metallics* **1993,12,3802.** (b) **Le** Narvor, N.; Lapinte, C. J. *Chem.* SOC., *Chem. Commun.* **1993,357.** (c) Etzenhouser, **B.** A.; DiBiase Cavanaugh, M.; Spurgeon, H. N.; Sponsler, M. B. *J. Am. Chem.* SOC. **1994,** *116,* **2221.**