Bimetallic Arylation of Molecular Nitrogen¹

Youichi Ishii, Masayuki Kawaguchi, Yukiatsu Ishino, Takanori Aoki, and Masanobu Hidai*

Department of Chemistry and Biotechnology, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received September 14, 1994[®]

The anionic dinitrogen complex $[NBu_4][W(NCS)(N_2)(dppe)_2]$ (6, dppe = $Ph_2PCH_2CH_2PPh_2$) smoothly reacted with η^6 -fluoroarene complexes such as $[Cr(\eta^6-p-FC_6H_4R)(CO)_3]$ (3a, R = COOMe) and $[RuCp(\eta^{6}-FC_{6}H_{4}R)][PF_{6}]$ (5, $Cp = \eta^{5}-C_{5}H_{5}$, R = H, Me, OMe, COOMe) in THF under mild conditions (0 °C to room temperature) to give novel μ -aryldiazenido complexes $[W(NCS){N=N[(\eta^{6}-p-C_{6}H_{4}COOMe)Cr(CO)_{3}]}(dppe)_{2}]$ (7) and $[W(NCS){N=N[(\eta^{6}-p-C_{6}H_{4}R)-(\eta^$ RuCp (dppe) [PF₆] (10), respectively. μ -Aryldiazenido complexes 7 and [WF (N=N[(η^6 -p- C_6H_4R $C_7(CO)_3$ (dppe)₂ (8a, R = COOMe) were also obtained by irradiation of a THF solution of $[W(N_2)_2(dppe)_2]$ and **3a** in the presence of NBu₄X(X = SCN or F). The structures of these complexes were fully characterized by spectroscopic and X-ray diffraction analysis. The long N=N bond lengths (1.314(5) Å for 7, 1.33(1) Å for 8a, 1.28(1) Å for 10a (R = H))and the short N–C bond lengths (1.366(6) Å for 7, 1.30(2) Å for 8a, and 1.40(2) Å for 10a)indicate delocalization of the N=N π -electrons over the aromatic ring. The reaction was suggested to proceed by the direct nucleophilic aromatic substitution mechanism, rather than the radical mechanism so far reported for alkylation reactions of coordinated dinitrogen. Furthermore, reactions of the diazenido complex $[WF(NNH)(dppe)_2]$ (12) with fluoroarene complexes 3 (R = COOMe, H) and [FeCp(η^6 -FC₆H₄R)][PF₆] (4; R = H, Me) also provide a route to μ -aryldiazenido complexes such as 8 and $[WF{N=N[(\eta^6-p-C_6H_4R)FeC_p]}(dppe)_2]$ - $[PF_6]$ (13), respectively. Crystallographic data for 7-CH₂Cl₂: formula C₆₅H₅₇N₃O₅SP₄Cl₂-CrW, space group $P2_1/n$ (monoclinic); a = 24.135(3) Å, b = 20.967(5) Å, c = 12.273(5) Å, $\beta = 12.273(5)$ Å, $\beta = 12.27$ 90.06(4)°, V = 6210(5) Å³, Z = 4, R = 0.034, $R_w = 0.029$. **8a**·2THF: formula C₇₁H₇₁N₂O₇-FP₄CrW, space group $P2_1/a$ (monoclinic); a = 23.110(5) Å, b = 23.402(7) Å, c = 12.046(3) Å, $\beta = 93.89(2)^\circ$, V = 6500(3) Å³, Z = 4, R = 0.056, $R_w = 0.066$. **10a**·CH₂Cl₂: formula C₆₅H₆₀N₃F₆- SP_5Cl_2RuW , space group $P\overline{1}$ (triclinic); a = 12.630(2) Å, b = 23.648(3) Å, c = 11.507(3) Å, α = 103.11(1)°, β = 102.77(1)°, γ = 83.44(1)°, V = 3257.1(9) Å³, Z = 2, R = 0.062, $R_{\rm w}$ = 0.054. 13b·Me₂CO (R = Me): formula $C_{67}H_{66}N_2OF_7P_5FeW$, space group C2/c (monoclinic); a = $0.061, R_{\rm w} = 0.071.$

Introduction

Chemical transformation of molecular dinitrogen has been among the central subjects of widespread and continuing interest in organometallic chemistry, and extensive studies have been done concerning the syntheses and reactivities of transition metal dinitrogen complexes.² Protonation, alkylation, acylation, and silylation of coordinated dinitrogen have so far been achieved by the reactions of mononuclear dinitrogen complexes of the type $[M(N_2)_2(L)_4]$ (M = Mo or W, L = phosphine) with simple inorganic or organic reagents. Aiming at the development of new and efficient chemical transformation of dinitrogen which might be difficult at monometallic centers, we have focused our attention to bimetallic transformation of dinitrogen. At first we studied the reaction of dinitrogen complexes of the type $[M(N_2)_2(L)_4]$ with transition metal hydrides such as $[Cp_2-$ ZrHCl] or $[H_2Fe(CO)_4]$, which resulted in the formation of ammonia after hydrolysis.³ Saito et al. also investigated the reaction of dinitrogen complexes with hydridometal carbonyls from a similar point of view.⁴ We extended this approach to the reactions of coordinated dinitrogen with silylcobalt complexes toward development of the catalytic hydrosilylation of dinitrogen to silylamines,⁵ which led to isolation of W-Co and Mo-Co bimetallic silyldiazenido complexes.

Arylation of dinitrogen is one of the more intriguing reactions in the chemistry of dinitrogen complexes. However, such a reaction has rarely been achieved on a single metal center by either direct or indirect methods. Prior to this study, the only example of the direct arylation of coordinated dinitrogen was found in the reaction of a molybdenum dinitrogen complex with a tetrathia macrocycle ligand, $[M_0(N_2)_2(Me_8[16]aneS_4)]$, with iodo- or bromoarenes to give aryldiazenido complexes.⁶ In contrast, it has been claimed that more readily available dinitrogen complexes of the type

^{*} Abstract published in Advance ACS Abstracts, November 1, 1994.
(1) Preparation and Properties of Molybdenum and Tungsten Dinitrogen Complexes. 47. Part 46: Mizobe, Y.; Yokobayashi, Y.; Oshita, H.; Takahashi, T.; Hidai, M. Organometallics 1994, 13, 3764.
(2) (a) Hidai, M.; Mizobe, Y. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: London, 1988; Vol. 2, p 53. (b) Hidai, M. In Molybdenum Enzymes; Spiro, S., Ed.; John Wiley: New York, 1985: p. 285. (c) George, T. A. In Honogeneous Catalysis with York, 1985; p 285. (c) George, T. A. In Homogeneous Catalysis with Metal Phosphine Complexes; Pignolet, L. H., Ed.; Plenum Press: New York, 1983; Chapter 13. (d) Dilworth, J. R.; Richards, R. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, Chapter 60.

⁽³⁾ Hidai, M.; Takahashi, T.; Yokotake, I.; Uchida, Y. Chem. Lett. 1980, 645.

⁽⁴⁾ Nishihara, H.; Mori, T.; Tsurita, Y.; Nakano, K.; Saito, T.; Sasaki, Y. J. Am. Chem. Soc. 1982, 104, 4367.
 (5) Street, A. C.; Mizobe, Y.; Goto, F.; Mega, I.; Oshita, H.; Hidai,

M. Chem. Lett. 1991, 383.

Bimetallic Arylation of Molecular Nitrogen

 $[M(N_2)_2(L)_4]$ (M = Mo or W, L = phosphine) do not undergo direct arylation.⁷

On the other hand, an indirect arylation of coordinated dinitrogen has been investigated by using hydrazido complexes derived from dinitrogen complexes. Thus, hydrazido complexes $[WX(NNH_2)(dppe)_2]^+$ (X = Br, F, or CF₃COO), which can be obtained by the protonation of dinitrogen complex $[W(N_2)_2(dppe)_2]$ (1), react with 2,4-(NO₂)₂C₆H₃F in the presence of K₂CO₃ to give (2,4-dinitrophenyl)diazenido complexes.⁸ However, no other aryl group has been known to be introduced onto the N₂ unit, and therefore this indirect method seems to have a limitation.

On the basis of these backgrounds, we embarked on designing bimetallic reaction systems which enable the direct arylation of dinitrogen. We centered our guiding principle of seeking for such bimetallic reaction systems on the following points: (i) efficient activation of dinitrogen by coordination to a highly electron rich metal center in end-on fashion to enhance the nucleophilicity of the dinitrogen molecule, (ii) use of haloarenes activated by transition metal complexes as arylating agents, and (iii) appropriate combination of dinitrogen and haloarene complexes which results in the C-N bond formation under very mild conditions. Here we wish to describe the synthesis of a series of μ -aryldiazenido complexes by bimetallic arylation of dinitrogen as well as their detailed characterization.⁹ Arylation of a diazenido complex derived from dinitrogen complex 1, which corresponds to the indirect arylation of dinitrogen, is also described.

Results and Discussion

Arylation of Molecular Nitrogen at Bimetallic Centers. We at first examined reactions of 1 and $[W(N_2)_2(PMe_2Ph)_4](2)$ with several haloarene complexes such as $[Cr(\eta^6-p-FC_6H_4COOMe)(CO)_3]$ (3a), $[FeCp(\eta^6 C_{6}H_{5}F)$][PF₆] (4a), and [RuCp(η^{6} -C₆H₅F)][PF₆] (5a), but in all cases no distinct reaction was observed at room temperature. We turned our attention to an anionic dinitrogen complex, $[NBu_4][W(NCS)(N_2)(dppe)_2]$ (6), which is readily prepared by irradiation of 1 in the presence of NBu₄SCN with a tungsten-filament lamp.¹⁰ Since **6** shows lower ν_{NN} (1860 cm⁻¹) than **1** (2010, 1925 cm^{-1}) and 2 (1991, 1913 cm^{-1}), we presumed that the ligating dinitrogen in 6 is endowed the higher nucleophilicity than that in 1 and 2 since stronger backdonation is expected from the anionic tungsten center. In fact, 6 reacted with 3a in very dry THF at room temperature to give a dark red new complex, [W(NCS)- $\{N=N[(\eta^{6}-p-C_{6}H_{4}COOMe)Cr(CO)_{3}]\}(dppe)_{2}]$ (7), in 52% yield after purification by column chromatography and recrystallization (eq 1). It is obvious that the activation of the fluoroarene is also essential for the reaction, since free p-FC₆H₄COOMe did not react with **3a**.

The IR spectrum of complex 7 with lower ν_{CO} (1948, 1867, 1857 cm⁻¹) than those of **3a** (1991, 1902 cm⁻¹)

(6) Yoshida, T.; Adachi, T.; Ueda, T.; Kaminaka, M.; Sasaki, N.;
Higuchi, T.; Aoshima, T.; Mega, I.; Mizobe, Y.; Hidai, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1040.
(7) Chatt, J.; Head, R. A.; Leigh, G. J.; Pickett, C. J. J. Chem. Soc.,

(9) Ishii, Y.; Ishino, Y.; Aoki, T.; Hidai, M. J. Am. Chem. Soc. 1992, 114, 5429.

(10) Chatt, J.; Leigh, G. J.; Neukomm, H.; Pickett, C. J.; Stanley, D. R. J. Chem. Soc., Dalton Trans. **1980**, 121.

indicated the F atom of **3a** was substituted by an electron donating N atom. In the ¹H NMR spectrum, the signals due to the aromatic hydrogens of the C₆H₄-COOMe group appeared at higher fields (δ 5.73 (d, J = 7.3 Hz) and 4.11 (d, J = 7.3 Hz)) in comparison with those of related complexes such as [Cr(Me₂NC₆H₄-COOMe)(CO)₃] (δ 6.37 and 5.21).¹¹ This suggests that the C₆H₄COOMe group is surrounded by phenyl groups of the dppe ligand. These spectral data are in good agreement with the μ -aryldiazenido structure of the complex **7**, which was further confirmed by an X-ray diffraction study as described below.

Since the anionic dinitrogen complex **6** is obtained by irradiation of complex **1** in the presence of SCN^{-,10} it is expected that the reaction of **1**, **3a**, and NBu₄SCN under irradiation gives **7** by way of the in situ formation of **6**. In fact, irradiation of a THF solution of **1**, **3a**, and NBu₄-SCN by means of a tungsten filament lamp at room temperature afforded **7** in 25% yield (eq 2), while a similar reaction in the dark failed to give **7**. It is also interesting to note that use of NBu₄F instead of NBu₄-SCN yielded the corresponding μ -aryldiazenido complex [WF{N=N[(η^6 -p-C₆H₄COOMe)Cr(CO)₃]}(dppe)₂] (**8a**) in 24% yield, whose molecular structure closely related to

complex 7 was confirmed crystallographically (vide infra). Although the formation of $[NBu_4][WF(N_2)-$

⁽⁷⁾ Chatt, J.; Head, R. A.; Leigh, G. J.; Pickett, C. J. J. Chem. Soc., Dalton Trans. 1978, 1638.
(8) Colquhoun, H. M. J. Chem. Res., Synop. 1979, 325; J. Chem.

⁽⁸⁾ Colquhoun, H. M. J. Chem. Res., Synop. 1979, 325; J. Chem. Res., Miniprint 1979, 3677.

⁽¹¹⁾ van Meurs, F.; van Bekkum, H. J. Organomet. Chem. 1977, 133, 321.

 $(dppe)_2$ (9) could not be verified by IR in a reaction of 1 and NBu₄F under irradiation, in situ generated 9 is presumed to react further with 3a.

In order to reveal the applicability of this bimetallic approach toward the arylation of dinitrogen, similar reactions of **6** with $[Cr(\eta^6-C_6H_5F)(CO)_3]$ (**3b**) and **4a** were attempted, but neither of them yielded products with N-aryl bonds. Especially the latter reaction gave $[W(NCS)(N_2)(dppe)_2]^{10}$ as the only identified product (IR ν_{NCS} 2040, ν_{NN} 1918 cm⁻¹), which is considered to be formed by the one-electron redox reaction between **6** and **4a** (eq 3).

In contrast, a series of ruthenium fluoroarene complexes $[RuCp(\eta^{6}-p-FC_{6}H_{4}R)][PF_{6}]$ (5a; R = H; 5b, R = Me; 5c, R = OMe; 5d, R = COOMe) smoothly reacted with 6 in very dry THF at 0 °C to room temperature to give dark red solutions, from which a series of μ -aryldiazenido complexes [W(NCS){N=N[$(\eta^6-p-C_6H_4R)RuCp$]}- $(dppe)_2$ [PF₆] (**10a**-d) were isolated in 21-55% yields (eq 4). Interestingly, the ¹H NMR signals of the η^6 -aryl protons (δ 4.7-5.7) and Cp protons (δ 4.61-4.67) appeared in higher-field regions than the reported values for [RuCp(arene)]⁺ (aryl protons, δ 6.1–7.0; Cp protons, 5.1-5.8) due to the shielding effect of the dppe phenyls.¹² It should be noted that the use of RuCp⁺ as the activating group for the fluoroarenes enabled the introduction of various aryl groups onto the coordinated dinitrogen. In this respect, $RuCp^+$ is the more efficient activating group for fluoroarenes than $Cr(CO)_3$. However, an attempted reaction of **6** with $[RuCp(\eta^6-ClC_6H_5)]$ (5e) failed to give 10a.

The X-ray Structures of Bimetallic µ-Aryldiazenido Complexes. The detailed molecular structures of the bimetallic complexes 7·CH₂Cl₂, 8a·2THF, and

Figure 1. ORTEP drawing for complex $[W(NCS){N=N-[(\eta^6-p-C_6H_4COOMe)Cr(CO)_3]}(dppe)_2]$ ·CH₂Cl₂ (7·CH₂Cl₂). Hydrogen atoms and solvated dichloromethane are omitted.

Figure 2. ORTEP drawing for complex [WF{N=N[$(\eta^6-p-C_6H_4COOMe)Cr(CO)_3$]}(dppe)₂)·2THF (**8a**·2THF). Hydrogen atoms and solvated THF are omitted.

10a-CH₂Cl₂ were unambiguously determined by X-ray diffraction studies. The ORTEP views are shown in Figures 1–3. The bond angles for the W–N–N (7, 164.9(3)°; 8a, 161(1)°; 10a, 166 (1)°) and N–N–C (7, 120.0(4)°; 8a, 117(1)°; 10a, 122 (1)°) linkages correspond to those of singly bent diazenido complexes. However, the N=N bond distances (7, 1.314(5) Å; 8a, 1.33(1) Å; 10a, 1.28(1) Å) belong to the longest class among those reported for similar singly bent diazenido complexes (1.16–1.29 Å)^{5,6,13} and lie in the range of the N–N bond

^{(12) (}a) Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics 1986, 5, 2199. (b) Vol'kenau, N. A.; Bolesova, I. N.; Shul'pina, L. S.; Kitaigorodskii, A. N.; Kravtsov, D. N. J. Organomet. Chem. 1985, 288, 341. (c) Gill, T. P.; Mann, K. R. Organometallics 1982, 1, 485.

Figure 3. ORTEP drawing for the cationic part of complex $[W(NCS){N=N[(\eta^6-C_6H_5)RuCp]}(dppe)_2][PF_6]-CH_2Cl_2$ (10-CH₂Cl₂). Hydrogen atoms are omitted.

distances observed in hydrazido^{4,5,8d,14} and diazoalkane^{13b,15} complexes (1.25–1.38 Å). This indicates that the N=N bond multiplicity in 7, 8a, and 10a is considerably reduced. Concomitantly the N(2)-C(11) bonds in these complexes are relatively short (7, 1.366(6) Å;8a, 1.30(2) Å; 10a, 1.40(2) Å). On the other hand, notable change in the η^6 -coordination mode of the aryl groups was observed. Thus, the Cr-C(11) bonds in 7 (2.431(5) Å) and **8a** (2.50(1) Å) and the Ru-C(11) bond in 10a (2.39(2) Å) are much longer than the other Crarene (average 2.22 Å) and Ru-arene (average 2.17 Å) carbon bonds, respectively. These bond distances indicate that the Cr and Ru atoms are displaced away from the N(2) atoms in 7, 8a, and 10a. All the structural characteristics described above strongly suggest that the μ -aryldiazenido complexes receive a large contribution of the unique zwitterionic resonance structure 11 (eq 5). Obviously the existence of both the electron rich W(II) center and the electron withdrawing $Cr(CO)_3$ or RuCp⁺ group in 7 and 8a or 10a, respectively, might

(14) (a) Oshita, H.; Mizobe, Y.; Hidai, M. Organometallics 1992, 11, 4116. (b) Aoshima, T.; Mizobe, Y.; Hidai, M.; Tsuchiya, J. J. Organomet. Chem. 1992, 423, 39. (c) Barclay, J. E.; Hills, A.; Hughes, D. L.; Macdonald, C. J.; Baker, M. A.; Mohd.-Ali, H. J. Chem. Soc., Dalton Trans. 1990, 2503. (d) Hidai, M.; Aramaki, S.; Yoshida, K.; Kodama, T.; Takahashi, T.; Uchida, Y.; Mizobe, Y. J. Am. Chem. Soc. 1986, 108, 1562. (e) Day, V. W.; George, T. A.; Iske, S. D. A.; Wagner, S. D. J. Organomet. Chem. 1976, 112, C55.

(15) (a) Harada, Y.; Aoshima, T.; Mizobe, Y.; Oshita, H.; Hidai, M. *Chem. Lett.* 1994, 797. (b) Oshita, H.; Mizobe, Y.; Hidai, M. J. *Organomet. Chem.* 1998, 461, 43. (c) Aoshima, T.; Tamura, T.; Mizobe, Y.; Hidai, M. J. *Organomet. Chem.* 1998, 461, 43. (c) Aoshima, T.; Tamura, T.; Mizobe, Y.; Hidai, M. J. *Organomet. Chem.* 1992, 435, 85. (d) Head, R. A.; Hitchcock, P. B. J. Chem. Soc., Dalton Trans. 1980, 1150. (e) Hidai, M.; Mizobe, Y.; Sato, M.; Kodama, T.; Uchida, Y. J. Am. Chem. Soc. 1978, 100, 5740.

Table 1.	Selected Bon	d Distances	and Angle	es of 7·CH ₂ Cl ₂
(Estima	ated Standard	Deviations	Cited in F	arentheses)

(201211111111 211							
Bond Distances (Å)							
W - P(1)	2.516(2)	W - P(2)	2.496(2)				
W-P(3)	2.493(2)	W-P(4)	2.517(2)				
W-N(1)	1.784(4)	W-N(3)	2.140(4)				
Cr - C(11)	2.431(5)	Cr - C(12)	2.259(5)				
Cr-C(13)	2.193(5)	Cr-C(14)	2.174(5)				
Cr-C(15)	2.194(5)	Cr - C(16)	2.301(5)				
Cr-C(21)	1.819(6)	Cr-C(22)	1.836(6)				
Cr-C(23)	1.826(6)	N(1) - N(2)	1.314(5)				
N(2) - C(11)	1.366(6)						
	Bond Angl	es (deg)					
P(1) - W - P(2)	79.34(5)	P(1) - W - P(3)	169.09(5)				
P(1) - W - P(4)	100.48(5)	P(1) - W - N(1)	87.7(1)				
P(1) - W - N(3)	90.5(1)	P(2) - W - P(3)	98.43(5)				
P(2) - W - P(4)	171.54(5)	P(2) - W - N(1)	87.9(1)				
P(2) - W - N(3)	88.2(1)	P(3) - W - P(4)	80.14(5)				
P(3) - W - N(1)	102.9(1)	P(3) - W - N(3)	78.7(1)				
P(4) - W - N(1)	100.5(1)	P(4) - W - N(3)	83.3(1)				
N(1) - W - N(3)	176.0(2)	W - N(1) - N(2)	164.9(3)				
N(1) - N(2) - C(11)	120.0(4)						

Table 2. Selected Bond Distances and Angles of 8a-2THF (Estimated Standard Deviations Cited in Parentheses)

Bond Distances (Å)							
W-P(1)	2.476(4)	W-P(2)	2.504(4)				
W-P(3)	2.507(4)	W-P(4)	2.489(4)				
W-F	2.037(7)	W-N(1)	1.80(1)				
Cr-C(11)	2.50(1)	Cr-C(12)	2.33(1)				
Cr-C(13)	2.21(1)	Cr - C(14)	2.17(1)				
Cr - C(15)	2.15(2)	Cr-C(16)	2.25(2)				
Cr-C(21)	1.82(2)	Cr-C(22)	1.81(2)				
Cr-C(23)	1.75(2)	N(1) - N(2)	1.33(1)				
N(2)-C(11)	1.30(2)						
Bond Angles (deg)							
P(1) - W - P(2)	79.7(1)	P(1) - W - P(3)	173.3(1)				
P(1) - W - P(4)	99.1(1)	P(1)-W-F	93.2(2)				
P(1) - W - N(1)	86.5(4)	P(2) - W - P(3)	100.1(1)				
P(2) - W - P(4)	170.9(1)	P(2)-W-F	90.5(2)				
P(2) - W - N(1)	88.1(4)	P(3) - W - P(4)	80.0(1)				
P(3)-W-F	80.1(2)	P(3) - W - N(1)	100.2(4)				
P(4)-W-F	80.5(2)	P-W-N(1)	100.9(4)				
F - W - N(1)	178.5(4)	W - N(1) - N(2)	161(1)				
N(1) - N(2) - C(11)	117(1)						

stabilize the charge-separated resonance structure of the μ -aryldiazenido ligands.

The Mechanism of the Bimetallic Arylation of Dinitrogen. The mechanism of alkylation of coordinated dinitrogen in molybdenum or tungsten complexes such as 1 and $[Mo(N_2)_2(Me_8[16]aneS_4)]$ with alkyl halides (RX) has been postulated to include the attack of the alkyl radical R[•] generated from the alkyl halide on coordinated dinitrogen.^{6,7} Also in the alkylation of the molybdenum analogue of **6**, $[NBu_4][Mo(NCS)(N_2) (dppe)_2]$, with BuI, it has been assumed that the reaction mechanism should include an electron transfer process between the complex and the halide to give a Mo(I) dinitrogen complex $[Mo(NCS)(N_2)(dppe)_2]$, butyl radical,

^{(13) (}a) Oshita, H.; Mizobe, Y.; Hidai, M. J. Organomet. Chem. 1993, 456, 213. (b) Ishii, Y.; Miyagi, H.; Jitsukuni, S.; Seino, H.; Harkness, B. S.; Hidai, M. J. Am. Chem. Soc. 1992, 114, 9890. (c) Aoshima, T.; Tanase, T.; Mizobe, Y.; Yamamoto, Y.; Hidai, M. J. Chem. Soc., Chem. Commun. 1992, 586. (d) Hidai, M.; Komori, K.; Kodama, T.; Jin, D.; Takahashi, T.; Sugiura, S.; Uchida, Y.; Mizobe, Y. J. Organomet. Chem. 1984, 272, 155. (e) Colquhoun, H. M.; Crease, A. E.; Taylor, S. A. J. Chem. Soc., Chem. Commun. 1980, 879. (f) Day, C. S.; Day, V. W.; George, T. A.; Tavanaiepour, I. Inorg. Chim. Acta 1980, 45, L54. (g) Sato, M.; Kodama, T.; Hidai, M.; Uchida, Y. J. Organomet. Chem. 1978, 152, 239.

Table 3. Selected Bond Distances and Angles of 10a·CH₂Cl₂ (Estimated Standard Deviations Cited in Parentheses)

Bond Distances (Å)						
W-P(1)	2.513(5)	W-P(2)	2.532(4)			
W-P(3)	2.538(4)	W-P(4)	2.513(4)			
W-N(1)	1.75(1)	W-N(3)	2.14(1)			
RuC(11)	2.39(2)	Ru-C(12)	2.23(2)			
Ru-C(13)	2.15(2)	Ru-C(14)	2.14(2)			
Ru-C(15)	2.13(2)	Ru-C(16)	2.19(2)			
Ru-C(21)	2.14(2)	Ru-C(22)	2.14(2)			
Ru-C(23)	2.19(2)	Ru-C(24)	2.13(2)			
Ru-C(25)	2.11(2)	N(1) - N(2)	1.28(1)			
N(2)-C(11)	1.40(2)					
	Bond Angl	es (deg)				
P(1) - W - P(2)	78.7(2)	P(1) - W - P(3)	175.0(2)			
P(1) - W - P(4)	99.1(2)	P(1) - W - N(1)	87.2(4)			
P(1) - W - N(3)	87.5(4)	P(2) - W - P(3)	102.0(1)			
P(2) - W - P(4)	169.2(2)	P(2) - W - N(1)	96.2(4)			
P(2) - W - N(3)	85.7(3)	P(3) - W - P(4)	79.2(1)			
P(3) - W - N(1)	97.6(4)	P(3) - W - N(3)	87.7(4)			
P(4) - W - N(1)	94.3(4)	P(4) - W - N(3)	83.7(3)			
N(1) - W - N(31)	173.9(5)	W - N(1) - N(2)	166(1)			
N(1) - N(2) - C(11)	122(1)					

Scheme 1

and I⁻, the former two species coupling to each other to give a diazenido complex (Scheme 1). The radical mechanism has been strongly supported by the findings that alkylation reactions of the dinitrogen complexes in THF or toluene resulted in the formation of complexes with the N-tetrahydrofuranyl⁷ or N-benzyl⁶ group. The formation of such products can be accounted for by the incorporation of the tetrahydrofuranyl or benzyl radical generated by the hydrogen atom transfer between the solvent molecule and the alkyl radical initially formed. However, incorporation of the tetrahydrofuranyl radical was not observed in the present arylation reactions, and actually use of a THF-toluene (2:1) mixture as a solvent for the reaction of 6 with 3a caused neither a decrease in the yield of 7 (62%) nor formation of N-benzyl complexes.

In order to obtain more direct information about the mechanism, a comparison between the oxidation potential of 6 and reduction potentials of 3a, 4a, and 5a were made. In the cyclic voltammogram, the anionic dinitrogen complex 6 showed an oxidation wave at -1.15 V (reversible, $E_{1/2}$ vs SCE, in MeCN-0.1 M NBu₄BF₄). On the other hand, [CpFe(arene)]⁺ cations are known to undergo chemical and electrochemical reduction to give 19e species,¹⁶ and actually **4a** exhibited a reduction wave at -1.22 V. This is in accord with the observation that the reaction of 6 and 4a ended in the precipitation of $[W(NCS)(N_2)(dppe)_2]$ (vide supra), and the arylation of dinitrogen did not occur. In contrast, [RuCp(arene)]+

cations have been claimed to resist reduction,¹⁷ and in fact no reduction wave was observed in the cyclic voltammogram of 5a up to -1.6 V vs SCE. The reported value of the reduction potential of **3a** ($E_{1/2} - 1.65$ V vs SCE, in DMF)¹⁸ is also much more negative than the reduction potential of 4a. Therefore in the reaction of 6 with 3a or 5a, where the arylation of dinitrogen was observed, involvement of the electron transfer process between the two complexes can be ruled out. These results clearly indicate that the arylation includes the direct nucleophilic substitution at the η^6 -fluoroarene by the terminal nitrogen atom in 6 rather than the radical mechanism proposed for the alkylation (Scheme 2). The higher reactivity of a η^6 -C₆H₅F complex **5a** than the η^6 - C_6H_5Cl analogue 5e also agrees with the general reactivity order of haloarene complexes in nucleophilic substitutions.19

Indirect Method for Arylating Dinitrogen. Arylation of a hydrazido or diazenido complex provides an indirect method for arylating dinitrogen, since such a complex is readily derived from a dinitrogen complex by protonation. We examined the arylation by employing η^6 -fluoroarene complexes as the arylating reagents. [WF(NNH)(dppe)₂] (12) cleanly reacted with 3a, 4a, and $[FeCp(\eta^6-p-FC_6H_4Me)][PF_6]$ (4b) in THF at room temperature and with $[Cr(\eta^6-C_6H_5F)(CO)_3]$ (3b) under THF reflux (eq 6). The products isolated in good yields were confirmed to be the expected μ -aryldiazenido complexes 8a, $[WF{N=N[(\eta^{6}-p-C_{6}H_{4}R)FeCp]}(dppe)_{2}][PF_{6}]$ (13a, R = H; 13b, R = Me), and $[WF{N=N[(\eta^{6}-C_{6}H_{5})Cr(CO)_{3}]} (dppe)_2](8b)$, respectively, by spectroscopic analyses and X-ray diffraction study of 13b-Me₂CO. The molecular structure of 13b·Me₂CO (Figure 4) had features similar to those of the W-Ru complex 10a. It would be interesting to point out that the FeCp⁺ group also worked as an effective activating group of fluoroarenes in the reaction with 12, although it was not suitable for the direct arylation of 6. Obviously the lack of the

⁽¹⁶⁾ Astruc, D. Chem. Rev. 1988, 88, 1189.

^{(17) (}a) Robertson, I. W.; Stephenson, T. A.; Tocher, D. A. J. Organomet. Chem. 1982, 228, 171. (b) Vol'kenau, N. A.; Bolesova, I. N.; Shul'pina, L. S.; Kitaigorodskii, A. N. J. Organomet. Chem. 1984, 267, 313.

⁽¹⁸⁾ Ceccon, A.; Gentiloni, M.; Romanin, A.; Venzo, A. J. Organomet.

Chem. 1977, 127, 315.
 (19) Watts, W. E. In Comprehensive Organometallic Chemistry;
 Wilkinson, G., Stone, F. G. A., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, Chapter 59.

Figure 4. ORTEP drawing for the cationic part of complex $[WF{N=N[(\eta^{6}-p-C_{6}H_{4}Me)FeCp]}(dppe)_{2}][PF_{6}]Me_{2}CO(13b)$ Me₂CO). Hydrogen atoms are omitted.

redox process between complexes 4 and 12 made the C-N bond formation possible.²⁰

13a (M = [CpFe]⁺[PF₆]⁻, R = H) 84% **13b** ($M = [CpFe]^+[PF_6]^-, R = Me)$ 75%

In contrast to the reaction of 12 with 3b, no μ -aryldiazenido complex was prepared by the direct arylation of 6 with 3b even under THF reflux conditions (vide supra). Fluorobenzene in 3b has a sufficient reactivity for the reaction with 12 but not with 6. This result supports that the arylation of 6 described above proceeds through a straightforward nucleophilic attack of coordinated dinitrogen rather than through a diazenido complex, $[W(NCS)(NNH)(dppe)_2]$, formed from 6 by an action of trace amounts of water.

Conclusions

This study has successfully illustrated the effectiveness of the bimetallic approach in the direct and indirect

Table 4.	Selected	Bond 3	Distances	and A	ngles o	of 13b·Me	2CO
(Estim	nated Star	ndard I	Deviations	Gited	in Pa	rentheses)

``			
	Bond Dista	nces (Å)	
W - P(1)	2.482(3)	W-P(2)	2.516(3)
W-P(3)	2.498(3)	W - P(4)	2.516(3)
W-F	2.025(6)	W-N(1)	1.778(8)
Fe-C(11)	2.24(1)	Fe - C(12)	2.09(1)
Fe-C(13)	2.03(1)	Fe-C(14)	2.04(1)
Fe-C(15)	2.04(1)	Fe-C(16)	2.09(1)
Fe-C(21)	2.02(2)	Fe-C(22)	2.05(2)
Fe-C(23)	2.00(2)	Fe-C(24)	2.01(2)
Fe-C(25)	1.98(2)	N(1) - N(2)	1.32(1)
N(2) - C(11)	1.35(1)		
	Bond Angl	es (deg)	
P(1) - W - P(2)	78.03(9)	P(1) - W - P(3)	176.75(9)
P(1) - W - P(4)	101.14(9)	P(1)-W-F	94.7(2)
P(1) - W - N(1)	88.0(3)	P(2) - W - P(3)	100.17(9)
P(2) - W - P(4)	168.78(8)	P(2)-W-F	90.3(2)
P(2) - W - N(1)	87.0(3)	P(3) - W - P(4)	80.09(9)
P(3)-W-F	82.6(2)	P(3) - W - N(1)	94.6(3)
P(4)-W-F	78.6(2)	P(4) - W - N(1)	104.2(3)
F - W - N(1)	175.8(3)	W - N(1) - N(2)	164.0(7)
N(1) - N(2) - C(11)	120.6(8)		

arylation of dinitrogen to give novel heterobimetallic μ -aryldiazenido complexes. The following three points have been found to be essential for the bimetallic direct arylation of dinitrogen: (1) activation of dinitrogen by coordination to an electron rich anionic tungsten complex, (2) activation of fluoroarenes by the η^6 -coordination to an electron deficient metal center, and (3) a proper combination of the dinitrogen and fluoroarene complexes which can avoid undesirable redox reactions. A reaction mechanism has been proposed which involves the direct nucleophilic aromatic substitution, in sharp contrast to the alkylation reactions of dinitrogen complexes where a radical mechanism has been postulated to be operative. We believe the findings in this study provide helpful information in designing new bimetallic reaction systems toward unique chemical transformations. Studies aiming at developing further effective bimetallic reactions of dinitrogen and related molecules are in progress.

Experimental Section

General Comments. ¹H NMR spectra were recorded on a JEOL JNM-EX-270 spectrometer. IR spectra were recorded with a Shimadzu FTIR-8100M spectrometer by the KBr method. Electrochemical measurements were made with Hokuto Denko instrumentation (HA-501 potentiostat and HB-105 function generator) by using a glassy carbon working electrode; potentials were measured vs a pseudoreference electrode of a silver wire immersed in THF. Elemental analyses were performed at The Elemental Analysis Laboratory, Department of Chemistry, Faculty of Science, The University of Tokyo.

All the reactions were carried out under a nitrogen atmosphere. Solvents were dried and distilled under nitrogen before use. Complexes 1,²¹ 2,²¹, 3,²² 4,²³ 5,^{12c} 6¹⁰ were prepared according to the published methods. Complex 12 was prepared from a reaction of [WF(NNH₂)(dppe)₂][BF₄] with NaOMe in methanol.²⁴ Other organic reagents were commercial products and used without further purification.

⁽²⁰⁾ Hussain, W.; Leigh, G. J.; Modh-Ali, H.; Pickett, C. J. J. Chem. Soc., Dalton Trans. 1986, 1473.

⁽²¹⁾ Chatt, J.; Heath, G. A.; Richards, L. J. Chem. Soc., Dalton Trans. 1974, 2074.

 ⁽²²⁾ Mahaffy, C. A. L.; Pauson, P. L. Inorg. Synth. 1979, 19, 154.
 (23) Khand, I. U.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. C 1968, 2261

⁽²⁴⁾ Chatt, J.; Pearman, A. J.; Richards, L. J. Chem. Soc., Dalton Trans. 1976, 1520.

----_

_ _

C(115)

C(116)

0.7712(3)

0.7411(3)

Table 5. Crystallographic Data for Complexes 7·CH ₂ Cl ₂ , 8a·2THF, 10a·CH ₂ Cl ₂ , and 13b·Me ₂ CO							
		7-CH ₂ Cl ₂	8a •2	THF	10a-CH2Cl2	1	3b·Me ₂ CO
formula		C65H57N3O5SP4Cl2CrW	C ₇₁ H ₇₁ N ₂ C	D7FP₄CrW	C65H60N3F6P5SCl2H	RuW C ₆₇ H ₆	5N2OF7P5FeW
mol wt		1422.89	1443.09		1539.95	1442.8	33
cryst size, m	m	$0.53 \times 0.46 \times 0.38$	0.40×0.2	5×0.15	$0.30 \times 0.40 \times 0.15$	0.65 >	0.45×0.15
cryst system		monoclinic	monoclinic	2	triclinic	monoo	elinic
space group		PZ_{1}/n	$P_{2_1/a}$		P1 12 620(2)	C2/c	V (0)
a, A		24.133(3)	25.110(5)		12.030(2)	38.090	J(9) 7(4)
cÅ		12 273(5)	12 046(3)		11 507(3)	18.30	$\mathbf{A}(3)$
a. deg		12.275(5)	12.040(3)		103.11(1)	10.55	
β , deg		90.06(4)	93.89(2)		102.77(1)	91.25	2)
γ, deg					83.44(1)		/
V, Å ³		6210(5)	6500(3)		3257.1(9)	12939	(5)
Ζ		4	4		2	8	
d(calcd), g c	m ⁻³	1.522	1.475		1.570	1.481	
d(obsd), g cn	n-,	1.52	1.47		1.58	1.49	~
λ, A		0.71069	0./1069		0.71069	0.710	09
μ , cm -		23.51	21.22		22.94	22.22	
scan type		$\omega - 2\theta$	ω (2 θ < 3)	0)	$\omega - 2\theta$	ω-26	,
seun type		w 20	$\omega - 2\theta (2\theta)$	≥ 30)			
2θ range, deg	g	3-50	4-50	/	5-55	5-60	
no. of data co	ollected	11795	9476		15655	20149	
no. of unique	e data	11325	7975		14972	19484	
no. of data u	sed	7578 ($ I > 3\sigma(I)$)	5396 (F _o	$> 5\sigma(F_{\rm o}))$	$7714 (I > 3\sigma(I))$	10134	$(F_{\rm o} \geq 5\sigma(F_{\rm o}))$
R		0.034	0.056		0.062	0.061	
R _w		0.029	0.066		0.054	0.071	
		Table	6. Atomic Co	ordinates for	7•CH ₂ Cl ₂		
atom	x/a	y/b	z/c	atom	x/a	y/b	z/c
W	0.57117(1)	0.21755(1)	0.33114(2)	C(125)	0.7530(4)	0.1496(4)	0.0933(7)
Cr	0.49101(4)	0.40793(4)	0.67322(7)	C(126)	0.7112(3)	0.1762(3)	0.1568(5)
S D(1)	0.6090(1)	0.01999(9)	0.1291(2)	C(211)	0.5183(2)	0.2120(3)	0.0451(4)
P(1) P(2)	0.04308(0)	0.27804(8)	0.2302(1) 0.1718(1)	C(212)	0.5301(3) 0.5228(2)	0.2397(3)	-0.054/(5)
P(2) P(3)	0.51706(0)	0.23707(0) 0.14147(7)	0.1710(1) 0.4049(1)	C(213)	0.5256(5)	0.2033(3) 0.1437(3)	-0.1300(3)
P(4)	0.62880(6)	0.14147(7) 0.16297(7)	0.4746(1)	C(214)	0.4941(3)	0.1149(3)	-0.0487(5)
O (11)	0.5869(2)	0.4205(2)	0.9272(3)	C(216)	0.5001(2)	0.1496(3)	0.0462(4)
O(12)	0.5809(2)	0.5161(2)	0.8485(3)	C(221)	0.4438(2)	0.2799(3)	0.1822(4)
O(21)	0.4343(2)	0.5172(2)	0.7785(4)	C(222)	0.4038(3)	0.2581(3)	0.1102(5)
O(22)	0.4283(2)	0.3385(2)	0.8453(4)	C(223)	0.3497(3)	0.2753(4)	0.1213(6)
O(23)	0.3959(2)	0.4035(2)	0.5180(4)	C(224)	0.3336(3)	0.3153(4)	0.2033(6)
N(1) N(2)	0.5547(2) 0.5437(2)	0.2902(2) 0.3409(2)	0.3995(3)	C(225)	0.3724(3) 0.4276(2)	0.3389(3) 0.2206(3)	0.2738(5)
N(2)	0.5497(2)	0.3499(2) 0.1336(2)	0.4238(3)	C(220)	0.4270(2) 0.4549(2)	0.5200(5)	0.2050(5) 0.5163(4)
$\mathbf{C}(1)$	0.6108(2)	0.3292(3)	0.1257(4)	C(312)	0.4441(2)	0.2252(3)	0.5420(5)
C(2)	0.5487(2)	0.3350(2)	0.1424(4)	C(313)	0.4062(3)	0.2399(3)	0.6228(6)
C(3)	0.5854(3)	0.1010(3)	0.5406(5)	C(314)	0.3803(3)	0.1928(4)	0.6800(6)
C(4)	0.5417(2)	0.0754(3)	0.4632(5)	C(315)	0.3906(3)	0.1300(3)	0.6560(6)
C(5)	0.5973(3)	0.0861(3)	0.1916(5)	C(316)	0.4270(3)	0.1151(3)	0.5738(5)
C(11)	0.5515(2)	0.3714(2)	0.5277(4)	C(321)	0.4521(2)	0.1006(3)	0.3141(4)
C(12)	0.5517(2)	0.4387(2)	0.5434(4) 0.6441(4)	C(322)	0.4027(3)	0.0423(3)	0.2654(5)
C(13)	0.3031(2) 0.5736(2)	0.4039(2) 0.4267(2)	0.0441(4) 0.7363(4)	C(323)	0.4240(3)	0.0103(3)	0.1937(0)
C(15)	0.5730(2) 0.5679(2)	0.3604(3)	0.7236(4)	C(325)	0.3656(3)	0.1053(4)	0.2168(6)
C(16)	0.5556(2)	0.3328(2)	0.6232(4)	C(326)	0.4032(3)	0.1317(3)	0.2903(5)
C(17)	0.5812(3)	0.4528(3)	0.8484(5)	C(411)	0.6904(3)	0.1190(3)	0.4325(5)
C(18)	0.5831(3)	0.5467(3)	0.9533(5)	C(412)	0.7420(3)	0.1484(3)	0.4337(5)
C(21)	0.4575(3)	0.4765(3)	0.7356(5)	C(413)	0.7885(3)	0.1171(4)	0.3951(6)
C(22)	0.4527(3)	0.3631(3)	0.7773(5)	C(414)	0.7842(3)	0.0568(5)	0.3523(6)
C(23)	0.4328(3)	0.4032(3)	0.5785(5)	C(415)	0.7341(4)	0.0272(4)	0.3496(7)
C(112)	0.0801(2)	0.3300(3)	0.3070(4)	C(410)	0.08/3(3)	0.03/3(3)	0.3889(0)
C(112)	0.6942(3)	0.4368(3)	0.4015(6)	C(422)	0.03+9(2) 0.6724(2)	0.2006(3)	0.5900(4)
C(114)	0.7479(4)	0.4233(4)	0.4291(6)	C(423)	0.6946(3)	0.3057(3)	0.6615(6)

C(121) 0.6986(2) 0.2400(3)0.1478(5) C(426) C(122) 0.7293(3) 0.2776(4) 0.0754(5) Cl(1') C(123) 0.7706(3) 0.2492(5)0.0132(6) C1(2') 0.1860(6)C(124) 0.7819(4) 0.0222(7)C(1') Reaction of $[NBu_4][W(NCS)(N_2)(dppe)_2]$ with [Cr(p-1)]FC₆H₄COOMe)(CO)₃]. A mixture of [NBu₄][W(NCS)(N₂)-(dppe)₂] (6, 123 mg, 0.094 mmol) and [Cr(p-FC₆H₄COOMe)-(CO)₃] (3a, 33 mg, 0.114 mmol) in THF (5 mL) was stirred overnight at room temperature under N2. The solution turned

dark red from brown. The solvent was removed in vacuo, and

0.3675(4)

0.3226(3)

0.3962(6)

0.3368(5)

the residue was purified by column chromatography (alumina; eluent CH_2Cl_2 -hexane (1/1), then CH_2Cl_2). Unreacted 3a was recovered first; then the dark red fraction of [W(NCS){N=N- $[(\eta^6\text{-}p\text{-}C_6H_4COOMe)Cr(CO)_3] \} (dppe)_2] \ (\textbf{7}) \ eluted. \ Recrystalli$ zation from CH₂Cl₂-hexane gave dark red crystals of 7 as mono CH₂Cl₂ solvate (70 mg, 52%). ¹H NMR (C₆D₆) δ 2.51

0.2790(4)

0.2181(4)

0.1827(3)

0.0221(3)

0.0121(7)

-0.0579(2)

0.7625(6)

0.7801(5)

0.6948(5)

0.7943(4)

0.6143(5)

0.660(1)

0.6981(3)

0.6800(3)

0.6591(3)

0.7667(2)

0.7600(3)

0.7577(7)

C(424)

C(425)

Table 7. Atomic Coordinates for 8a-2THF								
atom	x/a	y/b	zlc	atom	xla	y/b	z/c	
W	0.25784(2)	0.20807(2)	0.15590(5)	C(214)	0.3202(8)	0.1017(8)	-0.304(2)	
Cr	0.05673(9)	0.2046(1)	0.4738(2)	C(215)	0.2600(7)	0.0940(7)	-0.313(1)	
P (1)	0.2151(1)	0.2913(2)	0.0535(4)	C(216)	0.2292(7)	0.1103(6)	-0.223(1)	
P(2)	0.2146(1)	0.1596(1)	-0.0155(4)	C(221)	0.1663(6)	0.0988(5)	0.005(1)	
P(3)	0.3116(2)	0.1259(2)	0.2479(4)	C(222)	0.1084(6)	0.1078(7)	0.030(2)	
P(4)	0.3142(2)	0.2596(2)	0.3084(4)	C(223)	0.0753(8)	0.0614(8)	0.055(2)	
F	0.3352(3)	0.2157(3)	0.0855(7)	C(224)	0.098(1)	0.0068(8)	0.053(2)	
O(11)	0.0827(5)	0.0814(6)	0.694(1)	C(225)	0.1533(8)	-0.0028(7)	0.024(2)	
O(12)	-0.0001(5)	0.0662(5)	0.589(1)	C(226)	0.1871(7)	0.0431(6)	0.002(1)	
O(21)	-0.0593(5)	0.2041(7)	0.567(1)	C(311)	0.3583(6)	0.0846(6)	0.161(1)	
O(22)	0.0271(6)	0.3104(6)	0.347(1)	C(312)	0.3381(6)	0.0362(7)	0.108(1)	
O(23)	0.0870(5)	0.2684(6)	0.679(1)	C(313)	0.3694(7)	0.0070(8)	0.034(2)	
N(1)	0.1888(4)	0.2005(5)	0.2149(10)	C(314)	0.4238(7)	0.0260(8)	0.012(2)	
N(2)	0.1322(4)	0.1925(6)	0.2234(10)	C(315)	0.4456(7)	0.0736(8)	0.065(2)	
$\mathbf{C}(1)$	0.1501(5)	0.2611(6)	-0.022(1)	C(316)	0.4142(6)	0.1036(7)	0.141(2)	
C(2)	0.1674(5)	0.2121(6)	-0.096(1)	C(321)	0.2740(6)	0.0701(6)	0.319(1)	
C(3)	0.3627(6)	0.1527(6)	0.362(1)	C(322)	0.3042(8)	0.0331(6)	0.391(2)	
C(4)	0.3783(6)	0.2158(7)	0.346(1)	C(323)	0.2747(10)	-0.0082(7)	0.450(2)	
$\mathbf{C}(11)$	0.1163(5)	0.1738(6)	0.319(1)	C(324)	0.2155(10)	-0.0118(8)	0.436(2)	
C(12)	0.1470(5)	0.1733(5)	0.424(1)	C(325)	0.1864(9)	0.0248(8)	0.366(2)	
C(13)	0.1277(6)	0.1438(6)	0.516(1)	C(326)	0.2128(7)	0.0654(7)	0.304(2)	
C(14)	0.0726(6)	0.1148(6)	0.507(1)	C(411)	0.3488(6)	0.3295(6)	0.285(1)	
C(15)	0.0386(6)	0.1210(7)	0.406(1)	C(412)	0.3744(7)	0.3370(7)	0.186(2)	
C(16)	0.0574(6)	0.1510(7)	0.319(1)	C(413)	0.4002(7)	0.3888(8)	0.160(2)	
C(17)	0.0547(7)	0.0865(8)	0.608(2)	C(414)	0.3991(7)	0.4324(7)	0.234(2)	
C(18)	-0.0247(9)	0.0434(10)	0.688(2)	C(415)	0.3746(8)	0.4260(7)	0.332(2)	
C(21)	-0.0159(7)	0.2056(8)	0.524(2)	C(416)	0.3499(7)	0.3736(7)	0.359(2)	
C(22)	0.0415(7)	0.2701(8)	0.398(2)	C(421)	0.2771(6)	0.2707(6)	0.434(1)	
C(23)	0.0759(7)	0.2443(8)	0.594(1)	C(422)	0.2948(6)	0.2462(7)	0.536(1)	
C(111)	0.1891(6)	0.3521(6)	0.131(1)	C(423)	0.2639(9)	0.2519(7)	0.629(2)	
C(112)	0.1334(7)	0.3521(7)	0.170(2)	C(424)	0.2168(8)	0.2899(8)	0.621(2)	
C(113)	0.1157(8)	0.3978(8)	0.233(2)	C(425)	0.1983(7)	0.3139(7)	0.522(2)	
C(114)	0.1521(9)	0.4434(7)	0.257(2)	C(426)	0.2275(6)	0.3060(6)	0.425(1)	
C(115)	0.2073(8)	0.4431(7)	0.220(2)	O(11')	0.4889(7)	0.3065(7)	-0.011(2)	
C(116)	0.2258(8)	0.3978(7)	0.158(2)	C(11')	0.4910(9)	0.295(1)	-0.132(2)	
C(121)	0.2503(6)	0.3279(5)	-0.057(1)	C(12')	0.468(1)	0.2420(10)	-0.153(3)	
C(122)	0.3049(7)	0.3094(7)	-0.087(1)	C(13')	0.484(1)	0.207(1)	-0.052(3)	
C(123)	0.3312(7)	0.3369(8)	-0.172(2)	C(14')	0.488(1)	0.254(1)	0.043(2)	
C(124)	0.3043(8)	0.3827(8)	-0.225(2)	O (21')	0.4615(8)	0.0632(10)	0.612(2)	
C(125)	0.2504(8)	0.4010(7)	-0.197(2)	C(21')	0.493(2)	0.039(2)	0.702(4)	
C(126)	0.2240(7)	0.3745(7)	-0.113(1)	C(22')	0.551(2)	0.058(2)	0.705(3)	
C(211)	0.2572(6)	0.1342(6)	-0.127(1)	C(23')	0.554(1)	0.081(2)	0.591(3)	
C(212)	0.3167(6)	0.1384(6)	-0.120(1)	C(24')	0.491(1)	0.101(2)	0.578(4)	
C(213)	0.3467(7)	0.1227(7)	-0.211(1)	. ,				

(br, 8 H), 3.43 (s, 3 H), 4.11 (d, J = 7.3 Hz, 2 H), 5.73 (d, J =7.3 Hz, 2 H), 6.9-7.5 (m, 40 H); IR (Kbr) 2070, 1948, 1867, 1857, 1715, 1532, 1490, 1465, 1440, 1412, 1367, 1345, 1285, 1240 cm⁻¹. Anal. Calcd for C₆₅H₅₇N₃O₅P₄SCl₂CrW: C, 54.87; H, 4.04; N, 2.95. Found: C, 54.58; H, 4.08; N, 2.95.

Reaction of [W(N₂)₂(dppe)₂] with [Cr(p-FC₆H₄COOMe)- $(CO)_3$] in the Presence of NBu₄X (X = F, SCN). A mixture of [W(N₂)₂(dppe)₂] (1, 153 mg, 0.148 mmol), NBu₄SCN (46 mg, 0.153 mmol), and 3a (43 mg, 0.148 mmol) in THF (7 mL) was irradiated overnight with a tungsten filament lamp at room temperature under N2. The orange solution turned dark brown. Purification of the product by column chromatography (alumina; eluent CH_2Cl_2 -hexane (1/1), then CH_2Cl_2) and recrystallization from CH₂Cl₂-hexane gave red crystals of 7·CH₂Cl₂ (51 mg, 25%).

A similar reaction of 1, NBu₄F, and 3a in THF and purification of the product by column chromatography (alumina; eluent CH_2Cl_2 -hexane (1/1), then CH_2Cl_2 -AcOEt (1/ 1)) and recrystallization from THF-hexane gave orange-red crystals of $[WF{N=N[(\eta^6-p-C_6H_4COOMe)Cr(CO)_3]}(dppe)_2]2THF$ (8a·2THF) in 24%. ¹H NMR (C₆D₆) δ 2.39 (br, 4 H), 2.66 (br, 4 H), 3.48 (s, 3 H), 4.01 (d, J = 6.4 Hz, 2 H), 5.79 (d, J = 6.4Hz, 2 H), 6.8-7.4 (m, 40 H); IR (KBr) 1942, 1850, 1714, 1530, 1490, 1471, 1437, 1410, 1357, 1329, 1278 cm⁻¹. Anal. Calcd for C₇₁H₇₁O₇N₂FP₄CrW: C, 59.09; H, 4.96; N, 1.94. Found: C, 59.14; H, 5.16; N, 1.98.

Reaction of [NBu₄][W(NCS)(N₂)(dppe)₂] with [RuCp-(C₆H₅F)][PF₆]. Complexes 6 (96 mg, 0.073 mmol) and [RuCp- (C_6H_5F)][PF₆] (5a, 40.5 mg, 0.099 mmol) were dissolved in THF

(5 ml) at 0 °C and stirred for 2 h at this temperature under N₂. The resulting dark red solution was dried up under reduced pressure, and the residue was dissolved in CH_2Cl_2 (1 mL) containing an excess amount of [NBu4][PF6] (56.8 mg) and NEt₃ (1 drop). Addition of ether to the CH_2Cl_2 solution gave crude crystals of $[W(NCS){N=N[(\eta^6-C_6H_5)RuCp]}(dppe)_2][PF_6]$ (10a), which was collected and washed with MeOH and then with ether. The crude product was further recrystallized from CH₂Cl₂-MeOH-hexane to give a pure sample of 10a·CH₂Cl₂ as dark red blocks (62.4 mg, 55%). ¹H NMR (CDCl₃) δ 2.55 (br, 4 H), 2.82 (br, 4 H), 4.66 (s, 5 H), 4.72 (d, J = 6.3 Hz, 2 H),5.04 (pseudo t, J = 6.1 Hz, 2 H), 5.27 (t, J = 5.4 Hz, 1 H), 6.8-7.5 (m, 40 H); IR (KBr) 2051, 1512, 1485, 1447, 1435, 1389, 1360, 1343, 1233 cm⁻¹. Anal. Calcd for $C_{65}H_{60}N_3F_6P_5$ -SCl₂RuW: C, 54.70; H, 3.93; N, 2.73. Found: C, 54.40; H, 3.88; N, 2.81.

Similar reactions of 6 with 5b, 5c, and 5d yielded 10b, 10c, and 10d, respectively.

 $[W(NCS){N=N[(\eta^{6}-p-C_{6}H_{4}Me)RuCp]}(dppe)_{2}][PF_{6}]\cdot Et_{2}O (10b \cdot Et_2O)$: isolated in 51% yield as brown needles after recrystallization from CH_2Cl_2 -ether. ¹H NMR (CDCl₃) δ 1.96 (s, 3 H), 2.53 (br, 4 H), 2.82 (br, 4 H), 4.61 (s, 5 H), 4.68 (d, J = 6.4 Hz, 2 H), 5.03 (d, J = 6.4 Hz, 2 H), 6.8–7.7 (m, 40 H); IR (KBr) 2047, 1532, 1485, 1466, 1435, 1399, 1366, 1233 cm⁻¹. Anal. Calcd for C₆₉H₇₀N₃OF₆P₅SRuW: C, 53.70; H, 4.57; N, 2.72. Found: C, 53.51; H, 4.59; N, 2.78.

 $[W(NCS){N=N[(\eta^{6}-p-C_{6}H_{4}OMe)RuCp]}(dppe)_{2}][PF_{6}]$ (10c): isolated in 38% yield as dark red blocks after recrystallization from CH_2Cl_2 -MeOH-hexane. ¹H NMR (CDCl₃) δ

 Table 8. Atomic Coordinates for 10a·CH₂Cl₂

			o. Atomic coor				
atom	xla	y/b	z/c	atom	x/a	y/b	zlc
W	0.22284(6)	-0.19485(3)	0.08694(7)	C(215)	-0.167(2)	-0.047(1)	0.231(2)
Ru	0.1571(1)	-0.42336(6)	-0.2470(1)	C(216)	-0.118(2)	-0.0876(8)	0.129(2)
S	0.2947(5)	-0.0463(4)	0.4618(6)	C(221)	-0.045(1)	-0.1515(7)	-0.109(1)
P(1)	0.3102(4)	-0.1320(2)	-0.0091(4)	C(222)	-0.120(1)	-0.1104(7)	-0.159(2)
P(2)	0.0630(3)	-0.1264(2)	0.0204(4)	C(223)	-0.200(1)	-0.1345(10)	-0.266(2)
P(3)	0.1414(3)	-0.2530(2)	0.2018(4)	C(224)	-0.199(1)	-0.1940(9)	-0.318(2)
P(4)	0.3912(4)	-0.2471(2)	0.1862(4)	C(225)	-0.126(1)	-0.2322(8)	-0.271(2)
N(I)	0.2093(9)	-0.2452(5)	-0.052(1)	C(226)	-0.053(1)	-0.2113(8)	-0.167(2)
N(2)	0.2159(9)	-0.2752(6)	-0.158(1)	C(311)	0.102(1)	-0.2183(7)	0.343(1)
N(3)	0.2543(9)	-0.1305(6)	0.252(1)	C(312)	0.051(1)	-0.1646(8)	0.361(2)
$\mathbf{C}(1)$	0.198(1)	-0.1003(7)	-0.110(1)	C(313)	0.015(2)	-0.1355(8)	0.464(2)
C(2)	0.115(1)	-0.0702(7)	-0.041(1)	C(314)	0.032(1)	-0.1628(9)	0.560(1)
C(3)	0.251(1)	-0.3087(7)	0.245(2)	C(315)	0.083(2)	-0.216(1)	0.555(2)
C(4)	0.355(1)	-0.2790(7)	0.299(1)	C(316)	0.117(2)	-0.2453(8)	0.445(2)
C(5)	0.274(1)	-0.0945(9)	0.344(2)	C(321)	0.022(1)	-0.2960(7)	0.125(1)
C(11)	0.147(1)	-0.3196(7)	-0.219(1)	C(322)	-0.072(1)	-0.2677(8)	0.087(2)
C(12)	0.071(1)	-0.3406(7)	-0.169(1)	C(323)	-0.164(1)	-0.296(1)	0.035(2)
C(13)	0.000(1)	-0.3791(9)	-0.238(2)	C(324)	-0.156(2)	-0.354(1)	0.020(2)
C(14)	0.004(1)	-0.4018(9)	-0.357(2)	C(325)	-0.064(2)	-0.3829(10)	0.061(2)
C(15)	0.088(2)	-0.3898(9)	-0.406(1)	C(326)	0.024(1)	-0.3531(9)	0.112(2)
C(16)	0.160(1)	-0.3507(8)	-0.334(2)	C(411)	0.451(1)	-0.3093(7)	0.097(2)
C(21)	0.283(2)	-0.4544(9)	-0.113(2)	C(412)	0.455(1)	-0.3069(7)	-0.019(2)
C(22)	0.191(2)	-0.481(1)	-0.122(2)	C(413)	0.512(1)	-0.3541(10)	-0.089(2)
C(23)	0.159(2)	-0.5145(10)	-0.234(3)	C(414)	0.559(1)	-0.4018(9)	-0.036(2)
C(24)	0.230(2)	-0.5083(10)	-0.300(2)	C(415)	0.552(2)	-0.400(1)	0.076(2)
C(25)	0.310(2)	-0.4708(10)	-0.225(3)	C(416)	0.503(2)	-0.3535(9)	0.145(2)
C(111)	0.376(1)	-0.0662(7)	0.083(2)	C(421)	0.510(1)	-0.2069(7)	0.274(1)
C(112)	0.363(1)	-0.0162(9)	0.043(2)	C(422)	0.505(1)	-0.1710(9)	0.378(2)
C(113)	0.419(2)	0.0318(9)	0.115(2)	C(423)	0.591(2)	-0.1381(9)	0.440(2)
C(114)	0.484(2)	0.0302(9)	0.221(2)	C(424)	0.689(2)	-0.1443(10)	0.393(2)
C(115)	0.496(1)	-0.020(1)	0.260(2)	C(425)	0.690(2)	-0.1812(10)	0.288(2)
C(116)	0.444(1)	-0.0691(7)	0.193(2)	C(426)	0.602(1)	-0.2123(8)	0.223(1)
C(121)	0.409(2)	-0.1661(7)	-0.105(2)	P(1')	0.7680(8)	0.4865(4)	0.7082(8)
C(122)	0.516(1)	-0.1678(8)	-0.065(2)	F(1')	0.790(1)	0.4231(9)	0.650(2)
C(123)	0.586(2)	-0.1942(10)	-0.138(2)	F(2')	0.888(1)	0.4861(8)	0.806(2)
C(124)	0.549(2)	-0.221(1)	-0.255(3)	F(3')	0.829(1)	0.5068(8)	0.621(2)
C(125)	0.440(2)	-0.222(1)	-0.305(2)	F(4')	0.663(1)	0.4886(8)	0.629(2)
C(126)	0.367(2)	-0.1924(10)	-0.230(2)	F(5')	0.737(1)	0.4613(8)	0.808(2)
C(211)	-0.013(1)	-0.0790(7)	0.129(1)	F(6')	0.761(1)	0.5490(9)	0.773(2)
C(212)	0.039(2)	-0.0355(8)	0.223(2)	Cl(1')	0.3115(8)	0.3356(5)	0.5238(9)
C(213)	-0.005(2)	0.001(1)	0.314(3)	Cl(2')	0.1179(8)	0.3122(5)	0.6065(9)
C(214)	-0.103(3)	-0.008(1)	0.311(3)	C(1')	0.248(3)	0.330(1)	0.643(3)

2.55 (br, 4 H), 2.83 (br, 4 H), 3.50 (s, 3 H), 4.67 (s, 5 H), 4.68 (d, overlapped by the Cp signal, 2 H), 5.14 (d, J = 6.3 Hz, 2 H), 6.8–7.6 (m, 40 H); IR (KBr) 2054, 1534, 1472, 1435, 1397, 1362, 1341, 1235 cm⁻¹. Anal. Calcd for C₆₅H₆₀N₃OF₆P₅-SRuW: C, 52.57; H, 4.07; N, 2.83. Found: C, 52.53; H, 4.07; N, 2.96.

[W(NCS){N=N[(η^{6} -p-C₆H₄COOMe)RuCp]}(dppe)₂]-[PF₆]**0.5(Et₂O)** (10d**0.5(Et₂O)**): isolated in 22% yield as red needles after recrystallization from CH₂Cl₂-ether. ¹H NMR (CDCl₃) δ 2.59 (br, 4 H), 2.85 (br, 4 H), 3.82 (s, 3 H), 4.65 (s, 5 H), 4.83 (d, J = 6.8 Hz, 2 H), 5.65 (d, J = 6.8 Hz, 2 H), 6.8-7.5 (m, 40 H); IR (KBr) 2049, 1732, 1524, 1483, 1466, 1435, 1404, 1362, 1337, 1287 cm⁻¹. Anal. Calcd for C₆₈H₆₅N₃O_{2.5}F₆F₅-SRuW: C, 52.69; H, 4.23; N, 2.71. Found: C, 52.21; H, 4.13; N, 2.68.

Reaction of $[WF(NNH)(dppe)_2]$ with $[Cr(p-FC_6H_4-COOMe)(CO)_3]$. $[WF(NNH)(dppe)_2](12, 470 mg, 0.46 mmol)$ and 3a (200 mg, 0.69 mmol) were dissolved in THF (7.5 mL) and stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was purified by column chromatography (alumina; eluent CH₂Cl₂-hexane (1/1), then CH₂Cl₂-AcOEt (1/1)) and recrystallization (THF/hexane) to give 8a·2THF (0.419 g, 63%).

Similar reactions of 12 with 4a or 4b at room temperature (overnight) or with 3b under THF reflux (6 h) afforded 13a, 13b, or 8b, respectively.

[WF{N=N[$(\eta^6-C_6H_5)$ FeCp]}(dppe)₂][PF₆]-C₆H₅CH₃ (13a-C₆H₅CH₃): isolated in 84% yield as purple-red crystals after column chromatography (alumina; eluent CH₂Cl₂-acetone (1/1)) and recrystallization from CH₂Cl₂(one drop of NEt₃ was added)-toluene-hexane. ¹H NMR (CD₂Cl₂) δ 2.32 (s, 3 H),

2.59 (br, 4 H), 2.83 (br, 4 H), 3.96 (s, 5 H), 4.02 (br, 2 H), 4.80 (br, 2 H), 5.18 (t, J=5.5 Hz, 1 H), 6.9-7.4 (m, 40 H); IR (KBr) 1513, 1490, 1460, 1439, 1420, 1394, 1340 cm^{-1}. Anal. Calcd for $C_{70}H_{66}N_2F_7P_5FeW$: C, 57.47; H, 4.55; N, 1.91. Found: C, 57.17; H, 4.59; N, 2.09.

[WF{N=N[(η^{e} -p-C₆H₄Me)FeCp]}(dppe)₂][PF₆]·Me₂CO (13b·Me₂CO): isolated in 75% yield as purple-red crystals after column chromatography (alumina; eluent CH₂Cl₂acetone (1/1)) and recrystallization from acetone (one drop of NEt₃ was added)-hexane. ¹H NMR (CDCl₃) δ 2.04 (s, 3 H), 2.58 (br, 4 H), 2.85 (br, 4 H), 3.90 (s, 5 H), 3.98 (d, J = 6.3 Hz, 2 H), 4.81 (d, J = 6.3 Hz, 2 H), 7.0-7.3 (m, 40 H); IR (KBr) 1542, 1490, 1481, 1440, 1420, 1405, 1361, 1338 cm⁻¹. Anal. Calcd for C₆₇H₆₆N₂OF₇P₅FeW: C, 55.78; H, 4.61; N, 1.94. Found: C, 55.95; H, 4.74; N, 2.04.

[WF{N=N[(\eta^{6}-C₆H₆)Cr(CO)₃]}(dppe)₂]-C₆H₆ (8b-C₆H₆): isolated in 59% yield as orange crystals after column chromatography (alumina; eluent CH₂Cl₂) and recrystallization from C₆H₆-hexane. ¹H NMR (CDCl₃) \delta 2.44 (br, 4 H), 2.67 (br, 4 H), 3.98 (t, J = 6.5 Hz, 1 H), 4.11 (d, J = 6.5 Hz, 2 H), 4.66 (t, J = 6.5 Hz, 2 H), 6.9–7.4 (m, 40 H); IR (KBr) 1938, 1843, 1520, 1489, 1457, 1438, 1378, 1344 cm⁻¹. Anal. Calcd for C₆₇H₅₉N₂O₃-FP₄CrW: C, 61.01; H, 4.51; N, 2.12. Found: C, 61.18; H, 4.90; N, 2.16.

Collection of Diffraction Data and Structure Refinements. Diffraction data were collected on Rigaku AFC5S (for 7-CH₂Cl₂ and 13b-Me₂CO), AFC6A (for 8a·2THF), and AFC7R (for 10a·CH₂Cl₂) four-cycle automated diffractometers with Mo K α ($\lambda = 0.7107$ Å) radiation and a graphite monochromator. In each case, a crystal sealed in a glass capillary under argon was used, and data were collected at room temperature. Bimetallic Arylation of Molecular Nitrogen

Table 7. Atomic Coordinates for LSD Wi	Atomic	Coordinates	101	
--	--------	-------------	-----	--

atom	xla	y/b	z/c	atom	xla	y/b	zlc
w	0.36844(1)	0.16575(2)	0.34272(2)	C(216)	0.3950(3)	-0.0467(6)	0.3323(6)
Fe	0.33430(5)	0.41803(10)	0.17309(9)	C(221)	0.3997(3)	0.0821(6)	0.1714(5)
P(1)	0.42726(7)	0.2064(2)	0.3869(2)	C(222)	0.3803(3)	0.0223(6)	0.1448(6)
P(2)	0.40866(7)	0.0878(1)	0.2694(1)	C(223)	0.3703(4)	0.0189(8)	0.0714(6)
P(3)	0.31019(7)	0.1177(2)	0.3004(1)	C(224)	0.3795(4)	0.0729(8)	0.0252(7)
P(4)	0.32941(7)	0.2244(1)	0.4344(1)	C(225)	0.3992(4)	0.1306(8)	0.0493(7)
F(1)	0.3643(2)	0.0863(3)	0.4179(3)	C(226)	0.4091(4)	0.1361(7)	0.1231(6)
N(1)	0.3713(2)	0.2307(4)	0.2718(4)	C(311)	0.3045(3)	0.0193(6)	0.3038(6)
N(2)	0.3769(3)	0.2633(5)	0.2093(5)	C(312)	0.3043(3)	-0.0212(6)	0.2407(7)
C (1)	0.4545(3)	0.2020(6)	0.3049(6)	C(313)	0.3031(4)	-0.0964(7)	0.2440(8)
C(2)	0.4543(3)	0.1258(7)	0.2750(6)	C(314)	0.3019(4)	-0.1299(7)	0.3099(9)
C(3)	0.2748(3)	0.1509(6)	0.3600(6)	C(315)	0.3015(4)	-0.0923(7)	0.3731(8)
C(4)	0.2893(3)	0.1690(7)	0.4372(6)	C(316)	0.3030(3)	-0.0163(7)	0.3710(7)
C (11)	0.3753(3)	0.3358(7)	0.2042(5)	C(321)	0.2926(3)	0.1414(6)	0.2093(6)
C(12)	0.3792(3)	0.3669(6)	0.1343(6)	C(322)	0.2563(3)	0.1402(7)	0.1948(7)
C(13)	0.3803(4)	0.4420(7)	0.1251(7)	C(323)	0.2439(3)	0.1566(8)	0.1247(8)
C(14)	0.3753(4)	0.4886(7)	0.1835(7)	C(324)	0.2667(4)	0.1724(8)	0.0706(7)
C(15)	0.3673(4)	0.4597(7)	0.2510(7)	C(325)	0.3018(4)	0.1729(8)	0.0842(6)
C(16)	0.3654(3)	0.3828(6)	0.2612(6)	C(326)	0.3150(3)	0.1576(7)	0.1540(6)
C(17)	0.3762(5)	0.5712(8)	0.1744(10)	C(411)	0.3138(3)	0.3181(5)	0.4223(5)
C(21)	0.2912(4)	0.3571(9)	0.152(1)	C(412)	0.2791(3)	0.3368(7)	0.4079(6)
C(22)	0.2853(4)	0.3932(10)	0.2098(9)	C(413)	0.2690(4)	0.4081(8)	0.4052(7)
C(23)	0.2876(5)	0.459(1)	0.199(1)	C(414)	0.2934(4)	0.4604(7)	0.4178(7)
C(24)	0.2949(5)	0.4774(10)	0.131(1)	C(415)	0.3281(4)	0.4440(7)	0.4330(7)
C(25)	0.2981(4)	0.411(2)	0.0942(8)	C(416)	0.3383(3)	0.3725(6)	0.4369(6)
C(111)	0.4531(3)	0.1550(6)	0.4538(6)	C(421)	0.3411(3)	0.2255(6)	0.5319(5)
C(112)	0.4860(3)	0.1810(8)	0.4767(8)	C(422)	0.3692(3)	0.1861(6)	0.5578(6)
C(113)	0.5056(4)	0.1415(9)	0.5289(9)	C(423)	0.3783(4)	0.1886(8)	0.6313(6)
C (114)	0.4922(4)	0.0785(9)	0.5572(8)	C(424)	0.3595(4)	0.2272(7)	0.6789(6)
C(115)	0.4597(4)	0.0526(8)	0.5336(8)	C(425)	0.3305(4)	0.2653(7)	0.6548(6)
C (116)	0.4411(3)	0.0912(7)	0.4818(6)	C(426)	0.3214(3)	0.2645(6)	0.5806(6)
C(121)	0.4326(3)	0.3008(6)	0.4171(6)	P(1')	0.36871(10)	0.6595(2)	0.4002(2)
C(122)	0.4334(4)	0.3554(7)	0.3672(8)	$\mathbf{F}(1')$	0.3433(3)	0.6127(7)	0.3497(7)
C(123)	0.4346(5)	0.4269(8)	0.3916(10)	F(2')	0.3924(4)	0.7056(7)	0.4498(7)
C(124)	0.4339(5)	0.4422(9)	0.4611(10)	F(3')	0.3417(3)	0.6447(9)	0.4574(6)
C(125)	0.4336(4)	0.3899(9)	0.5122(10)	F(4')	0.3929(4)	0.6799(9)	0.3406(7)
C(126)	0.4319(4)	0.3178(8)	0.4890(8)	F(5')	0.3482(4)	0.7235(7)	0.3702(10)
C(211)	0.4173(3)	-0.0073(5)	0.2903(5)	F(6')	0.3878(4)	0.5958(7)	0.427(1)
C(212)	0.4452(3)	-0.0411(7)	0.2559(8)	O(1')	0.4670(6)	0.297(1)	0.147(1)
C(213)	0.4503(3)	-0.1148(7)	0.2667(8)	C(1')	0.4698(7)	0.363(1)	0.121(2)
C(214)	0.4279(4)	-0.1534(7)	0.3102(7)	C(2')	0.4656(7)	0.365(2)	0.035(1)
C(215)	0.4001(4)	-0.1206(7)	0.3424(6)	C(3')	0.4735(8)	0.427(2)	0.171(2)

Empirical absorption and Lorentz-polarization corrections were made. Selected crystallographic data are summarized in Table 5.

All data reduction, absorption, least-squares, and Fourier calculations were carried out using the TEXSAN package of programs²⁵ (for 7·CH₂Cl₂ and 10a·CH₂Cl₂) or the UNIX-III package of programs²⁶ (for 8a·2THF and 13b·Me₂CO). The scattering factors were taken from International Tables for X-ray Crystallography.²⁷ The structures were solved by direct methods (MITHRIL for 7-CH2Cl2 and SHELXS86 for 8a-2THF and 13b-Me₂CO) or by heavy-atom Patterson methods (PATTY for $10a \cdot CH_2Cl_2$) and expanded using Fourier techniques. The structures of 7-CH₂Cl₂ and 10a-CH₂Cl₂ were refined by fullmatrix least-squares, while those of $8a{\cdot}2\text{THF}$ and $13b{\cdot}\text{Me}_{2}{\cdot}$ CO were refined by block-diagonal least-squares. The nonhydrogen atoms were refined anisotropically. The hydrogen atoms except for those of THF molecules in 8a.2THF were placed at the calculated positions and included with isotropic

(25) TEXSAN Structure Analysis Package, Molecular Structure Corp., 1985 and 1992.
 (26) Sakurai, T.; Kobayashi, K. Rep. Inst. Phys. Chem. Res. 1979,

55, 69. (27) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, U.K., 1974; Vol. IV.

thermal parameters in the final stage of refinement. The hydrogen atoms of THF molecules in 8a-2THF were not included in the structure refinement. The most intense residual peaks in the final difference Fourier maps are as follows: 7•CH₂Cl₂, 0.89 e/Å³; 8a•2THF, 2.07 e/Å³; 10a•CH₂Cl₂ 1.99 e/A³; 13b·Me₂CO, 2.02 e/A³. Final non-H atomic parameters are summarized in Tables 6-9.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, and Science of Japan. We thank Professor Yasuhiro Yamamoto and Dr. Tomoaki Tanase of Toho University for the X-ray diffraction analysis of 7-CH₂Cl₂ and Professor Mitsunobu Sato of Kogakuin University for the X-ray diffraction analysis of 8a·2THF.

Supplementary Material Available: Tables of positional parameters, anisotropic displacement parameters, and bond lengths and angles for 8a·2THF, 10a·CH₂Cl₂, and 13b·Me₂CO (32 pages). Ordering information is given on any current masthead page.

OM940720C