Synthesis of Permethylindenyl Complexes of the Early Transition Metals. Crystal Structures of Ti(η^5 **-CgMe₇)Cl₃** and \mathbf{Zr} (n^5 -C₉Me₇)₂Cl₂

Dermot O'Hare,* Vince Murphy, Gary M. Diamond, Polly Arnold, and Philip Mountford[†]

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

Received June 17, 1994@

Addition of **l-(trimethylsily1)heptamethylindene** (CgMeySiMes) to a suspension of the anhydrous halides MCl₄ ($M = Ti$, Zr , and Hf) in THF gives the half-sandwich complexes $M(\eta^5-C_9Me_7)Cl_3$ (M = Ti, Zr, and Hf) in good yield. Ti $(\eta^5-C_9Me_7)_2Cl_3$ crystallizes in the centrosymmetric orthorhombic space group *Pbca* with $a = 16.875(4)$ \AA , $b = 14.706(3)$ \AA , $c =$ **13.781(3)** Å, $V = 3420$ Å³, $Z = 8$, $R = 0.047$, and $R_w = 0.049$. The Ti-C distances range from 2.352(4) to 2.400(4) Å with a mean value of 2.370(5) Å and are consistent with symmetrical bonding of the indenyl ligand to the metal center. The Ti- $(\eta^5$ -ring centroid) distance is $2.036(4)$ Å. Addition of 2 equiv of lithium heptamethylindenide (Li⁺C₉Me₇-) to distance is 2.036(4) Å. Addition of 2 equiv of lithium heptamethylindenide ($\text{Li}^{+} \text{C}_{9} \text{Me}_{7}^{-}$) to the anhydrous halides MCl₄ (M = Zr and Hf) in THF gives the metallocene derivatives M(η^{5} - C_9Me_7 ₂ Cl_2 (M = Zr and Hf) in good yield. $Zr(\eta^5-C_9Me_7)_2Cl_2$ crystallizes in the centrosymmetric monoclinic space group $P2_1/n$ with $a = 14.951(12)$ Å, $b = 13.523(6)$ Å, $c = 13.913(11)$ \hat{A} , β = 96.46(3)°, $V = 2795.5 \text{ Å}^3$, $R = 0.041$, and $R_w = 0.048$. The Zr-C distances range from **2.511(4)** to **2.612(4)** A, with a mean value of **2.563(4)** A, and are consistent with symmetrical η^5 -bonding of both indenyl ligands to the metal center. The $Zr-(\eta^5\text{-ring centroid})$ distances are **2.259(4)** and **2.255(4)** *1* with a centroid-Zr-centroid angle of **139.0(4)".** The indenyl ligands are oriented away from the chloride ligands which causes a significant distortion from planarity by folding at the bridgehead carbon atoms.

Introduction

In continuation of our work on the development of the chemistry of transition metal heptamethylindenyl complexes,¹ we have investigated the synthesis of some early metal derivatives. Research aimed at the synthesis of early transition metal metallocenes is still a topic of considerable interest.2

In particular, chiral *ansa* metallocenes containing either substituted cyclopentadienyl or indenyl ligands now form the basis of soluble Ziegler-Natta polymerization catalysts.^{3,4} For example, Rac-Et[IndH₄]₂HfCl₂, a soluble chiral molecule prepared by Ewen *et al.* in 1987, produces high yields of high molecular weight isotactic polypropylene when combined with methylaluminoxane cocatalyst and $(\eta^5$ -C₅H₄CMe₂- η^5 -C₁₃H₈)- MCl_2 ($M = Zr$, Hf), prepared by Razavi *et al.* in 1992, catalyzes the syndiospecific polymerization of propylene under similar conditions.⁵

In this paper we report the syntheses of early metal (Ti, Zr, and Hf) sandwich and half-sandwich complexes containing the heptamethylindenyl ligand (Scheme 1).

Experimental Section

General Procedures. All reactions were performed using standard Schlenk techniques or in a Vacuum Atmospheres drybox under a nitrogen atmosphere. Solvents were dried by refluxing over an appropriate drying agent in a continuous stream of nitrogen. Solvents were distilled prior to use and stored over molecular sieves (type **4 A)** in flame-dried ampules. NMR spectra were recorded using a Bruker AM **300 ('H 300** MHz) spectrometer. Samples were prepared under nitrogen and placed in air-tight **5** mm screw-topped tubes. Mass spectra were recorded on an electron impact AEI MS **9802** mass spectrometer updated by a data-handling system supplied by Mass Spectrometer Services, Ltd.

Elemental microanalyses were performed by the analytical services section **of** the Inorganic Chemistry Laboratory, Oxford. The synthesis of heptamethylindene and lithium heptamethylindenide has been described in detail elsewhere.'

 1 ⁻(Trimethylsilyl)heptamethylindene $(C_9Me_7SiMe_3)$. Trimethylsilyl chloride **(2.47** g, **0.023** mol) was dissolved in **20** mL of THF. This mixture was added dropwise to a solution of lithium heptamethylindenide **(5** g, **0.023** mol) in THF. During the addition the color of the solution changed from orange/brown to lime green and became warm. When the

t Present address: Department of Chemistry, University of Not-tingham, Nottingham NG7 **ZRD,** U.K.

 δ Abstract published in Advance ACS Abstracts, October 1, 1994.
(1) Westcott, S. A.; Kakkar, A. K.; Stringer, G.; Taylor, N. J.; Marder, T. B. J. Organomet. Chem. 1990, 394, 777. O'Hare, D.; Green, J. C.; Marder, T.; Collins, S.; Stringer, G.; Kakkar, **A.** T.; Kaltsoyannis, N.; Kuhn, **A.;** Lewis, R.; Mehnert, C.; Scott, P.; Kurmoo, M.; Pugh, S. *Organometallics,* **1992, 11, 48.** O'Hare, D.; Murphy, V. J.; Kaltsoy-

annis, N. *J. Chem. SOC., Dalton Trans.* **1993, 383. (2)** Jordan, R. **F.** *Adv. Organomet. Chem.* **1991,32, 325.**

⁽³⁾ Kaminsky, **W.** In *Transition metal catalysed polymerisation;* Quirk, R. P., Ed.; Hanvood Academic Press: New York, **1983. (4)** Halterman, **R. L.** *Chem. Rev.* **1992,92, 965.**

⁽⁵⁾ Ewen, J.; Haspeslagh, L.; Atwood, J. L.; Zhang, H. *J. Am. Chem. SOC.* **1987, 109, 6544.** Razavi, **A.;** Atwood, J. L. *J. Am. Chem. SOC.* **1993,115, 7529.**

Scheme 1^a

 a *Key*: (i) for $M = Ti$, 1 equiv of $C_9Me_7\text{Si}Me_3$ in THF, rt, 24 h, 90% yield; for $M = Zr$, 1 equiv of $C_9Me_5\text{Si}Me_3$ in toluene, 70 °C, **3** h, 60% yield; for $M = Hf$, 1 equiv of $C_9Me_5SiMe_3$ in toluene, $70\degree C$, **3** h, 50% yield; (ii) for $M = Zr$, 2 equiv of Li⁺C₉Me₇- in toluene, $120 °C$, $3 d 50%$ yield; for $M = Hf$, 2 equiv of $Li^+C_9Me_7^-$ in toluene, $120 °C$, $1 d$, $40%$ yield; (iii) excess LiMe in diethyl ether, rt, **3** h, **70%** yield

addition was complete a white precipitate had formed. Solvent removal under reduced pressure gave a pale green solid. Addition of toluene gave a very pale green solution which was filtered through Celite, concentrated to *ca.* **30** mL, and cooled to **-80** "C to yield an off-white crystalline solid in **95%** yield **(6.2** g, **0.022** mol).

(Heptamethylindenyl)titanium(IV) Trichloride (Ti(n^5 **-C&le,)Cb).** A solution of **1-(trimethylsily1)heptamethylindene (0.5** g, **1.75** mmol) in toluene *(ca.* **30** cm3) was slowly added to a toluene solution of Tic14 **(0.33** g, **1.75** mmol) to produce a dark green solution, which was stirred for **12** h at **rt.** Removal of the solvent under reduced pressure gave a dark green solid. This solid was recrystallized from toluene at -80 °C to produce dark green crystals of Ti $(\eta^5$ -C₉Me₇)Cl₃ in 90% yield (0.61 g, Me), **2.00** *(8,* **1** x Me), **1.96** (9, **2** x Me). Mass spectrum **(EI)** m/z : (M⁺) **368**, (M⁺ - Cl) **333.** Anal. Calcd for C₁₆H₂₁Cl₃Ti: C, **52.28;** H, **5.76.** Found: C, **51.95;** H, **5.80. 1.56 mmol**). ¹H NMR $(C_6^2H_6)$ δ : **2.51** (s, $2 \times$ Me), **2.39** (s, $2 \times$

Figure 1. Molecular structure and labeling scheme for Ti- $(\eta^5\text{-}C_9\text{Me}_7)Cl_3$ viewed parallel to the plane of the indenyl ligand. Atoms are represented by the 50% thermal probability ellipsoids. The hydrogen atoms have been omitted for clarity.

(Heptamethylindenyl)zirconium(W) Trichloride (Zr- (q5-CeNLe,)Cls). A solution of **1-(trimethylsily1)heptamethyl**indene $(0.5 g, 1.75 mmol)$ in toluene $(ca. 30 cm³)$ was slowly added at rt to a suspension of freshly sublimed ZrC4 **(0.40** g, **1.75** mmol), vigorously stirred in toluene. The resultant deep orange/red solution was heated at 70 °C for 3 h. Solvent removal and subsequent recrystallization from a petroleum ether (bp **40/60** "C)/toluene mixture produced an orange crystalline sample of $(\eta^5$ -C₉Me₇)ZrCl₃ in 60% yield $(0.43 \text{ g}, 1.05 \text{ m})$ **2.23** (s, $1 \times$ Me), 2.06 (s, $2 \times$ Me). Anal. Calcd for C₁₆H₂₁Cl₃-Zr: C, **46.77;** H, **5.57.** Found: C, **46.53;** H, **5.15.** mmol). ¹H NMR $(C_6^2H_6)$ δ : **2.55** $(s, 2 \times Me)$, **2.48** $(s, 2 \times Me)$,

(Heptamethylindenyl)hafnium(IV) Trichloride (Hf(η^5 **-C&fe&ls).** A solution of **1-(trimethylsily1)heptamethylindene (0.5** g, **1.75** mmol) in toluene *(ea.* **30** cm3) was slowly added at rt to a suspension of freshly sublimed HE4 **(0.56** g, **1.75** mmol), vigorously stirred in toluene. The resultant deep orange solution was heated at **70** "C for **3** h. Solvent removal and subsequent recrystallization from a petroleum ether (bp **40/60** "C)/toluene mjxture produced a yellow/orange crystalline sample of $Hf(\eta^5-C_9Me_7)Cl_3$ in 50% yield $(0.44 \text{ g}, 0.87 \text{ mmol})$. ¹H NMR (C_6D_6) δ : **2.68 (s, 2** \times Me), **2.49 (s, 2** \times Me), **2.25 (s,** $1 \times$ Me), 2.14 (s, $2 \times$ Me). Anal. Calcd for $C_{16}H_{21}Cl_3Hf$: C, **38.57;** H, **4.25.** Found: C, **38.46;** H, **4.65.**

Figure 2. Molecular structure and labeling scheme for Ti- $(\eta^5$ -C₉Me₇)Cl₃ viewed perpendicular to the plane of the indenyl ligand. Atoms are represented by the **50%** thermal probability ellipsoids. The hydrogen atoms have been omitted for clarity.

Table 2. Selected Bond Lengths (A) and Angles (deg) for Ti(v5-CgMe7)C13 (Esd's in Parentheses)

atoms	length/Å	atoms	angle/deg
$Ti(1) - Cl(1)$	2.237(1)	$Cl(1) - Ti(1) - Cl(2)$	100.85(7)
$Ti(1) - Cl(2)$	2.235(2)	$Cl(1) - Ti(1) - Cl(3)$	102.55(7)
$Ti(1) - Cl(3)$	2.238(2)	$Cl(2) - Ti(1) - Cl(3)$	102.23(7)
$Ti(1) - C(1)$	2.383(4)	$C(2)-C(1)-C(5)$	107.2(4)
$Ti(1) - C(2)$	2.360(4)	$C(2)-C(1)-C(9)$	132.6(4)
$Ti(1) - C(3)$	2.356(5)	$C(5)-C(1)-C(9)$	120.2(4)
$Ti(1) - C(4)$	2.352(4)	$C(1)-C(2)-C(3)$	107.2(4)
$Ti(1) - C(5)$	2.400(4)	$C(1) - C(2) - C(10)$	127.9(5)
$C(1)-C(2)$	1.444(6)	$C(3)-C(2)-C(10)$	124.3(4)
$C(1)-C(5)$	1.444(6)	$C(2)-C(3)-C(4)$	111.0(4)
$C(1) - C(9)$	1.430(6)	$C(2)-C(3)-C(11)$	123.7(5)
$C(2)-C(3)$	1.396(7)	$C(4)-C(3)-C(11)$	125.3(5)
$C(2)-C(10)$	1.503(6)	$C(3)-C(4)-C(5)$	106.7(4)
$C(3)-C(4)$	1.410(7)	$C(3)-C(4)-C(12)$	124.6(5)
$C(3)-C(11)$	1.521(7)	$C(1) - C(5) - C(4)$	107.8(4)
$C(4)-C(5)$	1.440(6)	$C(1) - C(5) - C(6)$	119.9(4)
$C(4)-C(12)$	1.496(7)	$C(4)-C(5)-C(6)$	132.3(4)
$C(5)-C(6)$	1.437(6)	$C(5)-C(6)-C(7)$	117.7(4)
$C(6)-C(7)$	1.363(7)	$C(7)-C(6)-C(13)$	123.5(5)
$C(6)-C(13)$	1.502(7)	$C(6)-C(7)-C(8)$	122.4(4)
$C(7) - C(8)$	1.435(7)	$C(7) - C(8) - C(9)$	121.6(4)
$C(7)-C(14)$	1.527(7)	$C(6)-C(7)-C(14)$	120.0(5)
$C(8)-C(9)$	1.364(7)	$C(1)-C(9)-C(8)$	118.1(4)
$C(8)-C(15)$	1.516(7)	$C(1) - C(9) - C(16)$	120.2(4)
$C(9)-C(16)$	1.510(7)	$C(8)-C(9)-C(16)$	121.7(5)

Bis(heptamethylindenyl)zirconium(lV) Dichloride (Zr- $(\eta^5\text{-}C_9\text{-Me}_7)_2\text{-}C_2$. A slurry of lithium heptamethylindenide (1.9 g, 8.5 mmol) in toluene was added to a suspension of freshly sublimed ZrCl4 **(0.99** g, **4.25** mmol) vigorously stirred in toluene, and the resultant mixture was refluxed for **3** days. Subsequent solvent removal and recrystallization from a petroleum ether (bp 40/60 °C)/toluene mixture produced orange crystals of $(\eta^5$ -C₉Me₇)₂ZrCl₂ in 50% yield (1.25 g, 2.12 mmol). 1 H NMR ($C_{6}^{2}H_{6}$) δ : 2.35 (s, 4 \times Me), 2.12 (s, 4 \times Me), 2.08 (s, $2 \times$ Me), 1.88 (s, $4 \times$ Me). ¹³C{¹H} NMR (C₆²H₆) δ : 136, 133, **130, 126, 112** (s, ring carbons), **19, 16, 14, 13** (s, Me's). Anal. Calcd for C32H42ClzZr: C, **65.26;** H, **7.17;** C1, **12.04.** Found: C, **64.01;** H, **7.53;** C1, **11.62** (C could not be obtained within acceptable limits).

Bis(heptamethylindenyl)hafnium(IV) Dichloride (Hf- $(\eta^5\text{-}C_9\textbf{Me}_7)_2\textbf{Cl}_2$. A slurry of lithium heptamethylindenide (1.9 g, 8.5 mmol) in toluene was added to a suspension of freshly sublimed HE14 **(1.36** g, **4.25** mmol), vigorously stirred in toluene. This mixture was refluxed for **24** hours to produce an orange/yellow solution. The desired product, $Hf(\eta^5-C_9Me_7)_2$ -Clz, was isolated as a yellow crystalline solid in **40%** yield **(1.15** g, **1.70** mmol) by solvent removal and subsequent recrystal-

Figure 3. Schematic diagram illustrating the folding axes and bond distances of the indenyl ligand in Ti(η^5 -C₉Me₇)-Cl₃.

Table 3. Fractional Atomic Coordinates for $Ti(\eta^5-C_9Me_7)Cl_3$ (Esd's in Parentheses)

atom	xla	y/b	zlс
Ti(1)	0.66296(5)	0.82337(5)	0.08435(6)
Cl(1)	0.61371(9)	0.68225(9)	0.0795(1)
Cl(2)	0.77511(8)	0.8052(1)	0.0002(1)
Cl(3)	0.7074(1)	0.8340(1)	0.2369(1)
C(1)	0.5415(2)	0.9043(3)	0.1029(3)
C(2)	0.5443(3)	0.8665(3)	0.0062(3)
C(3)	0.6067(3)	0.9091(3)	$-0.0425(3)$
C(4)	0.6469(3)	0.9700(3)	0.0192(4)
C(5)	0.6046(2)	0.9703(3)	0.1099(3)
C(6)	0.6158(3)	1.0204(3)	0.1983(4)
C(7)	0.5652(3)	1.0033(3)	0.2732(4)
C(8)	0.5020(3)	0.9384(3)	0.2659(3)
C(9)	0.4910(3)	0.8875(3)	0.1843(4)
C(10)	0.4856(3)	0.8037(4)	$-0.0411(4)$
C(11)	0.6265(4)	0.8921(4)	$-0.1487(4)$
C(12)	0.7164(3)	1.0268(4)	$-0.0105(5)$
C(13)	0.6834(3)	1.0867(4)	0.2045(5)
C(14)	0.5768(4)	1.0510(4)	0.3706(4)
C(15)	0.4468(4)	0.9281(4)	0.3519(4)
C(16)	0.4278(3)	0.8150(4)	0.1788(5)

lization from THF. ¹H NMR $(C_6^2H_6)$ δ : **2.37** (s, $4 \times$ Me), **2.19 (s,4** x Me), **2.10 (s,4** x Me), **1.93** (s, **2** x Me). Mass spectrum (EI) m/z : (M⁺) 676, (M⁺ - C₉Me₇) 463, (M⁺ - C₉Me₇ - Me) **448.** Anal. Calcd for C32H42ClzHf: C, **56.2;** H, **6.3.** Found: C, **56.6;** H, **6.5.**

Bis(heptamethylindenyl)dimethylhafnium(lV) *(Hf(q5-* C_9Me_7)₂(CH_3)₂). $Hf(\eta^5-C_9Me_7)_{2}(Cl_2)$ (0.080 g, 0.17 mmol) was dissolved in diethyl ether to produce a light yellow solution. An excess of methyllithium was added dropwise at ice temperature, with continuous stirring to produce a pale green solution. This mixture was stirred for **3** h. Solvent removaland recrystallization from THF gave pale green air-sensitive crystals of $(\eta^5$ -C₉Me₇)₂Hf(CH₃)₂ in 70% yield (0.054g, 0.12 mmol). ¹H NMR $(C_6^2H_6)$ δ : **2.34** (s, $4 \times$ Me), **2.17** (s, $4 \times$ Me), **2.15** (s, **4** x Me), **1.71** (s, **2** x Me), **-1.0** (s, **2** x Hf-Me). 13C NMR (C₆²H₆) δ: 132, 125, 105 (s, ring carbons), (other peaks obscured by solvent peak), **44** (s, Me), **17.8, 16.4, 14.3, 11.6** (s, ring Me's).

Crystal Structure Determinations for Ti $(\eta^5\text{-}C_9\text{Me}_7)Cl_3$ and $Zr(\eta^5-C_9Me_7)_2Cl_2$. Crystal data, data collection, and processing parameters are given in Table 1. The general procedure was as follows. **A** crystal was mounted in a Lindemann tube **(0.7** mm) under dinitrogen and sealed with a small flame. This was transferred to the goniometer head of an Enraf-Nonius **CAD4** diffractometer. Unit cell parameters were calculated from the setting angles of **25** carefully centered reflections. Three reflections were chosen as intensity standards and were measured every **3600** s of X-ray exposure time, and three orientation controls were measured every **250** reflections. The data were corrected for Lorentz and polariza-

Figure 4. Molecular structure and labeling scheme for Zr- $(\eta^5$ -C₉Me₇)₂Cl₂ viewed parallel to the Cl-Zr-Cl plane. Atoms are represented by the **50%** thermal probability ellipsoids. The hydrogen atoms have been omitted for clarity.

tion effects.6 For both structures the heavy atom positions were revealed by direct methods. Subsequent Fourier difference syntheses revealed the positions of the other nonhydrogen atoms. Non-hydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares procedures. The hydrogen atoms were fixed in geometrically idealized positions and allowed to ride on their attached carbon atoms. The hydrogen atoms were given isotropic thermal parameters according to the atom to which they were attached (these were not refined). For Ti(η^5 -C₉Me₇)Cl₃ and Zr(η^5 -C₉- Me_7)₂Cl₂ empirical absorption corrections using DIFABS⁷ were applied. A Chebyshev weighting scheme⁸ was applied for $Zr(\eta^5-C_9Me_7)_2Cl_2$, and in both determinations the data were corrected for the effects of anomalous dispersion and isotropic extinction (via an overall extinction parameter)⁹ in the final stages of refinement. All crystallographic calculations were performed using the CRYSTALS suite¹⁰ on a MicroVAX 3800 computer in the Chemical Crystallography Laboratory, Oxford. Neutral atom scattering factors were taken from the usual sources.¹¹

Results and Discussion

Synthesis of Heptamethylindenyl Complexes $M(\eta^5-C_9Me_7)Cl_3$ (M = Ti, Zr, and Hf). The synthesis of the half-sandwich complexes $M(Ind^*)Cl_3 (M = Ti, Zr,$ and Hf; Ind* = η^5 -C₉Me₇) was achieved using the silylpermethylindene derivative $(C_9Me_7SiMe_3)$. Silyl-

Figure 6. Molecular structure and labeling scheme for Zr- $(\eta^5$ -C₉Me₇)₂Cl₂ viewed perpendicular to the Cl-Zr-Cl plane. Atoms are represented by the 50% thermal probability ellipsoids. The hydrogen atoms have been omitted for clarity.

and stannylcyclopentadienyl have been used previously as mild ligand transfer reagents.12 The dropwise addition of a toluene solution of $C_9Me_7SiMe_3$ to a toluene solution of MCl_4 ($M = Ti$, Zr , and Hf) gives, after workup and recrystallization from toluene, crystals of the heptamethylindenyl complexes $M(Ind^*)Cl_3 (Ind^* = \eta^5 \cdot C_9$ - $Me₇$ in good yield.

All three compounds are air sensitive, decomposing in minutes both in the solid state and in solution. They are all readily soluble in toluene, petroleum ether, diethyl ether, and dichloromethane. The ¹H NMR spectra of these compounds in $C_6{}^2H_6$ solution exhibit four singlets of relative intensity 2:2:2:1 assignable to the methyl groups of the n^5 -coordinated heptamethylindenyl ligand.

Structure of Ti(Ind*)Cl₃. Crystals suitable for single crystal X-ray analysis were grown by slowly cooling a concentrated CH_2Cl_2 solution to -80 °C. Details of the crystallographic parameters are given in Table 1. The molecular structure of $Ti(\eta^5-C_9Me_7)Cl_3$ together with the atomic labeling is shown in Figures 1 and 2. Selected bond lengths and angles are presented in Table 2. The positional parameters are given in Table **3.** The compound crystallizes in the centrosymmetric orthorhombic space group *Pbca*. Ti(Ind*)Cl₃ in the solid state adopts a distorted tetrahedral arrangement with Cl-Ti-C1 bond angles ranging between

⁽⁶⁾ North, **A.** C. T.; Phillips, D. C.; Mathews, F. S. *Acta Crystallogr. 1988, A24,* **351.**

⁽⁷⁾ Walker, N.; Stuart, D. *Acta Crystallogr., Sect A*, **1968**, *24*, 351.
(8) Caruthers, J.; Watkin, D. W. *Acta Crystallogr*. **1979**, *A35*, 698.
(9) Larsen, A. C. *Acta Crystallogr*. **1967**, *23*, 664.
(10) Caruthers, J

University Computer Centre: Oxford, **1975.**

⁽¹¹⁾ *International Tables for X-Ray Crystallography;* Kynoch Press: Birmingham, **1974;** pp **4, 9.**

⁽¹²⁾ Cardoso, A. M.; Clark, R. J. H.; Moorhouse, S. J. J. Chem. Soc., Dalton Trans. 1980, 1156. Winter, C. H.; Zhou, X-X.; Dobbs, D. A.; Heeg, M. J. Organometallics 1991, 10, 210.

Table 5. Selected Bond Lengths (A) and Angles (deg) for Zr(q5-C&le7)2C12 (Esd's in Parentheses)

Table 6. Fractional Atomic Coordinates for Zr(q5-C9Me7)2C12 (Esd's in Parentheses)

v	-- , , ,			
atoms	length/Å	atoms	angle/deg	atom
$Zr(1)-Cl(1)$	2.440(1)	$C(2) - C(1) - C(9)$	110.0(4)	Zr(1)
$Zr(1)-Cl(2)$	2.419(1)	$C(2)-C(1)-C(11)$	125.3(4)	Cl(1)
$Zr(1)-C(1)$	2.575(4)	$C(9)-C(1)-C(11)$	124.4(4)	Cl(2)
$Zr(1)-C(2)$	2.546(4)	$C(1)-C(2)-C(3)$	107.5(4)	C(1)
$Zr(1)-C(3)$	2.573(4)	$C(1)-C(2)-C(21)$	122.4(4)	C(2)
$Zr(1)-C(8)$	2.602(4)	$C(3)-C(2)-C(21)$	129.4(4)	C(3)
$Zr(1)-C(9)$	2.527(4)	$C(2)-C(3)-C(4)$	132.4(4)	C(4)
$Zr(1)-C(101)$	2.571(4)	$C(2)-C(3)-C(8)$	107.1(4)	C(5)
$Zr(1)-C(102)$	2.511(4)	$C(4)-C(3)-C(8)$	120.4(4)	C(6)
$Zr(1)-C(103)$	2.612(4)	$C(3)-C(4)-C(5)$	118.6(4)	C(7)
$Zr(1)-C(108)$	2.554(4)	$C(3)-C(4)-C(41)$	120.4(4)	C(8)
$Zr(1)-C(109)$	2.561(4)	$C(5)-C(4)-C(41)$	120.9(4)	C(9)
$C(1)-C(2)$	1.404(7)	$C(4)-C(5)-C(6)$	120.6(4)	C(11)
$C(1)-C(9)$	1.419(6)	$C(4)-C(5)-C(51)$	119.4(5)	C(21) C(41)
$C(1) - C(11)$	1.499(6)	$C(6)-C(5)-C(51)$	120.0(5) 122.3(4)	C(51)
$C(2)-C(3)$	1.446(6) 1.514(6)	$C(5)-C(6)-C(7)$ $C(5)-C(6)-C(61)$	117.7(5)	C(61)
$C(2)-C(21)$ $C(3)-C(4)$	1.428(6)	$C(7) - C(6) - C(61)$	119.9(5)	C(71)
$C(3)-C(8)$	1.436(6)	$C(6)-C(7)-C(8)$	117.8(4)	C(91)
$C(4)-C(5)$	1.383(7)	$C(6)-C(7)-C(71)$	122.3(4)	C(101)
$C(4)-C(41)$	1.509(7)	$C(8)-C(7)-C(71)$	119.3(4)	C(102)
$C(5)-C(6)$	1.433(7)	$C(3)-C(8)-C(7)$	119.3(4)	C(103)
$C(5)-C(51)$	1.510(7)	$C(3)-C(8)-C(9)$	108.3(3)	C(104)
$C(6)-C(7)$	1.375(7)	$C(7)-C(8)-C(9)$	131.5(4)	C(105)
$C(6)-C(61)$	1.523(6)	$C(1)-C(9)-C(8)$	106.6(4)	C(106)
$C(7)-C(8)$	1.445(6)	$C(1)-C(9)-C(91)$	122.6(4)	C(107)
$C(7)-C(71)$	1.502(7)	$C(8)-C(9)-C(91)$	129.6(4)	C(108)
$C(8)-C(9)$	1.436(6)	$C(102) - C(101) - C(109)$	110.0(4)	C(109)
$C(9)-C(91)$	1.509(6)	$C(102) - C(101) - C(111)$	124.9(4)	C(111)
$C(101) - C(102)$	1.414(6)	$C(109) - C(101) - C(111)$	124.7(4)	C(121)
$C(101) - C(109)$	1,407(6)	$C(101) - C(102) - C(103)$	106.9(4)	C(141)
$C(101) - C(111)$	1.496(6)	$C(101) - C(102) - C(121)$	122.5(4)	C(151)
$C(102) - C(103)$	1.440(6)	$C(103) - C(102) - C(121)$	129.7(4)	C(161)
$C(102) - C(121)$	1.508(6)	$C(102) - C(103) - C(104)$	131.7(4)	C(171)
$C(103) - C(104)$	1.432(6)	$C(102) - C(103) - C(108)$	107.7(3)	C(191)
$C(103) - C(108)$	1.441(6)	$C(104) - C(103) - C(108)$	119.8(4)	
$C(104)-C(105)$	1.383(7)	$C(103) - C(104) - C(105)$	117.8(4)	and [C
$C(104)-C(141)$	1.516(7)	$C(103) - C(104) - C(141)$	119.0(4) 122.4(4)	defined
$C(105)-C(106)$ $C(105) - C(151)$	1.434(7) 1.504(7)	$C(105)-C(104)-C(141)$ $C(104) - C(105) - C(106)$	121.6(4)	[C(1), C]
$C(106) - C(107)$	1.838(7)	$C(104) - C(105) - C(151)$	119.5(5)	$C(8)$, C
$C(106) - C(161)$	1.516(7)	$C(106) - C(105) - C(151)$	118.9(5)	vector (
$C(107) - C(108)$	1.431(6)	$C(105) - C(106) - C(107)$	121.9(4)	
$C(107) - C(171)$	1.499(7)	$C(105)-C(106)-C(161)$	119.0(5)	vector (
$C(108) - C(109)$	1.448(6)	$C(107) - C(106) - C(161)$	119.2(5)	Tab 3.
$C(109)-C(191)$	1.506(6)	$C(106)-C(107)-C(108)$	117.3(4)	togethe
		$C(106) - C(107) - C(171)$	121.9(4)	heptam
		$C(108)-C(107)-C(171)$	120.8(4)	eters, Δ
		$C(103) - C(108) - C(107)$	120.7(4)	
		$C(103) - C(108) - C(109)$	107.1(4)	small.
		$C(107) - C(108) - C(109)$	132.0(4)	bonding
		$C(101) - C(109) - C(108)$	107.4(4)	Howeve
		$C(101) - C(109) - C(191)$	123.2(4)	interna
		$C(108)-C(109)-C(191)$	128.4(4)	shown

 $100.85(7)$ ° and $102.55(7)$ °. The Ti-C bond lengths range between 2.352(4) and 2.400(4) Å with an average of 2.370(5) Å. The Ti-C₅-ring centroid distance is 2.036-(4) Å. These $Ti-C$ bond lengths are very similar to those reported for $Ti(C_5Me_5)Me_3$, $Ti(C_5Me_5)Cl_3$, $Ti(C_5 \rm Me_5)_2Cl_2,$ $\rm Ti(C_5H_5)_2Cl_2,$ and $\rm Ti(C_5Me_5)(C_5H_5)Cl_2.13$

Recently, several parameters have been devised to quantify possible distortions in metal-indenyl complexes.¹ The slip parameter (Δ_{M-C}) , is defined as the difference in the average bond lengths of the metal to the ring-junction carbons $C(1)$, $C(5)$ and the metal to adjacent carbon atoms of the five membered ring, $C(2)$, C(3), and C(4). The hinge angle (HA) is defined as the angle between the planes defined by $[C(2), C(3), C(4)]$

 (1) , $C(2)$, $C(4)$, $C(5)$]. The fold angle (FA) is as the angle between the planes defined by $C(2)$, $C(3)$, $C(4)$, $C(5)$] and $[C(1), C(5), C(6), C(7),$ $C(9)$]. Hence, HA represents bending along the $C(2)-C(4)$ and FA represents bending along the $C(1)-C(5)$ as schematically illustrated in Figure le 4 gives a summary of the these parameters er with data for other structurally characterized hethylindenyl complexes. The distortion param- $\Delta_{\text{M--C}}$, HA, and FA were all found to be relatively These data suggest essentially symmetrical g of the indenyl ligand with no $\eta^5-\eta^3$ ring slip. er, significant bond alternation is observed in the $ilC-C$ bond lengths of the 6-membered ring as in Figure 3.

Synthesis of Bis(heptamethylindeny1) Complexes $M(Ind^*)_2Cl_2$ ($M = Zr$ and Hf). Refluxing a mixture of either $ZrCl_4$ or HfCl₄ with 2 equiv of $Li^+(C_9Me_7)^-$ in toluene for $1-3$ days produces, after workup and recrystallization from toluene or THF, crystals of the bis- (heptamethylindenyl) complexes $M(Ind^*)_2Cl_2$ (M = Zr, Hf) in moderate yield. Both compounds are air stable in the solid state. They are all readily soluble in toluene, petroleum ether, diethyl ether, and dichloromethane. The ${}^{1}H$ NMR spectra of these compounds in $C_6{}^2H_6$ solution exhibit four singlets of relative intensity 2:2:2:1 assignable to methyl substituents of two equivalent η^5 -coordinated heptamethylindenyl ligands.

Structure of Zr(Ind*)₂Cl₂. Crystals suitable for single-crystal X-ray analysis were grown by slowly cooling a concentrated toluene/petroleum ether $(1:1)$ solution to -80 °C. Details of the crystallographic parameters are given in Table 1. The molecular struc-

⁽¹³⁾ Jungst, **R.; Sekutowski,** D.; Davis, J.; **Luly, M.; Stucky, G.** *Inorg. Chem. 1977,16,1645.* **Sekutiwski,** *D.* **G.; Stucky,** *G.* **D.** *Inorg. Chem. 1975,14,* **2192.**

Figure 6. Schematic diagram illustrating the rotation axes and bond distances of the indenyl ligands in $Zr(\eta^5-)$ C_9Me_7)₂ Cl_2 .

ture of $Zr(\text{Ind}^*)_2\text{Cl}_2$ together with the atomic labeling is shown in Figures 4 and 5. Selected bond lengths and angles are presented in Table 5. The positional parameters are given in Table 6. This complex crystallizes in the monoclinic space group $P2_1/n$. In the solid state the zirconium is in a pseudotetrahedral environment, with $Zr-C$ bond lengths ranging between 2.511(4) Å and 2.612(4) Å with an average of 2.563(4) Å. The $Zr-C_5$ ring centroid distances are 2.259(4) and 2.255(4) A. The angle between the normals to the ring centroids is 139.0- (4) °. These values are very similar to those reported for $Zr(\eta^5-C_9H_7)_2\text{Me}_2$, $Zr(\eta^5-C_5H_5)_2\text{Cl}_2$, $Zr(\eta^5-C_5H_5)_2\text{Me}_2$, and $Zr(\eta^5-C_5Me_5)_2Me_2$.¹⁴

The indenyl rotation angle (RA) has been defined as the angle formed by the projection of the two lines determined by the centroids of the *5-* and 6-membered rings on to the C1-Zr-C1 plane. Hence, an RA value of 180" would correspond to a fully staggered arrangement, while an RA value of 0° would correspond to a fully eclipsed arrangement (Figure 6). The value of RA for $Zr(Ind^*)_2Cl_2$ is 98° indicating a partially staggered arrangement of the heptamethylindenyl rings. Although the RA value for $Zr(\eta^5-C_9H_7)_2Me_2$ was not reported, the structure determination indicates that the indenyl rings are almost eclipsed in a similar fashion to that of $\text{Fe}(n^5\text{-}C_9\text{H}_7)_2$, i.e., an RA value of around 10°. Surprisingly, the X-ray structure of $Zr(Ind)_2Me_2$ shows that the indenyl ligands are oriented with the 6-membered rings directed over the Zr-Me ligands, while for

 $Zr(\eta^5-C_9Me_7)_2Cl_2$ the Ind* ligands have the 6-membered rings tilted back in the opposite direction.

The distortion parameters Δ_{M-C} , HA, and FA measured for $Zr(\eta^5-C_9Me_7)_2Cl_2$ are given in Table 2. The data suggest essentially symmetrical bonding of the indenyl ligand with no $n^5 - n^3$ ring slip. However, the large values of HA and FA indicate that the indenyl ligands are significantly distorted from planarity, which is possibly due to the nonbonded methyl-methyl repulsions between the two ligands.

Preparation of Hf(Ind*)₂(CH₃)₂. Addition of 2 equiv of methyllithium to a solution of $Hf(Ind[*])₂Cl₂$ in toluene at 0 "C gave a pale green solution. Solvent removal and recrystallization from THF gave pale green air-sensitive crystals of the dimethyl complex $Hf(Ind^*)_{2}$ - $(CH_3)_2$ in good yield. The ¹H NMR $(C_6^2H_6)$ of this complex reveals a peak a $\delta = -1.0$ corresponding to the Hf-Me protons. This chemical shift (in C_6D_6) compares with $\delta = -0.62$ for $\text{Zr}(C_5\text{Me}_5)_2$ (*Me*)₂ and $\delta = -0.70$ for $Hf(C_5Me_5)_2$ (Me)₂ has been ascribed to shielding effects of the indenyl ring currents.16

Summary

In this paper we have demonstrated the accessibility of heptamethylindenyl group **4** chemistry. The complexes $(\eta^5$ -C₉Me₇)MCl₃ (M = Ti, Zr, Hf) and $(\eta^5$ -C₉Me₇)₂- $MCl₂$ (M = Zr, Hf) and have been conveniently prepared in reasonable yields; this should facilitate future chemical and mechanistic studies into these compounds containing the powerful electron-releasing heptamethylindenyl ligand.

In addition, in view of the catalytic activity of the corresponding cyclopentadienyl and pentamethylcyclopentadienyl complexes, and the importance of ring substituents on the stereochemical outcome of polymerization reactions, it is possible that the heptamethylindenyl ligand might become important in the stereoselective polymerization of α -olefins.¹⁶

Acknowledgment. We would like to thank the SERC for financial support.

Supplementary Material Available: Listings of anisotropic thermal parameters **(2** pages). Ordering information is given on any current masthead page.

OM940478+

⁽¹⁴⁾ Atwood, **J. L.;** Hunter, W. E.; Hmcir, D. C.; Samuel, E.; Alt, H.; Rausch, M. *Inorg. Chem. 1975,14,* **1757.**

⁽¹⁵⁾ Roddick, **D.** M.; Fry& M. D.; Seidler, P. **F.;** Hillhouse, G. L.; Bercaw, J. E. *Organometallics 1985, 4,* **97.** Schock, **L. E.; Marks, T. J.** *J. Am. Chem. SOC. 1988,110,* **7701-7715.**

⁽¹⁶⁾ Samuel, E.; Rausch, M. D. *J. Am. Chem. SOC. 1973, 95, 6263.*