Polyoxometalate Derivatives with Multiple Organic Groups. 1. Synthesis and Structures of Tris(organotin) β -Keggin and α -Dawson Tungstophosphates

Feibo Xin and Michael T. Pope*

Department of Chemistry, Georgetown University, Washington, DC 20057-2222

Received July 8, 1994[®]

Tris(organotin)-substituted Keggin and Dawson tungstophosphates, [(PhSnOH)₃(PW₉O₃₄)₂]¹²⁻ (1), $[(BuSnOH)_3(PW_9O_{34})_2]^{12-}$ (2), $[(PhSn)_3P_2W_{15}O_{59}]^{9-}$ (3), and $[(BuSn)_3P_2W_{15}O_{59}]^{9-}$ (4), have been prepared by reaction of the organotin trichlorides with Na₈H[A-PW₉O₃₄]xH₂O and Na₁₂- $[\alpha - P_2W_{15}O_{56}] \cdot 24H_2O$, respectively. The products were characterized by elemental analysis, infrared spectroscopy, multinuclear NMR, and X-ray crystallography. Crystals of K₁₁H- $[(PhSnOH)_3(PW_9O_{34})_2]$ ·16H₂O are tetragonal, space group I4/amd, with lattice constants a b = 35.522(5) Å, c = 33.243(7) Å, V = 41946(12) Å³. R = 0.0863 for 350 variable parameters and 5664 reflections with $I > 2\sigma(I)$. The anion has nominal D_{3h} symmetry and contains three PhSnOH groups sandwiched between $A_{,\beta}$ -PW₉O₃₄⁹⁻ anions. It is an isomer of the complex reported by Knoth (Organometallics 1985, 4, 62-68), which is presumed to contain A, α -PW₉O₃₄⁹⁻. Crystals of K₅H₄[PhSn)₃P₂W₁₅O₅₉]·6H₂O are also tetragonal, space group I4/ m, with lattice constants a = b = 30.096(4) Å, c = 22.196(5) Å, V = 20105(6) Å³. R = 0.0936for 290 variable parameters and 5761 reflections with $I > 2\sigma(I)$. The anion has the anticipated C_{3v} Dawson structure with three cap $\{WO\}^{4+}$ replaced by $\{SnPh\}^{3+}$. Each of the Sn-O-Sn oxygens is protonated.

Introduction

The remarkable properties and structures of polyoxoanions of molybdenum, tungsten, and vanadium continue to stimulate investigation with respect to their widespread applications.¹ Areas of particular current interest are the biological activity exhibited by polyoxometalates and potential chemotherapy involving such species² and their versatility as catalysts.³ In each of these fields it is desirable to be able to modify polyoxoanion surfaces in order to develop specific anionsubstrate recognition, and, in the area of possible chemotherapy, to achieve membrane permeability. On the basis of the hydrolytic robustness of the tin-carbon bond, and the similar sizes of Sn(IV) and W(VI), we are seeking to produce water-stable polyoxotungstate structures in which domains of terminal WO^{4+} groups have been replaced by ${SnR}^{3+}$. Earlier work has demonstrated that isolated ${SnR}^{3+}$ groups can be incorporated into Keggin structures.⁴ We report here the

structural characterization of complexes derived from the lacunary anions $PW_9O_{34}^{9-}$ and $P_2W_{15}O_{56}^{12-}$.

Experimental Section

Synthesis. Sodium A-9-tungstophosphate (Na₈H[A-PW₉O₃₄] xH_2O and sodium α -15-tungstodiphosphate (Na₁₂[α -P₂W₁₅O₅₆]- $24H_2O$) were prepared following the published methods^{5,6} and were identified by infrared spectroscopy. Phenyltin trichloride and butyltin trichloride were obtained from Aldrich and used without further purification.

 $K_{11}H[(PhSnOH)_3(PW_9O_{34})_2]$ ·16H₂O. (1) To a solution of 0.6 mL of PhSnCl₃ (3 mmol) in 60 mL of water at room temperature was added sodium acetate to adjust the pH to 1.5. At this stage the solution is slightly turbid. Powdered Na₈H[A-PW₉O₃₄]xH₂O (5.7 g, 1 mmol) was added quickly to this solution with stirring. Within a few seconds most of the tungstophosphate had dissolved and the solution had clarified. The final pH was 5.0. Traces of unreacted tungstophosphate were filtered out after 10 min. Potassium chloride was added to the filtrate in small portions until no more precipitation was observed. The precipitate was collected on a medium porosity sintered glass frit, dried under suction for 1 h, washed with saturated KCl solution, and dried overnight under suction, giving a yield of 5.1 g. Long needlelike crystals of this solid were obtained by the method of vapor diffusion with ethanol. Anal. Calcd for $K_{11}H[(PhSnOH)_3(PW_9O_{34})_2]$ ·16H₂O: K, 7.64; C, 3.84; Sn, 6.36; P, 1.10; W, 58.69; H₂O, 5.13. Found: K, 7.72; C, 3.82; Sn 6.23; P, 1.15; W, 58.98; H₂O, 5.10. NMR: ¹H, δ 8.15 (d, 2H, ³ J_{H-Sn} = 135 Hz), 7.55 (m, 3H, ⁴ J_{H-Sn} = 65 Hz); ${}^{13}C{}^{1}H$, δ 133.3, 133.2, 128.2, 127.6; ${}^{31}P$, δ -9.9 (s, 2P); ¹¹⁹Sn{H}, δ -609.6 (s, 3Sn); ¹⁸³W, δ -123.4 (s, 6W, ²J_{W-W} = 14 Hz), -202.2 (s, 12W, ²J_{W-Sn} = 33Hz, ²J_{W-W} = 14 Hz).

[®] Abstract published in Advance ACS Abstracts, November 1, 1994. (1) A series of recent reviews can be found in *"Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity."* Pope, M. T.; Müller, A. eds., Kluwer Acadamic Publishers, Dordrecht, The Netherlands, 1994.

^{(2) (}a) See chapters by Yamase, T.; Hill, C. L.; Blasecki, J. W.; Dormont, D. in ref 1. (b) Crans, D. C.; Willging, E. M.; Butler, S. K. J. Am. Chem. Soc. **1990**, 112, 427. (c) Saha, A. K.; Crans, D. C.; Pope, M. T.; Simone, C. M.; Glew, R. H. J. Biol. Chem. **1991**, 266, 3511.

^{(3) (}a) See chapters by Misono, M., Finke, R. G., Grate, J. H., Neumann, R., Cadot, E., and Papaconstaninou, E. in ref 1. (b) Polyoxometalates used as heterogeneous catalysts: Misoni, M. Stud. Polyoxometalates used as heterogeneous catalysts: Misoni, M. Stud.
Surf. Sci. Catal. 1993, 75 (New Frontiers in Catalysis, Pt.A), 69-101.
Misono, M. Catal. Rev. Sci. Eng. 1988, 30, 339. (c) Polyoxometalates as homogeneous catalysts: Sattari, D.; Hill, C. L. J. Am. Chem. Soc. 1993, 115, 4649.
Hill, C. L.; Duncan, D. C.; Harrup, M. K. Comments. Inorg. Chem. 1993, 14, 367.
Lyon, D. K.; Miller, W. K.; Novet, T.; Domaille, P. J.; Evitt, E.; Johnson, D. C.; Finke, R. G. J. Am. Chem. Soc. 1901, 112, 7200. Soc. 1991, 113, 7209

^{(4) (}a) Knoth, W. H. J. Am. Chem. Soc. 1979, 101, 2211. (b) Zonnevijlle, F.; Pope, M. T. J. Am. Chem. Soc. 1979, 101, 2731. (c) Domaille, P. J.; Knoth, W. H. Inorg. Chem. 1983, 22, 818. (5) Massart, R.; Constant, R.; Fruchart, J. M.; Ciabrini, J. P.; Fournier, M. Inorg. Chem. 1977, 16, 2916. (c) Incorrection 2009, 27, 109

⁽⁶⁾ Inorganic Syntheses, 1992, 27, 108.

Table 1. Crystallographic Data

	1	2
formula	K ₁₁ H[(PhSnOH) ₃ (W ₉ PO ₃₄)32]•16H ₂ O	K ₅ H ₄ [(PhSn) ₃ W ₁₅ P ₂ O ₅₉)]•6H ₂ O
crystal size, mm	$0.2 \times 0.2 \times 0.4$	0.2 imes 0.4 imes 0.4
crystal system	tetragonal	tetragonal
space group	I4/amd	I4/m
<i>a</i> , Å	35.522(5)	30.096(4)
<i>c</i> , Å	33.243(7)	22.196(5)
V, Å ³	41946(12)	20105(6)
Z	16	8
T, °C	-70	-70
$\rho_{calc}, g/cm^3$	3.588	3.028
μ , cm ⁻¹	20.804	18.086
F(000)	39616	15927
θ , deg	1.62-25.01	1.77-28.85
index ranges	$-1 \le h \le 42$	$-1 \le h \le 35$
e	$-1 \le k \le 42$	$-1 \le k \le 40$
	$-1 \leq 1 \leq 39$	$-1 \le 1 \le 30$
refl collected	20890	11334
independent refl	9578	9612
refinement method	full-matrix least-squares on F ²	
data/restrain/para	9571/9/350	9603/9/290
goodness-of-fit on F^2	1.132	1.274
$\tilde{R}(1), [I \geq 2\sigma(I)]$	0.0863	0.0936
wR^2 , $[(I > 2\sigma(I)]]$	0.2051	0.2235
R(1), (all data)	0.1509	0.1589
wR^2 . (all data)	0.2416	0.2628
Lgst diff. peak & hole	$6.990 \& -2.742 e Å^{-3}$	3.903 & −3.896 e Å ⁻³

Cs₉[(BuSnOH)₃(PW₉O₃₄)₂]·12.5H₂O (2) was prepared analogously using the same quantities as above (0.6 mL of BuSnCl₃). Since this compound was more soluble than the phenyl analog, it was precipitated by adding CsCl instead of KCl. Recrystallization from hot water gave white needles. Anal. Calcd for Cs₉[(BuSnOH)₃(PW₉O₃₄)₂]·12.5H₂O: Cs, 20.16; C, 2.18; Sn, 5.40; P, 0.93; W, 50.20. Found: Cs, 19.92; C, 2.24; Sn, 6.53; P, 0.90; W, 49.85. NMR: ¹H, δ 1.95 (t, 2H, ³J_{H-Sn} = 364 Hz), 1.58 (m, 2H, ⁴J_{H-Sn} = 265 Hz), 1.51 (m, 2H), 0.95 (t, 3H); ¹³C-{¹H}, δ 28.0, 25.4, 23.5, 11.3; ³¹P, δ -10.2 (s, 2P); ¹¹⁹Sn{H}, δ -578.8 (s, 3Sn); ¹⁸³W, δ -125.1 (s, 6W), -200.6 (s, 12W).

 $K_5H_4[(PhSn)_3P_2W_{15}O_{59}]\text{-}6H_2O$ (3) and $K_{6.5}H_{2.5}[(BuSn)_3\text{-}P_2W_{15}O_{59}]\text{-}15H_2O$ (4) were prepared analogously. After adjustment of the pH of the solution of 0.6 mL of RSnCl₃, 4.5 g of Na_{12}[\alpha-P_2W_{15}O_{56}]\text{-}24H_2O (1 mmol) was added. The final pH of the solution was 4.5. Addition of KCl yielded white precipitates which were filtered off and recrystallized from hot water.

Compound 3. Yield: 4.1 g. Anal. Calcd for $K_8H_4[(PhSn)_3-P_2W_{15}O_{59}]\cdot 6H_2O$: K, 4.21; C, 4.65; Sn, 7.67; P, 1.33; W, 59.44. Found: K, 4.01; C, 4.29; Sn, 7.54; P, 0.96; W, 59.5. NMR: ¹H, δ 7.84 (m, 2H, ${}^3J_{H-Sn} = 209$ Hz), 7.55 (m, 3H, ${}^4J_{H-Sn} = 95$ Hz); ${}^{13}C{}^{1H}$, δ 133.5, 133.4, 128.9, 127.4; ${}^{31}P$, δ -7.5 (s, 1P, ${}^2J_{P-Sn} = 14$ Hz), -13.6 (s, 1P); ${}^{19}Sn{H}$, δ -567.4 (s, 3Sn, ${}^2H_{Sn-P} = 14$ Hz)); ${}^{183}W$, δ -150.2 (s, 3W, ${}^2J_{W-W} = 19$ Hz), -222.3 (s, 6W, ${}^2J_{W-W} = 19$ Hz), -259.9 (s, 6W, ${}^2J_{W-Sn} = 78$ Hz, ${}^2J_{W-W} = 26$ Hz).

Compound 4. Yield: 4.0 g. Anal. Calcd for $K_{6.5}H_{2.5}[(Bu-Sn)_3P_2W_{15}O_{59}]$ ·15H₂O: K, 5.27; C, 2.99; Sn, 7.43; W, 57.12; P, 1.29. Found: K, 5.28; C, 2.95; Sn, 6.84; W, 59.47; P, 1.26. NMR: ¹H δ 1.80 (t, 2H, ³J_{H-Sn} = 384 Hz), 1.50 (m, 2H, ⁴J_{H-Sn} = 213 Hz), 1.41 (m, 2H), 0.91 (t, 3H); ¹³C{¹H}, δ 24.6, 23.4, 22.3, 11.3; ³¹P, δ -6.6 (s, 1P, ²J_{P-Sn} = 13 Hz), -13.8 (s, 1P); ¹¹⁹Sn{H}, δ -517.2 (s, 3Sn, ²J_{Sn-P} = 13Hz); ¹⁸³W, δ -152.7 (s, 3W, ²J_{W-W} = 16Hz), -226.1 (s, 6W, ²J_{W-W} = 16 Hz), -261.2 (s, 6W, ²J_{W-Sn} = 49Hz, ²J_{W-W} = 23 Hz).

Physical Measurements. Infrared spectra were recorded on a MIDAC FTIR instrument. Elemental analyses were performed by E&R Microanalytical Laboratory Inc., Corona, NY. All NMR data were obtained on a Bruker AM-300WB spectrometer. Resonance frequencies were 300.113 MHz for ¹H and 75.469 MHz for ¹³C in 5 mm tubes, 121.495 MHz for ³¹P and 111.924 MHz for ¹¹⁹Sn in 10mm tubes, and 12.505 MHz for ¹⁸³W in 20 mm tubes. Pulse widths (90°) were 2.1 µs for ¹³C, 11 µs for both ³¹P and ¹¹⁹Sn, and 40 µs for ¹⁸³W. Chemical shifts are given with respect to external 85% H₃PO₄ for ³¹P and saturated Na₂WO₄ for ¹⁸³W. For ¹¹⁹Sn NMR, a solution of SnCl₂ in 12 M HCl (chemical shift -388.1 vs tetramethyl tin)⁷ was used as external standard, the chemical shifts are reported with respect to (CH₃)₄Sn. All chemical shifts downfield of the references are reported as positive. Most of the NMR experiments were done with aqueous unbuffered solutions. To achieve sufficiently concentrated solutions for ¹⁸³W NMR (ca. 4 g/15 mL), the potassium and cesium salts were treated with LiClO₄. In the experiments to determine the pK₈'s of 1 and 3, ³¹P NMR spectra were obtained at different pH, and 1 M LiCl solution was used to keep the ionic strength relatively constant.

Crystallography. Crystals of compounds 1 and 3 used in this investigation lost solvent quickly, so they were mounted on glass fibers over dry ice. The data were collected at -70°C on a Siemens P4/RA diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved using SHELXL-PLUS (Siemens) direct methods for W, Sn, and P. Both compounds were refined with SHELXL-93 (Sheldrick, G. M.) by full-matrix least-squares, the minimized function being $\sum \omega(|F_0| - |F_c|)^2$. The weighting scheme was $\omega = 1/[\sigma^2(F^2) + (0.0922P)^2 + 12.05P]$ where P = (Max- $(F_o^2,0) + 2F_c^2)/3$. Crystal data and structure refinement parameters are listed in Table 1. Since the three phenyl rings of $K_{11}H(PhSnOH)_3(PW_9)_2$ underwent thermovibration, nine restraints were introduced to fix the six-membered rings. Because of possible disorder of the cation positions, only eight potassiums of $K_{11}H(PhSnOH)_3(PW_9)_2$ and four potassium of $K_5H_4[(PhSn)_3(P_2W_{15}O_{59})]$ were located. Final atomic coordinates and thermal parameters of 1 are given in Tables 2 and 4, and selected bond lengths in Tables 3 and 5.

Results and Discussion

The two lacunary tungstophosphate anions $[(PO_4)_2-W_{15}O_{48}]^{12-}$ ("P₂W₁₅") and $[(PO_4)W_9O_{30}]^{9-}$ ("A-PW₉") are reproducibly isolable as sodium salts, but are metastable in solution and yield a variety of hydrolysis products depending upon pH. Thus the current syntheses were carried out by rapidly adding the solid salts to freshly prepared solutions of the organotin trichloride. Such

⁽⁷⁾ Lassigne, C. R.; Wells, E. J. Can. J. Chem. 1977, 55, 927.

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for $[(PhSnOH)_3(PW_9O_{34})_2]^{12-a}$

	x	У	z	$U(eq)^b$
W(8)	899(1)	3417(1)	1232(1)	20(1)
W(7)	1010(1)	3414(1)	114(1)	19(1)
W(6)	1875(1)	3412(1)	-293(1)	22(1)
W(5)	2724(1)	3416(1)	372(1)	24(1)
W(4)	2618(1)	3419(1)	1374(1)	24(1)
W(9)	1655(1)	3426(1)	1830(1)	20(1)
W(3)	1465(1)	4278(1)	1243(1)	29(1)
W(2)	1566(1)	4276(1)	225(1)	30(1)
W(1)	2340(1)	4280(1)	829(1)	31(1)
Sn(3)	1388(1)	2500	-210(1)	23(1)
Sn(2)	1219(1)	2500	1635(1)	28(1)
Sn(1)	2790(1)	2500	892(1) 774(2)	$\frac{30(1)}{18(2)}$
P(1)	1798(2)	3436(3)	364(8)	51(8)
O(12)	2001(9) 2018(7)	4428(9)	1233(7)	28(6)
O(13)	1326(7)	4409(7)	690(7)	29(6)
O(23) O(49)	2173(6)	3398(7)	1679(6)	21(5)
O(36S)	1802(7)	2905(7)	-308(7)	34(6)
O(3)	1564(6)	3329(6)	1120(6)	18(5)
O(2)	2205(6)	3311(6)	806(6)	22(5)
O(26)	1837(7)	3929(7)	-82(7)	33(6)
O(88)	442(7)	3524(7)	1340(7)	34(6)
O(78)	883(6)	3374(6)	660(6)	20(5)
O(1)	1802(7)	3912(7)	771(7)	28(6)
O(77)	599(7)	3518(6)	-107(6)	24(5)
O(37S)	1044(7)	2098(7)	43(7)	33(6)
0(89)	1132(7)	3300(0)	1/41(0)	24(5)
0(293)	1086(6)	2084(7)	1057(7)	32(0)
O(38) O(158)	2758(7)	2910(7)	444(7)	33(6)
O(100)	1170(6)	3934(6)	234(6)	20(5)
O(56)	2348(6)	3358(6)	-28(6)	17(5)
O(4)	1642(6)	3311(7)	380(6)	23(5)
O(67)	1338(7)	3484(7)	-333(6)	27(6)
O(55)	3118(7)	3511(7)	88(6)	27(6)
O(14S)	2671(7)	2916(7)	1334(7)	34(6)
O(33)	1258(7)	4636(7)	1521(7)	35(6)
O(39)	1668(7)	3959(7)	1617(7)	29(6)
O(66)	2001(7)	3517(7)	-7/9(7)	30(6)
O(45)	2924(7)	3487(7)	908(0)	28(0)
O(44)	1693(6)	3510(0)	2335(6)	22(5)
O(33)	911(8)	2911(8)	1325(7)	45 (7)
O(14)	2466(7)	3944(7)	1247(7)	32(6)
O(15)	2546(7)	3947(7)	469(6)	27(6)
O(22)	1432(7)	4597(7)	-128(7)	36(7)
O(11)	2687(8)	4619(8)	858(7)	40(7)
C (11)	3399(15)	2500	946(14)	29(13)
C(12)	3560(19)	2866(18)	968(17)	134(29)
C(13)	3964(18)	2837(17)	1015(15)	121(25)
C(14)	4176(18)	2500	1032(16)	48(16)
C(21)	916(16)	2500	2161(15) 2255(15)	35(13)
C(22)	132(14)	2/80(17)	2000(10)	110(23)
C(24)	526(25) 547(15)	2300	2735(24) 2715(14)	93(19)
C(23) C(31)	1210(15)	2500	-809(14)	30(12)
C(32)	1021(16)	2826(13)	-962(19)	107(23)
C(33)	829(15)	2826(13)	-1379(17)	92(19)
C(34)	917(17)	2500	-1563(17)	44(15)
O(1S)	2225(14)	2500	803(13)	66(14)
O(2S)	1557(16)	2500	1183(15)	80(16)
O(3S)	1622(12)	2500	354(12)	51(11)

^a Symmetry transformations used to generate equivalent atoms: (1) x, $-y + \frac{1}{2}$, z; (2) $-y + \frac{3}{4}$, $x - \frac{1}{4}$, $-z + \frac{1}{4}$; (3) $y + \frac{3}{4}$, $-x + \frac{3}{4}$, $-z + \frac{1}{4}$; (4) $y + \frac{1}{4}$, $-x + \frac{3}{4}$, $-z + \frac{1}{4}$; (5) -x + 1, -y + 1, -z; (6) $-y + \frac{3}{4}$, x + 1, $z - \frac{1}{4}$; (7) x, -y + 1, -z; (8) $-y + \frac{1}{4}$, $-x + \frac{3}{4}$, $z + \frac{1}{4}$; (9) $y - \frac{1}{4}$, $-x + \frac{3}{4}$, $z + \frac{1}{4}$; (10) -x, y, z. ^b U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

solutions are slightly turbid at pH 1.5 as a result of partial hydrolysis, but react cleanly and rapidly with the added tungstophosphates to give the desired products in nearly quantitative yield. The reaction stoichi-

Table 3. Selected Bond Lengths (Å) and Angles (deg) for [(PhSnOH)₃(PW₉O₃₄)₂]¹²⁻ Anion

	[(PhShOr)3(P	vv ₉ O ₃₄) ₂] Alloli	-
W(8)-O(88)	1.70(3)	W(2)-O(22)	1.70(3)
W(8) - O(28S)	1.83(3)	W(2) - O(23)	1.83(2)
W(8)-O(78)	1.91(2)	W(2) - O(27)	1.86(2)
W(8)-O(89)	1.91(2)	W(2) - O(26)	1.87(2)
W(8)-O(38)	2.01(2)	W(2) - O(12)	1.96(3)
W(8)-O(3)	2.41(2)	W(2) - O(1)	2.38(2)
W(7)-O(77)	1.68(2)	W(1) - O(11)	1.72(3)
W(7)-O(37S)	1.83(3)	W(1) - O(13)	1.79(2)
W(7)-O(78)	1.88(2)	W(1) - O(15)	1.84(2)
W(7)-O(67)	1.90(2)	W(1) = O(12)	1.88(3)
W(7)-O(27)	1.98(2)	W(1) = O(14)	1.89(2)
W(7)-O(4)	2.44(2)	W(1) - O(1)	2.33(2)
W(6)-O(66)	1.71(2)	W(5) = O(55)	1.72(2)
W(6)-O(36S)	1.82(3)	W(5) = O(15S)	1.82(3)
W(6)-O(56)	1.91(2)	W(5) - O(56)	1.89(2)
W(6)-O(67)	1.93(2)	W(5) - O(45)	1.93(2)
W(6)-O(26)	1.97(3)	W(5) - O(15)	2.01(2)
W(6)-O(4)	2.41(2)	W(5) - O(2)	2.37(2)
W(4) = O(44)	1.72(3)	W(9)-O(99)	1.72(2)
W(4) = O(14S)	1.80(3)	W(9) - O(29S)	1.83(3)
W(4) = O(49)	1.88(2)	W(9)-O(89)	1.90(2)
W(4) = O(45)	1.91(2)	W(9) - O(49)	1.91(2)
W(4) - O(14)	1.99(3)	W(9)-O(39)	2.02(2)
W(4) = O(2)	2.42(2)	W(9) = O(3)	2.41(2)
W(3) = O(33)	1.73(3)	W(3) - O(23)	1.96(2)
W(3)-O(38)	1.82(2)	W(3) - O(13)	1.98(2)
W(3) = O(39)	1.83(2)	W(3) - O(1)	2.36(2)
Sn(3)=O(3S)	2.05(4)	Sn(2) - O(2S)	1.92(5)
Sn(3) = O(37s)	2.06(2)	Sn(2) - C(21)	2.05(5)
Sn(3) - C(31)	2.09(5)	Sn(2) - O(29S)	2.08(2)
Sn(3)=O(36S) 2.08(3)	Sn(2) - O(28S)	2.09(3)
Sn(1) = O(1S)	2.03(5)	Sn(1) - O(15S)	2.08(2)
Sn(1) = O(14S)) 2.13(2)	Sn(1) - C(11)	2.17(6)
P(1) = O(3)	1.49(2)	P(1) - O(4)	1.52(2)
P(1) = O(2)	1.54(2)	P(1) - O(1)	1.61(3)
C(11) - C(12)	1.42(4)	C(12) - C(13)	1.45(4)
C(13) - C(14)	1.42(4)	C(21)-C(22)	1.37(4)
C(22)-C(23)	1.37(4)	C(24) - C(23)	1.38(4)
C(31) - C(32)	1.43(6)	C(32) - C(33)	1.54(8)
C(33) - C(34)	1.35(5)		

ometries were established from preliminary studies monitored by ³¹P NMR. Elemental analyses of the recrystallized materials and multinuclear NMR spectroscopy are fully consistent with the structures revealed by X-ray crystallography for 1 and 3. The characteristic IR spectra, shown in Figure 1, convincingly demonstrate the structural analogies of 1 with 2 and 3 with 4.

 $(\mathbf{RSn})_3(\mathbf{PW}_9)_2$ Anions (1 and 2). The structure of 1 shown in Figure 2 consists of two A-type PW₉ anions linked by three phenyltin groups into an assembly of virtual D_{3h} symmetry. The PW₉ groups are formed by removal of three adjacent corner-shared WO₆ octahedra (thus, "A-type")⁸ from the currently unknown β -isomer of $[(PO_4)W_{12}O_{36}]^{3-}$. In 1985, Knoth et al.⁹ prepared a phenyltin complex of identical composition to 1 by adding PhSnCl₃ dropwise to an aqueous solution of Na₈- HPW_9O_{34} . Knoth's compound, which we have successfully reproduced, has different ${}^{31}P(-10.9 \text{ vs} - 9.9)$ and $^{183}W(-138.6(3W), -190.0(6W) vs -123.4(3W), -202.2$ -(6W)) chemical shifts from 1. Knoth proposed that his compound contained two A,α -PW₉ groups, and this would now appear to be correct. The complexes K₉H₂- $(OCe)_3(PW_9O_{34})_226H_2O$ and $K_{11}H_3[Cu_3(NO_3)](PW_9O_{34})_2$. 28H₂O prepared in a similar manner by Knoth were shown by X-ray structural investigation also to contain

⁽⁸⁾ Hervé, G.; Tézé, A. Inorg. Chem. 1977, 16, 2115.

⁽⁹⁾ Knoth, W. H.; Domaille, P. J.; Farlee, R. D. Organometallics 1985, 4, 62.

Table 4. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for $[(PhSn)_3P_2W_{15}O_{59}]^{9-a}$

	x	у	z	$U(eq)^b$
W(1)	7788(1)	1049(1)	5823(1)	17(1)
W(2)	7898(1)	2302(1)	5830(1)	22(1)
W(3)	6819(1)	1137(1)	6582(1)	21(1)
W(4)	5770(1)	1235(1)	5761(1)	24(1)
W(5)	6937(1)	2384(1)	6580(1)	23(1)
W(6)	5879(1)	2304(1) 2486(1)	5751(1)	34(1)
W(8)	7654(1)	3346(1)	5000	32(1)
W(7)	6677(1)	3/30(1)	5766(1)	39(1)
Sn(1)	6365(1)	155(1)	5799(1)	18(1)
Sn(1)	7385(1)	58(1)	5000	17(1)
D(2)	6783(4)	1070(4)	5000	17(1) 16(2)
P(1)	6006(4)	1079(-)	5000	24(3)
O(94)	5013(7)	656 (7)	5718(0)	24(5)
O(15)	6125(10)	-113(10)	5000	24(3)
O(13)	7600(6)	-115(10)	5621(0)	19(4)
O(31)	6338(0)	1260(0)	5000	10(4)
O(22F)	6050(6)	-175(6)	5656(0)	19(0)
O(91)	6729(9)	-175(0)	5050(9)	10(4)
O(2F)	6102(8)	2101(8)	5684(11)	40(5)
O(07)	7906(8)	5101(8)	5064(11)	40(6)
O(11)	7090(0)	1192(8)	5000	12(0)
0(13)	/443(0)	1047(0)	6217(0)	10(3)
O(57)	6920(7) 5220(7)	2980(7)	6317(9)	27(5)
O(44)	5320(7)	1215(7)	6226(10)	32(6)
O(11P)	0423(11) 7152(()	2341(10)	5000	34(8)
O(12P)	/152(6)	2277(6)	5570(9) (249(9)	19(5)
0(93)	0/12(0)	5/4(0)	0348(8)	15(4)
0(50)	0338(7)	2308(7)	6279(9) 5000	25(5)
O(22)	7979(9)	2208(9)	5000	17(6)
O(23P)	7043(0)	1188(0)	5505(9) 5619(10)	22(5)
O(78)	7200(7)	3018(7)	56(1(10)	33(0)
0(46)	5/00(7)	1903(7)	5001(10)	20(8)
0(00)	5003(10)	2038(10)	5000	50(8) 22(5)
0(34)	0251(0)	1524(7)	6300(9)	23(3)
O(19)	8300(0)	953(0)	6092(9)	21(5)
O(25)	/302(0)	2439(7)	6340(9) 6000	21(5)
O(13P)	0908(10)	2954(10)	5000	29(8)
0(44)	3465(10)	121/(10)	5000	24(7)
0(22)	8430(6)	2308(0)	6093(9)	17(4)
O(12)	/810(/)	1099(7)	5970(10) 7224(11)	31(5)
0(33)	0/30(8)	1081(8)	7334(11)	42(7)
0(55)	0857(8)	2494(8)	/328(11)	38(0)
O(33)	6522(12)	$\frac{1771(7)}{2682(12)}$	5000	52(0)
O(11)	0333(12)	3003(12) 3710(11)	5000	$\frac{32(10)}{42(0)}$
0(88)	8127(11) 7822(7)	3/19(11)	5572(10)	43(9)
O(28)	7855(7) 6527(0)	2903(7)	5572(10) 6242(12)	20(3)
O(77)	5441(10)	3630(9)	6243(12)	54(7)
O(00)	5441(10)	2620(10)	61/9(14)	11(6)
C(11)	5574(12)	-200(9) -277(12)	6439(12)	44(10)
C(12)	5374(13)	-277(13)	6017(10)	51 (11)
C(13)	5659(16)	-334(13) -712(16)	7224(22)	71(11)
C(14)	5056(10)	-712(10) -696(14)	7354(22)	71(14) 54(11)
C(15)	6204/11)	-000(14) -404(11)	/ 30U(19) 6901(14)	34(11)
	7004(11)	-424(11)	5000	54(9) 24
C(21)	/004		5404	24 251
C(22)	0411 8567	-540	J424 5155	231
C(23)	0JU/ 8506	-042	5000	520
C(24)	8760	-1050	J000 4614	300
C(25)	7913	-757	4584	262
-(20)	1210	101	1001	202

^a Symmetry transformations used to generate equivalent atoms: (1) y + 1, -x + 1, z; (2) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, $-z + \frac{3}{2}$; (3) x, y, -z + 1; (4) y + 1, -x + 1, -z + 1; (5) y, -x + 1, -z + 1; (6) -y + 1, x, z; (7) -y + 1, x - 1, z. ^b U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

A, α -PW₉ groups.¹⁰ On the other hand, Kawafune and Matsubayashi¹¹ have recently shown that $[N(CH_3)_4]_3$ - $[PMo_3W_9O_{40}]$, prepared by adding Na₈HPW₉O₃₄ to a solution of Na₂MoO₄, has an A, β -structure. Taken together, all of the above observations strongly suggest

Table 5. Selected Bond Lengths (Å) and Angles (deg) for ((PbSn)-P.W.-Q.:.¹²⁻

$[(PnSn)_{3}P_{2}W_{15}O_{59}]^{5}$					
1.81(3)					
1.92(2)					
1.94(2)					
2.38(3)					
1.77(2)					
1.71(3)					
1.91(2)					
1.95(2)					
1.95(2)					
2.39(2)					
1.70(2)					
1.80(2)					
2.36(2)					
1.97(2)					
1.71(2)					
1.85(2)					
1.89(2)					
1.90(2)					
1.92(2)					
2.34(2)					
1.92(2)					
2.08(2)					
2.38(2)					
2.04(2)					
2.08(2)					
2.40(2)					
2.050(3)					
2.43(2)					
1.52(2)					
1.48(3)					
1.57(2)					
1.44(4)					
1.35(6)					
1.46(5)					
1.39					

Figure 1. Infrared spectra of 1-4, recorded in KBr pellets.

that the lacunary precursor anion in unthermolyzed Na₈-HPW₉O₃₄ xH_2O has an A, β structure in the solid state, as had originally been proposed.¹² Upon dissolution, isomerization to the A, α -isomer presumably takes place at a rate which is slow relative to that of reaction with Sn or Mo(VI).

⁽¹⁰⁾ Knoth, W. H.; Domaille, P. J.; Harlow, R. L. Inorg. Chem. 1986, 25, 1577.

⁽¹¹⁾ Kawafune, I.; Matsubayashi, G. Chem. Lett. 1992, 1869.

Figure 2. SHELXP representation of the structure of 1.

Table 6.Bond Valence Sums of Selected Oxygen Atoms of1 and 3

$K_{11}H[(PhSnOH)_3(PW_9O_{34})_2]$ (1)		$K_5H_4[(PhSn)_3(P_2W_{15}O_{59})]$ (3)			
	BVS	ave BVS		BVS	ave BVS
internal Sn-O			Sn-O-Sn		
O(1S)	0.71		O(91)	1.29	1.27
O(2S)	0.96	0.78	O(1S)	1.25	
O(3S)	0.67		Sn-O-W		
Sn-O-W			O(93)	2.07	
O(14)	1.90		O(94)	2.07	2.04
O(15)	1.92		O(91)	1.99	
O(28)	1.87	1.91	W-O-W		
O(29)	1.89		O(12)	2.01	
O(36)	1.92		O(25)	2.07	
O(37)	1.92		O(34)	2.09	
W-O-W			O(46)	2.12	2.05
O(12)	2.00		O(56)	2.19	
O(14)	1.90		O(67)	2.13	
O(23)	2.15	2.05	O(78)	1.85	
O(38)	2.07				
O(49)	2.12				
O(67)	2.01				

In the structure of 1, the Sn atoms which act as the filling in a two-PW₉ sandwich, have slightly distorted octahedral coordination. Each Sn atom is displaced 0.25 Å out of the plane of the four bridging oxygens toward the phenyl group, with an average equatorial O-Sn bond length of 2.09 Å (2.06-2.13 Å), axial O-Sn bond length of 2.00 Å (1.92-2.05 Å) and C-Sn bond length of 2.11 Å (2.06-2.17 Å). The W-O(Sn) bond lengths (1.82-1.83 Å) are somewhat shorter than those for W-O(W) (1.84-2.01; average 1.91 Å). Nevertheless, bond valence sum (BVS) calculations¹³ for all bridging oxygens yield values of 1.9-2.3 (Table 6). That the internal Sn-O groups are protonated is revealed by BVS values of 0.7, 1.0, and 0.7 for O(1S), O(2S), and O(3S) respectively.

Figure 3. Phosphorus-31 chemical shifts as a function of pH, recorded in 1 M LiCl solution at *ca*. 298 K: upper, anion 1; lower, anion 3.

The $K_{11}H[anion]$ stoichiometry of the crystals suggests that an additional proton is also present. In their investigations of the presumed α-isomer, Knoth et al.⁹ isolated $Cs_8K[(PhSnOH_2)_3(PW_9O_{34})_2]$ at pH 1 and $[(CH_3)_4N]_9K_2[(PhSnOH_2)(PhSnOH)_2(PW_9O_{34})_2]$ at pH 7. Given the oxygen BVS values noted above, our anion (isolated at pH 5.0) could be formulated as [(PhSnOH)₂- $(PhSnOH_2)(PW_9O_{34})_2]^{11-}.$ The pH dependence of the ³¹P-NMR spectrum of 1 in 1 M LiCl is illustrated in Figure 3. The data between pH 1.2 and 5.3 were fitted to pK_a's of 2.58 ± 0.19 and 4.74 ± 0.30 by means of the computer program LAKE.¹⁴ We conclude that these correspond to deprotonations of PhSnOH₂ to PhSnOH. Since the monoprotonated crystals of 1 were isolated at pH 5.0, it is plausible to assume that the most acidic species (δ 9.933) is triprotonated, i.e. is [(PhSNOH₂)₃-(PW₉O₃₄)₂]⁹⁻. This would correspond with Knoth's observation for the α -isomer. However, one could equally well postulate that the equilibria involve (PhSnOH₂)₂(PhSnOH), (PhSnOH)₂(PhSnOH)₂, and (Ph-SnOH)₃. The second scenario is supported by our observation that further attempted deprotonation of the anion above pH 5.5 results in processes that cause the NMR line to broaden and shift significantly (e.g. 58 Hz and -10.3 ppm at pH 6.5). Ultimately, the resonance is replaced first by a new narrow signal at -8.8 ppm and then by multiple resonances. The nature of the exchange and decomposition processes responsible for these observations is unclear.

 $(\mathbf{RSn})_3(\mathbf{P_2W_{15}})$ Anions (3 and 4). The structure of anion 3 (Figure 4) is based on the well-known Dawson anion α -[$(PO_4)_2W_{18}O_{54}$]⁶⁻ with three of the "cap" { WO^{4+} } groups replaced by { $SnPh^{3+}$ }. All NMR data (two-line ³¹P, one-line ¹¹⁹Sn, and three-line ¹⁸³W) are consistent with overall C_{3v} symmetry for the anion. Unlike the

⁽¹²⁾ Both α - and β -PW₉ (and AsW₉) were reported in 1974 [Contant, R.; Fruchart, J. M.; Hervé, G.; Tézé, A. C. R. Hebd. Seances Acad. Sci. Ser. C **1974**, 278, 199.]. The isomers were distinguished by electrochemical identification of the products of reaction with Mo(VI), α -PW₉Mo₂, and β -PW₉Mo₂, respectively. The β -isomer is easier to isolate and the preparation of the sodium salt was reported in 1977.⁵ The first X-ray structures of complexes derived from PW₉ contained α -PW₉ groups.¹⁰ from which Knoth *et al.* concluded that it was "quite likely that unthermolized Na₈HPW₉O₃₄, also has an A, α -PW₉ group."

⁽¹³⁾ Bond valence sums are computed as the sum of "bond strengths" at each atom. Bond strength: $s = \exp[(r_0 - r)/B]$, where r is the observed bond distance (Å) and r_0 and B are empirical parameters. Values of r_0 for W^{VI}-O²⁻ and Sn^{IV}-O²⁻ are 1.917 and 1.905 Å, respectively; B = 0.37. [Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.]

case of 1 and 2, tin is bonded to the center phosphorus through a bridging oxygen in 3 and 4, and Sn-P twobond coupling is observed (14Hz for 3, 13Hz for 4). Twobond Sn-W coupling is observed for all four compounds, but the $(RSn)_3(P_2W_{15})$ anions have larger coupling constants than $(RSn)_3(PW_9)_2$ (78Hz for 3, 33Hz for 1). This is consistent with the greater Sn-O-W bond angles for 3 than for 1 (147-158° and 139-142°, respectively).

The crystals of **3** contain a tetraprotonated anion. Three of the protons can be located with some degree of confidence on the oxygens bridging the tin atoms (Sn-O-Sn); BVS values for these oxygens are 1.3 (Table 6).¹³ The fourth proton is probably randomly located on one of several other surface bridging oxygens. The pH-dependence of the chemical shift of P(2) between pH 2.3 and 8.2, recorded in 1 M LiCl (Figure 3), was fitted to the following equilibria by means of the program LAKE.¹⁴

 $[H_{4}(PhSn)_{3}P_{2}W_{15}O_{59}]^{5^{-}} \Rightarrow [H_{3}(PhSn)_{3}P_{2}W_{15}O_{59}]^{6^{-}} + H^{+}$ $pK_{a} \pm 3\sigma = 4.99 \pm 0.07$ $[H_{c}(PhSn)_{a}P_{c}W_{cr}O_{cr}]^{6^{-}} \Rightarrow$

$$[H_{3}(PnSn)_{3}P_{2}W_{15}O_{59}]^{7} \implies$$

 $[H_{2}(PhSn)_{3}P_{2}W_{15}O_{59}]^{7-} + H^{+}$
 $pK_{a} \pm 3\sigma = 7.60 \pm 0.16$

Chemical shifts for the tetra-, tri-, and diprotonated anions are -7.48, -6.99(2), and -6.48(4) ppm, respectively.

Conclusions

X-ray single-crystal analyses have confirmed the structures of $[(PhSnOH_2)(PhSnOH_2)(PW_9O_{34})_2]^{11-}$ and $[(PhSn)_3(P_2W_{15}O_{59}H_4)]^{5-}$ anions. The second of these anions, with three adjacent organometallic groups,

 $\left(14\right)$ Calculations were performed by I. Andersson and L. Pettersson at the University of Umeå.

Figure 4. SHELXP representation of the structure of 3.

represents a new type of polyoxoanion. Unlike all previously known $M_3(PW_9)_2$ anions, 1 is shown to contain β -PW₉ groups and is only the second confirmed example of the β -tungstophosphate conformation. It is thus very likely that the precursor anion $A-[PW_9O_{34}]^{9-}$ has a β -structure as was originally proposed based on indirect evidence.

Acknowledgment. This work has been supported in part by the National Science Foundation through Grant CHE-9215228. The diffractometer was purchased with the assistance of NSF instrumentation Grant CHE-9115394. We gratefully acknowledge the help and advice of Professor Geoffrey Jameson, with the crystallographic investigation, of Ingegaerd Andersson and Lage Pettersson, for the LAKE calculations.

Supplementary Material Available: Complete tables of positional parameters, bond lengths and angles, and thermal parameters for 1 and 3 (27 pages). Ordering information is given on any current masthead page.

OM940536R