# Metal $\pi$ Complexes of Benzene Derivatives. 44.<sup>1</sup> The $(-PMe)_2Co_2(CO)_4(PMe_2-)_2$ Unit as a Spacer between $Bis(\eta$ -arene)metal Pairs (M = V, Cr). Electrochemical and EPR Spectroscopic Study of Interactions within the **Tetranuclear Complexes**

Christoph Elschenbroich,\* Bernhard Metz, and Bernhard Neumüller

Fachbereich Chemie, Philipps-Universität, D-35032 Marburg, Germany

**Edward Reijerse** 

Department of Molecular Spectroscopy, University of Nijmegen, 626 ED Nijmegen, The Netherlands

Received May 5, 1994<sup>®</sup>

In order to study long-distance intermetallic communication between bis(arene)metals, we have synthesized the binuclear complexes  $[(Me_2P-\eta^6-C_6H_5)_2M]_2Co_2(\mu-CO)_2(CO)_2$  (14, M = V; 15, M = Cr) in which the sandwich units are separated by the  $(-Me_2P)_2Co_2(CO)_4(P-$ Me<sub>2</sub>-)<sub>2</sub> spacer. 14 crystallizes in the monoclinic space group  $P_{2_1/c}$ , Z = 4, a = 1465.2(3), b = 1696.5(3), c = 1571.1(3) pm,  $\beta = 112.92(2)^{\circ}$ , R = 5.8%. The axes of the two terminal sandwich units are twisted by an angle of 55.3°; the bending of the individual sandwich axes is small  $(4^{\circ})$ . The distance between the terminal vanadium atoms amounts to 1094.2(3)pm. According to <sup>1</sup>H-, <sup>13</sup>C-, and <sup>31</sup>P-NMR, the dichromium analog **15** in solution is fluxional for 173 < T < 295 K due to an exchange process between terminal and bridging CO ligands and rapid chain reversals of the  $-Me_2P-Co-PMe_2-$  interannular links. As revealed by cyclic voltammetry, the two tetranuclear complexes 14 and 15, despite the large intermetallic distance, display a small redox splitting between successive oxidations of the terminal bis-(arene) metal units. Intermetallic communication also manifests itself in the <sup>51</sup>V hyperfine structure of the EPR spectrum of the biradical 14" in fluid solution, the analysis of which yields an exchange coupling constant of J = -0.078 cm<sup>-1</sup>. Thus, for 14<sup>••</sup> an intermediate exchange situation obtains for which exchange coupling J and hyperfine coupling  $a^{(51}V)$  are of similar magnitude. For the isoelectronic species  $15^{*2+}$ , evidence characterizing its biradical nature is only obtainable from the rigid solution EPR spectrum of  $15(PF_6)_2$ , which exhibits a  $\Delta M_s = 2$  signal and a trace in the  $\Delta M_s = 1$  region from which a zero-field splitting parameter of  $D = 26 \times 10^{-4}$  cm<sup>-1</sup> is estimated. If this value is used to calculate the interchromium distance, assuming that the point-dipole approximation is valid, the result falls short of the distance obtained from single-crystal X-ray analysis by 8%.

One of the incentives to prepare paramagnetic dinuclear complexes derives from the continuing interest in exploring how rapidly magnetic exchange interactions fall off as the bridging groups are made more extended.<sup>2</sup> There is ample evidence, however, that the extent of magnetic exchange does not display a simple dependence on intermetallic distance. This is because the superexchange and the magnetic dipole interaction possess different dependences on interspin separation, and in the region of about 8-14 Å they may be of comparable magnitude.<sup>3</sup> Consequently, the procedure for dipolar distance estimation in the presence of isotropic exchange interaction may furnish incorrect results. We have initiated a research program dealing with the synthesis and structural characterization of

 $bis(\eta^6$ -arene)metal(d<sup>5</sup>) pairs separated by organometallic spacers like  $(-PMe_2)_2M'(PMe_2-)_2$ , M' = Ni,<sup>4a</sup> Pt, CoH,<sup>4b</sup> and >Si(Ph)-Si(Ph)< (Chart 1).5

A prominent feature of complex 7" is electronelectron spin-spin coupling over a distance of 760 pm, a Si-Si  $\sigma$  bond serving as the propagating medium. The <sup>51</sup>V hyperfine structure for 7<sup>••</sup> denotes the fast-exchange case  $[J \gg a^{(51}V)]$ , and in fact, spectral simulation leads to  $J = -0.48 \pm 0.2$  cm<sup>-1</sup>, which is to be compared with  $a({}^{51}\text{V}, 7) = 0.63 \times 10^{-2}$  cm<sup>-1.5</sup> It was therefore of interest to explore the extent to which spin exchange would be weakened by introducing a larger spacer, by twisting the axes of the two communicating bis(arene)metal units and by replacing the intraspacer Si-Si bond by a  $\sigma$  bond between two transition metal atoms. These requirements are fullfilled by the spacer (-PMe<sub>2</sub>)<sub>2</sub>Co- $(CO)_2Co(CO)_2(PMe_2)_2$ , which is the subject of this paper.

<sup>Abstract published in Advance ACS Abstracts, November 1, 1994.
(1) Part 43: Elschenbroich, Ch.; Isenburg, T.; Metz, B.; Behrendt, A.; Harms, K. J. Organomet. Chem. 1994, 481, 153.
(2) (a) Hendrickson, D. N. In Magneto-Structural Correlations in Exchange Coupled Systems; Willet, R. D., Gatteschi, D., Kahn, O., Eds.; NATO Advanced Study Institute Series; Reidel: Dordrecht, The Natherland 1055, pp. 252, 544</sup>  Netherlands, 1985; pp 523-544. (b) See ref 5 for leading references.
 (3) Coffman, R. E.; Buettner, G. R. J. Phys. Chem. 1979, 83, 2387, 2392

<sup>(4) (</sup>a) Elschenbroich, Ch.; Heikenfeld, G.; Wünsch, M.; Massa, W.; Baum, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 414. (b) Metz, B. Ph.D. Dissertation, Marburg, 1992. (5) Elschenbroich, Ch.; Bretschneider-Hurley, A.; Hurley, J.; Massa,

W.; Wocadlo, S.; Pebler, J.; Reijerse, E. Inorg. Chem. 1993, 32, 5421.



Besides an EPR study of magnetic exchange in the biradicals containing V<sup>0</sup> and Cr<sup>+</sup> as central metals, cyclic voltammetry (CV) will also be applied to the tetranuclear complexes in a search for redox splitting. which would be another manifestation of weak interaction between the terminal bis(arene)metal units.

## **Results and Discussion**

Synthesis and Structure. Reactions of  $Co_2(CO)_8$ with organophosphanes are frequently accompanied by disproportionation particularly if carried out in polar solvents at ambient temperature.<sup>6</sup> This also applies to ditertiary chelating phosphanes.<sup>7</sup> At higher temperatures and in nonpolar media formation of molecules containing Co<sub>2</sub>(CO)<sub>4</sub> bridges is favored (Scheme 1).<sup>8a</sup>

Table 1. Experimental Parameters of the X-ray Diffraction Study of 14

| formula                                                                         | $C_{36}H_{44}Co_2O_4P_4V_2$            |
|---------------------------------------------------------------------------------|----------------------------------------|
| formula wt                                                                      | 884.38                                 |
| a                                                                               | 1465.2(3) pm                           |
| b                                                                               | 1696.5(3) pm                           |
| с                                                                               | 1571.1(3) pm                           |
| β                                                                               | 112.29(2)°                             |
| v                                                                               | $3613(1) \times 10^6 \text{ pm}^3$     |
| Z                                                                               | 4                                      |
| density (calcd)                                                                 | 1.625 g/cm <sup>3</sup>                |
| cryst syst                                                                      | monoclinic                             |
| space group                                                                     | $P2_1/c$ (No. 14 <sup><i>a</i></sup> ) |
| temp                                                                            | 20 °C                                  |
| no. of reflns for the                                                           | 25                                     |
| determination of the cell constants                                             |                                        |
| 2 $\Theta$ scan range                                                           | 4-50°                                  |
| scan type                                                                       | $\omega$ -scan                         |
| scan width                                                                      | $(1.3 + 0.35 \tan \Theta)^{\circ}$     |
| no. of data collected                                                           | 8875                                   |
| unique data                                                                     | 6289                                   |
| obsd data $(F_0 > 4\sigma F_0)$                                                 | 2921                                   |
| linear abs coeff ( $\mu_{Mo K\alpha}$ )                                         | 16.2 cm <sup>-1</sup>                  |
| $R = \sum   F_{\rm o}  -  F_{\rm c}   / \sum  F_{\rm o} $                       | 0.058                                  |
| $R_{\rm w} = [\sum ( F_{\rm o}  -  F_{\rm c} )^2 / \sum w  F_{\rm o} ^2]^{1/2}$ | 0.045                                  |
| $w = 1/[\sigma^2/(F_0^2) + 0.0001F_0^2]$                                        |                                        |
| max/min residual electron density (e/pm <sup>3</sup> $\times$ 10 <sup>6</sup> ) | 0.69/-0.64                             |

<sup>a</sup> International Tables for Crystallography, 2nd ed.; Kluwer Academic Publishers: Dordrecht, 1989.

If cobalt(II) chloride is reduced by Na[BH<sub>4</sub>] in the presence of DMPM (=  $Me_2PCH_2PMe_2$ ), the chelating diphosphane engages in A-frame coordination, [Co2- $(CO)_2(\mu$ -CO)\_2( $\mu$ -DMPM)\_2] being obtained.<sup>8b</sup> Thus, in order to effect nonbridging coordination, we first treated bis((dimethylphosphano)- $\eta^6$ -benzene)chromium, 13,<sup>4</sup> with  $Co_2(CO)_8$  in boiling toluene. However, as inferred from IR spectroscopic evidence pointing to the presence of Co(CO)4<sup>-</sup> units, disproportionation had taken place. We therefore resorted to  $bis(\eta^2, \eta^{2'}-bicyclo[2.2])$ hepta-2,5diene)tetracarbonyldicobalt  $11^9$  as a source for the Co<sub>2</sub>- $(CO)_4$  bridge.

The sparingly soluble products 14 (reddish brown) and 15 (ochre) may be recrystallized from toluene to yield crystals suitable for X-ray diffraction. The structure of the vanadium complex **14** is shown in Figure 1. Experimental data for the crystal structure determination, fractional coordinates, and selected bond lengths and bond angles are listed in Tables 1, 2, and 3, respectively. The rod-shaped molecules in the crystal form parallel strands which are composed of the two enantiomers. The  $Co_2(CO)_4$  unit contains two bridging and two terminal CO ligands which leads to a butterfly structure with an interplanar angle of 117°. Compared with the complexes  $9 (252.4 \text{ pm}^{10})$  and  $10 (255.2 \text{ pm}^{4b})$ , the Co-Co bond distance is significantly shorter in 6(247.1 pm). The individual sandwich units in 14 display only very slight tilting of the ring plains (angle 4°), the conformation of the  $\eta^6$ -arenes is staggered, and the disposition of the axial methyl groups  $C(10)H_3$  and  $C(12)H_3$  as well as  $C(13)H_3$  and  $C(15)H_3$  is antiperiplanar. Interestingly, in the complex 4 the latter orientation is synperiplanar.<sup>4a</sup> Important structural aspects with regard to the discussion of intramolecular communication are the angle between the terminal sandwich axes (55.3°) and the V-V distance (1094.2 pm). A very similar structure most likely pertains for the

<sup>(6)</sup> Hieber, W.; Freyer, F. Chem. Ber. 1960, 93, 462.

<sup>(7)</sup> Manning, A. R. J. Chem. Soc. A 1968, 1135.
(8) (a) Manning, A. R.; Thornhill, D. J. J. Chem. Soc., Dalton Trans.
1973, 2086. (b) Mirza, H. A.; Vittal, J.; Puddephat, R. J.; Frampton, C. S.; Manojlovic-Muir, L.; Xia, W.; Hill, R. H. Organometallics 1993, 12, 2767.

<sup>(9)</sup> Behrens, H.; Aquila, W. Z. Anorg. Allg. Chem. 1967, 356, 8.

<sup>(10)</sup> Summar, G. G.; Klug, H. P.; Alexander, L. E. Acta Crystallogr. 1964, 17, 732.



Table 2. Atomic Coordinates and Isotropical Equivalent Thermal Parameters (10<sup>-22</sup> m<sup>2</sup>) of the Non-Hydrogen Atoms in 14

chromium analog 15. In this case, additional information concerning the dynamic behavior in fluid solution is available from nuclear magnetic resonance. As inferred from the data reported in the Experimental Section, the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of the tetranuclear complex 15 are much simpler than the structure in the crystal would suggest. For example, in such a static structure all 20 arene protons should be inequivalent. Equivalence of the two sandwich units may be effected by a process which exchanges bridging and terminal CO ligands in the  $Co_2(CO)_4$  unit.<sup>11</sup> Furthermore, the observation that all the ortho, the meta, and the para positions as well as the methyl groups, respectively, are isochronic may be rationalized by cycloreversion of the P-Co-P links as depicted in Figure 2. This type of flexibility of an interannular link, which for 15 is fast on the NMR time scale even at 173 K, is a common phenomenon in the metallocenophane<sup>12</sup> as well as in the metallocyclophane<sup>13</sup> series.

Electrochemistry. For the tetranuclear complexes 14 and 15 is a rich redox chemistry may be envisaged since both the central  $Co_2(CO)_4$ - and the terminal sandwich units can undergo electron-transfer processes. The redox behavior of the species  $C_{12}H_{12}M$  (M = V, Cr) has recently been described,<sup>14</sup> and that of the reference compound 10 has also been the subject of detailed investigation.<sup>4b</sup> The most important findings emerging from the latter study are a reversible redox couple  $10^{+/0}$ 

(11) Lissic, E. C.; Hanson, B. E. Inorg. Chem. 1986, 25, 812.
(12) Abel, E. W.; Orrell, K. G. Progr. Inorg. Chem. 1984, 32, 1. Abel,
E. W.; Long, N. J.; Orrell, K. G.; Osborne, A. G.; Sik, V.; Bates, P. A.; Hursthouse, M. B. J. Organomet. Chem. 1989, 367, 275. Herberhold, M.; Leitner, P. J. Organomet. Chem. 1991, 411, 232 for leading references.

(13) By metallocyclophane we designate bis(arene)metal complexes bearing interannular bridges (compare metallocenophane; Mueller-Westerhoff, U. T. Angew. Chem., Int. Ed. Engl. 1986, 25, 702). In homometallocyclophanes the bridges are formed from C units exclusively, in heterometallocyclophanes they may also contain other maingroup or transition elements in their backbone. Cycloreversion: Burdorf, H.; Elschenbroich, Ch. Z. Naturforsch. 1981, 36b, 94. Elschen-broich, Ch.; Burdorf, H.; Burdorf, H.; Mahrwald, D.; Metz, B. Z. Naturforsch. 1992, 47b, 1157. Elschenbroich, Ch.; Sebbach, J.; Metz,
B.; Heikenfeld, G. J. Organomet. Chem. 1992, 426, 173. Reference 4.
(14) Elschenbroich, Ch.; Bilger, E.; Metz, B. Organometallics 1991,

10. 2823.

(15) Behrens, H.; Aquila, W. Z. Anorg. Allg. Chem. 1967, 356, 8.
 (16) Flanagan, J. B.; Margel, S.; Bard, A. J.; Anson, F. C. J. Am. Chem. Soc. 1978, 100, 4248.

| atom        | <i>x</i>  | У           | z         | Ueq              |
|-------------|-----------|-------------|-----------|------------------|
| Co1         | 0.7087(1) | -0.01936(7) | 0.2550(1) | 2.52(4)          |
| Co2         | 0.7927(1) | -0.14318(7) | 0.2412(1) | 2.71(4)          |
| <b>V</b> 1  | 0.7039(2) | 0.2382(1)   | 0.2605(1) | 3.73(6)          |
| V2          | 0.7944(1) | -0.4021(1)  | 0.2640(1) | 3.92(7)          |
| P1          | 0.7168(2) | 0.0619(2)   | 0.1461(2) | 2.7(1)           |
| P2          | 0.7190(2) | 0.0517(2)   | 0.3740(2) | 3.1(1)           |
| P3          | 0.6806(2) | -0.2259(2)  | 0.1470(2) | 3.0(1)           |
| P4          | 0.9022(3) | -0.2126(2)  | 0.3477(2) | 3.2(1)           |
| 01          | 0.9240(5) | -0.0122(4)  | 0.3334(5) | 4.5(3)           |
| 02          | 0.6689(5) | -0.1522(4)  | 0.3509(4) | 4.1(3)           |
| <b>O</b> 3  | 0.4954(5) | -0.0311(4)  | 0.1796(5) | 5.4(3)           |
| 04          | 0.8982(6) | -0.1278(5)  | 0.1177(5) | 7.5(4)           |
| C1          | 0.8469(8) | -0.0425(5)  | 0.2959(7) | 3.1(4)           |
| C2          | 0.7061(7) | -0.1194(6)  | 0.3060(6) | 3.5(4)           |
| C3          | 0.5800(8) | -0.0264(6)  | 0.2054(6) | 2.8(4)           |
| C4          | 0.8559(8) | -0.1319(5)  | 0.1653(7) | 4.3(4)           |
| C5          | 0.6685(7) | 0.1595(5)   | 0.1425(6) | 2.3(3)           |
| C6          | 0.7531(8) | 0.1549(6)   | 0.3756(6) | 3.2(4)           |
| C7          | 0.6719(7) | -0.3247(5)  | 0.1866(7) | 3.2(4)           |
| C8          | 0.9104(8) | -0.3178(6)  | 0.3250(7) | 3.7(4)           |
| C9          | 0.6468(8) | 0.0256(6)   | 0.0315(6) | 5.0(4)           |
| C10         | 0.8338(7) | 0.0796(6)   | 0.1358(6) | 4.4(4)           |
| C11         | 0.8060(8) | 0.0191(6)   | 0.4844(5) | 5.0(4)           |
| C12         | 0.6055(7) | 0.0531(6)   | 0.3960(6) | 5.2(4)           |
| C13         | 0.6894(8) | -0.2412(6)  | 0.0352(6) | 5.2(4)           |
| C14         | 0.5497(7) | -0.1988(6)  | 0.1070(6) | 4.3(4)           |
| C15         | 0.9020(8) | -0.2085(7)  | 0.4622(6) | 6.0(5)           |
| C16         | 1.0289(7) | -0.1837(6)  | 0.3705(7) | 4.9(4)           |
| C51         | 0.7117(8) | 0.2299(6)   | 0.1239(6) | 3.7(4)           |
| C52         | 0.6759(9) | 0.3044(6)   | 0.1332(7) | 4.6(4)           |
| C53         | 0.5926(8) | 0.3133(6)   | 0.1562(6) | 4.1(4)           |
| C54         | 0.5460(8) | 0.2453(7)   | 0.1712(6) | 4.4(4)           |
| C55         | 0.5846(7) | 0.1696(6)   | 0.1650(6) | 3.0(4)           |
| C61         | 0.7000(8) | 0.2180(6)   | 0.3968(6) | 4.5(4)           |
| C62         | 0.727(1)  | 0.2981(7)   | 0.3915(7) | 5.7(5)           |
| C63         | 0.805(1)  | 0.3148(6)   | 0.3666(7) | 5.6(5)           |
| C64         | 0.8602(8) | 0.2539(7)   | 0.3470(7) | 4.5(4)           |
| C65         | 0.8337(8) | 0.1744(6)   | 0.3524(6) | 3.5(4)           |
| <b>C7</b> 1 | 0.6682(8) | -0.3938(7)  | 0.1343(8) | 4.9(5)           |
| C72         | 0.6661(8) | -0.4678(6)  | 0.1693(9) | 5.6(5)           |
| C73         | 0.6721(8) | -0.4773(7)  | 0.2615(9) | 5.8(5)           |
| C74         | 0.6747(8) | 0.4104(7)   | 0.3147(8) | 5.7(5)           |
| C75         | 0.6766(7) | -0.3345(6)  | 0.2794(7) | 3.7(4)           |
| C81         | 0.9082(7) | -0.3399(6)  | 0.2373(7) | 4.1(4)           |
| C82         | 0.9145(7) | -0.4186(6)  | 0.2136(8) | 5.0(5)           |
| C83         | 0.9168(9) | -0.4785(7)  | 0.276(1)  | 6.4(5)<br>7.0(6) |
| C84         | 0.9245(9) | -0.4583(7)  | 0.3683(9) | 7.0(6)           |
| C85         | 0.9210(7) | -0.3787(6)  | 0.3918(7) | 4.5(4)           |

| (acg) 101 14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| 247.1(2)     | Co1-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 223.5(3)                                                                                                                                                                                                                                                                                                                                                      | V1-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 218.2(9)                                               |  |  |  |  |
| 218.2(3)     | Co2-P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 225.0(3)                                                                                                                                                                                                                                                                                                                                                      | V1-C51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220(1)                                                 |  |  |  |  |
| 218.2(3)     | Co1-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 192(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| 188.4(9)     | Co1-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222(1)                                                 |  |  |  |  |
| 192.6(9)     | Co2-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221(1)                                                 |  |  |  |  |
| 177(1)       | 01-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 216(1)                                                 |  |  |  |  |
| 118(1)       | O3-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 219.0(9)                                               |  |  |  |  |
| 114(2)       | P1-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.2(9)                                                                                                                                                                                                                                                                                                                                                      | V1-C61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| 180.9(9)     | P1-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 181(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220(1)                                                 |  |  |  |  |
| 182(1)       | P2-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180.7(9)                                                                                                                                                                                                                                                                                                                                                      | V1-C63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| 182(1)       | P3-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| 183(1)       | P3-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 184(1)                                                                                                                                                                                                                                                                                                                                                        | V1-C65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| 183(1)       | P4-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180(1)                                                                                                                                                                                                                                                                                                                                                        | V2-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 219(1)                                                 |  |  |  |  |
| 182(1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 218(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 216(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 215(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 216(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220(1)                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                               | V2-C85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219(1)                                                 |  |  |  |  |
| -P2          | 107.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P3-Co2                                                                                                                                                                                                                                                                                                                                                        | -C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157.3(3)                                               |  |  |  |  |
| -P4          | 107.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P3-Co2                                                                                                                                                                                                                                                                                                                                                        | -C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.6(3)                                                |  |  |  |  |
| -Co2         | 80.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P3-Co2                                                                                                                                                                                                                                                                                                                                                        | -C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.3(4)                                                |  |  |  |  |
| -Co2         | 80.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4-Co2                                                                                                                                                                                                                                                                                                                                                        | -C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.6(3)                                                |  |  |  |  |
| ·C1          | 91.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4-Co2                                                                                                                                                                                                                                                                                                                                                        | -C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.2(3)                                                |  |  |  |  |
| ·C2          | 153.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P4-Co2                                                                                                                                                                                                                                                                                                                                                        | -C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.6(4)                                                |  |  |  |  |
| -C3          | 93.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-Co2                                                                                                                                                                                                                                                                                                                                                        | -C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.3(5)                                                |  |  |  |  |
| -C1          | 96.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1-Co2                                                                                                                                                                                                                                                                                                                                                        | 2−C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.0(5)                                                |  |  |  |  |
| ·C2          | 98.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2-Co2                                                                                                                                                                                                                                                                                                                                                        | C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160.7(4)                                               |  |  |  |  |
| ·C3          | 97.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co1-P1                                                                                                                                                                                                                                                                                                                                                        | C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.3(3)                                               |  |  |  |  |
| -C2          | 82.1(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co1-P2                                                                                                                                                                                                                                                                                                                                                        | -C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.2(3)                                               |  |  |  |  |
| -C3          | 163.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co2-P3                                                                                                                                                                                                                                                                                                                                                        | -C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.2(3)                                               |  |  |  |  |
| -C3          | 86.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co2-P4                                                                                                                                                                                                                                                                                                                                                        | -C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117.8(3)                                               |  |  |  |  |
| -01          | 140.3(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |  |  |  |  |
| -01          | 139.7(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |  |  |  |  |
| -02          | 140.1(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |  |  |  |  |
| -02          | 139.5(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |  |  |  |  |
|              | 247.1(2)<br>218.2(3)<br>218.2(3)<br>188.4(9)<br>192.6(9)<br>177(1)<br>118(1)<br>114(2)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>183(1)<br>182(1)<br>183(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1)<br>182(1) | $\begin{array}{c} (uld g) 1\\ \hline \\ 247.1(2) & Col -Pl \\ 218.2(3) & Co2 -P3 \\ 218.2(3) & Col -C1 \\ 188.4(9) & Col -C3 \\ 192.6(9) & Co2 -C2 \\ 177(1) & Ol -C1 \\ 118(1) & O3 -C3 \\ 114(2) & Pl -C5 \\ 180.9(9) & Pl -C10 \\ 182(1) & P2 -C11 \\ 182(1) & P3 -C7 \\ 183(1) & P3 -C7 \\ 183(1) & P3 -C14 \\ 183(1) & P4 -C15 \\ 182(1) \\ \end{array}$ | $\begin{array}{c} (ddg) \ for \ 14 \\ \hline \\ 247.1(2) \ Col -P1 \ 223.5(3) \\ 218.2(3) \ Co2 -P3 \ 225.0(3) \\ 218.2(3) \ Co1 -C1 \ 192(1) \\ 188.4(9) \ Co1 -C3 \ 175(1) \\ 192.6(9) \ Co2 -C2 \ 194(1) \\ 177(1) \ O1 -C1 \ 118(1) \\ 118(1) \ O3 -C3 \ 115(1) \\ 114(2) \ P1 -C5 \ 179.2(9) \\ 180.9(9) \ P1 -C10 \ 181(1) \\ 182(1) \ P2 -C11 \ 180.7(9) \\ 182(1) \ P3 -C7 \ 181(1) \\ 183(1) \ P3 -C14 \ 184(1) \\ 183(1) \ P3 -C14 \ 184(1) \\ 183(1) \ P4 -C15 \ 180(1) \\ 182(1) \\ 182(1) \\ \hline \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |  |

 $(E_{1/2} = -0.20 \text{ V})$ , oxidative cleavage of the Co-Co bond at more anodic potential ( $E_{pa} = +0.65 \text{ V}$ ), and reductive cleavage at  $E_{pc} = -2.32 \text{ V}$ . The latter process has been performed previously on a preparative scale using sodium amalgam as a reductant. The redox properties of dinuclear 10 aid in the interpretation of the electrochemistry of 14 and 15. Cyclovoltammetric traces for 14 and 15 are depicted in Figures 3-5, where the parameters are also given. Our interpretation of the course of electrochemical events for 14 and 15 is given in Scheme 3.

The simpler behavior of chromium complex 15 will be treated first. As expected from a comparison of the redox properties of 10 and 13, the first oxidation step involves the terminal sandwich units. Compared to the free organometallic ligand (Me<sub>2</sub>P- $\eta^6$ -C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>Cr, 13 ( $E_{1/2}^{0/+}$  $= -0.57 \text{ V}^4$ ), the redox potential of 13 as a part of the molecule 15 shows a slight anodic shift which stems from the electron-withdrawing properties of the bridging  $Co_2(CO)_4$  unit. The dication  $15^{2+}$  can also be prepared via chemical oxidation by 4-pyridinecarboxaldehyde and isolated as the hexafluorophosphate salt. The infrared data for  $15(PF_6)_2$  denote that oxidation has occurred at the terminal sandwich moieties since the carbonyl stretching frequencies experience only a moderate shift to higher wavenumbers. This argument rests on a comparison with the IR data of  $10(PF_6)$ . Whereas in DME solvent no redox splitting is discernible, the cyclovoltammogram of the salt  $15(PF_6)_2$  in  $CH_2Cl_2$  points to a difference between the potentials of two consecutive electron transfers,  $Cr^{+/0}$  (Figure 5). The redox-splitting  $\Delta E_{1/2}$  emerges more clearly from differential pulse voltammetry (DPV) performed in  $15(PF_6)_2$ . From the cyclovoltammogram, on the basis of working curves,<sup>17</sup> a value of  $\Delta E_{1/2} \approx 100$  mV may be estimated. DPV yields the value  $\Delta E_{1/2} = 90$  mV. The third electron-transfer step, from a consideration of the peak currents, involves only one of the two cobalt atoms. This assignment was corroborated by chronoamperometric measurements, which yielded the ratio  $I_{pa}(15^{2+/0})$ : $I_{pa}$ - $(15^{3+/2+}) = 2:1$ . Contrary to the behavior of the dinuclear cobalt complex 10, for tetranuclear  $15^{2+}$  this step is reversible. Apparently for  $15^{3+}$  stabilization by electron delocalization is more effective than for 10. A strong interaction between the 13<sup>•+</sup> terminal units and the  $Co_2(CO)_4$  bridge is also suggested by the pronounced anodic shift of +350 mV that the couple  $Co_2(CO)_4^{+/0}$ experiences in  $15^{2+}$  compared to 10. The fourth oxidation step for 15 is irreversible, as is reduction, which is signalized by an irreversible step at  $E_{pc} = -2.59$  V. As in the case of 10, cleavage of the  $Co_2(CO)_4$  unit probably takes place at this potential.

For the divanadium analog 14 as well, primary oxidation occurs at the terminal bis(arene)metal units and in the cyclovoltammogram displays a redox splitting of a magnitude similar to that of 15. From the peak separation  $\Delta E_{\rm p} = 110$  mV, and the difference  $E_{\rm pa} - E_{\rm pa/2}$ = 90 mV working curves<sup>17</sup> yield the redox-splitting  $\Delta \vec{E}_{1/2}$  $=E_{1/2}(14^{2+/+})-E_{1/2}(14^{+/0})\approx 80$  mV. Unfortunately, we were not able to obtain satisfactory DPV response for 14. If, starting from the initial limits  $-1.0 \le E \le +0.2$ V, the scan range is gradually extended in the anodic direction, oxidation of the central unit  $Co_2(CO)_4$  is observed. However, as opposed to the dichromium complex 15, this process is irreversible for the divanadium species 14. No plausible explanation is available for this diverging behavior. That the second oxidation step for 14 occurs at a bis(arene)vanadium unit is highly unlikely in view of its position on the potential scale, since the irreversible step  $(C_6H_6)_2V^{2+/+}$  is known to proceed at  $E_{pa} = 0.24$  V,<sup>14</sup> and for the bis(arene)vanadium moiety, present in the dication  $14^{2+}$ , a much more anodic peak potential would be expected. While irreversibility of the processes leading to a higher oxidation and reduction stages of the complexes 14 and 15 precludes detailed discussion, the redox splitting of the reversible primary redox processes which yield the mono- and dications is remarkable in view of the fact that the terminal redox centers are separated by a distance of more than 1000 pm. It would be premature, however, to conclude that this distance defines the limit beyond which intramolecular interations of redox centers become unobservable by electrochemical methods, because there may be spacers different from the (-PMe<sub>2</sub>)<sub>2</sub>- $Co_2(CO)_4(PMe_2^{-})_2$  bridge that may sustain redox communication over even larger distances.

**EPR Spectroscopy.** Whereas the measurement of magnetic susceptibility as a method for determining the exchange coupling constant J fails for  $J < 1 \text{ cm}^{-1}$ , it is for this region of very weak interaction that electron paramagnetic resonance, in particular the inspection of the hyperfine coupling pattern, steps in. The EPR spectrum of the bisvanadium complex 14 is shown in

<sup>(17)</sup> Richardson, D. E.; Taube, H. Inorg. Chem. 1981, 20, 1278.



Figure 1. Molecular structure (top) and unit cell (bottom) of complex 14.

Figure 5. The fairly complicated, irregular pattern immediately suggests that exchange coupling J and hyperfine coupling  $a^{(51V)}$  must be of similar magnitude, i.e., that an intermediate exchange situation prevails. This qualitative conclusion is supported by spectral simulation in which fair agreement with the experimental trace is achieved with  $J = -0.078 \text{ cm}^{-1}$ , while for the mononuclear complex 12,  $a^{(51V)} = 0.0063 \text{ cm}^{-1}$ . Replacing the spacer >Si(Ph)-Si(Ph)< by the unit  $(-PMe_2)Co_2(CO)_4(PMe_2-)_2$  has the effect of increasing the intermetallic distance V-V from  $\approx 760 \text{ pm} (7)^5$  to 1094 pm (14) with an attendant decrease of exchange coupling from  $J(7) = -0.48 \text{ cm}^{-1}$  to  $J(14) = -0.078 \text{ cm}^{-1}$ . Interestingly, despite the magnetic moment  $(I(^{59}Co) =$ 7/2, 100%), the <sup>59</sup>Co nuclei in the tetranuclear complex 14 are EPR-silent, which raises questions concerning the mechanism of the exchange coupling. In essence, they concern the seemingly paradoxical situation that both unpaired electrons interact with both vanadium nuclei, but there is no evidence for spin density on the bridge.<sup>18</sup>

The diradical dication  $15^{*2+}$ , which is isoelectronic to 14", in fluid solution yields only a broad signal void of proton hyperfine structure. Possibly, intramolecular exchange broadening is responsible for this observation, being more effective in eliminating resolution of individual hyperfine components in the case of small coupling constants  $a(^{1}\text{H}, 15)$  compared to the large values for  $a(^{51}\text{V}, 14)$ . The EPR spectra of  $14^{**}$  and  $15^{**2+}$  also differ significantly in rigid solution. The complex 14 yields a spectrum displaying rich  $^{51}\text{V}$  hyperfine structure. An analysis of this spectrum would have to consider a large number of parameters, namely, the components of the zero-field splitting, g, and hyperfine tensors, which at present is impractical. A half-field signal ( $\Delta M_s = 2$ ) is not observed for  $14^{**}$ , which does

<sup>(18)</sup> A discussion of the alternative mechanisms—"direct" (metal orbital overlap) or "indirect" (superexchange)—will be based on additional experiments currently in progress. They involve a comparison of the temperature dependence of the exchange coupling constant J for closed (rigid) and open (flexible) analogs of 1 and 4. In this way it should become possible to differentiate between through-space and through-bond processes.



Figure 2. Cycloreversion of the interannular bridge in the tetranuclear complex 15.



**Figure 3.** Cyclic voltammogram of 14 at -50 °C, DME/ 0.1 M TBAP vs SCE.  $E_{pc} = -2.82$  V (irrev);  $E_{pc} = -2.47$  V (irrev);  $E_{1/2} = -0.22$  V,  $r = i_a/i_c \approx 1$ ;  $E_{1/2} = -0.14$  V,  $r \approx 1$ ;  $E_{pa} = 0.18$  V (irrev);  $E_{pa} = 0.67$  V (irrev). (a) Survey, -3.0< E < 0.5 V, 200 mV/s. (b) Limited scan range, -1.0 < E< 0.2 V, 20 mV/s.

not come as a surprise in view of the large interspin distance and the fact that total intensity is distributed over 15 <sup>51</sup>V hyperfine components. Conversely, the lack of hyperfine resolution simplifies the spectrum of the dichromium complex 15<sup>••2+</sup> in rigid solution (Figure 6), allowing observation of the  $\Delta M_s = 2$  transition at the 2.5 × 10<sup>-4</sup> relative intensity of the  $\Delta M_s = 1$  signal. Furthermore, in the  $\Delta M_s = 1$  region, the central line is accompanied by two signals which are separated by 5.23 mT. While the overall shape of the  $\Delta M_s = 1$  signal does not display all the features expected for a nonaxial



**Figure 4.** Cyclic voltammogram of **15** at -50 °C, DME/ TBAP vs SCE.  $E_{pc} = -2.59$  V (irrev);  $E_{1/2} = -0.53$  V,  $\Delta E_p = 90$  mV, r = 1, n = 2;  $E_{1/2} = 0.24$  V,  $\Delta E_p = 92$  mV, r = 1.1;  $E_{pa} = 0.62$  V (irrev);  $E_{pa} = 1.05$  V (irrev). (a) Survey, -2.7 < E < 1.6 V. (b) Limited scan range, -1.0 < E < 0.5 V, 200 mV/s.

species in its triplet state (the D + 3E and D - 3E pairs of lines are not resolved), the outer lines may be assigned to the Z components of the  $\Delta M_s = 1$  transition (separation  $2D = 52 \times 10^{-4}$  cm<sup>-1</sup>). If one proceeds to calculate the interspin distance r from this separation according to the relation  $r = (3g\beta/2D)^{1/3}$ ,<sup>19</sup> a value of

<sup>(19)</sup> Eaton, S. S.; More, K. M.; Savant, B. M.; Eaton, G. R. J. Am. Chem. Soc. 1983, 105, 6560.



Figure 5. Cyclic voltammogram of 15 at 25 °C, CH<sub>2</sub>Cl<sub>2</sub>/  $(n-Bu)_4 NPF_6 vs \text{ SCE}$ .  $E_{1/2} = -0.63 \text{ V}; E_{1/2} = -0.52 \text{ V}, \Delta E_p$ - $\begin{array}{l} (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2)$ 0.5, 50 mV/s. (c) Differential pulse voltammogram, -0.8< E < 0.3 V, 10 mV/s; scan increment 2 mV; step drop time 0.2 s; pulse height 20 mV; pulse width 40 ms.

1002 pm is obtained, which falls considerably short of the distance inferred for 14 from the X-ray structure determination. In view of the poor resolution of the  $\Delta M_s$ = 1 signal, not too much weight should be put on this divergence. If it is assumed that the numerical value of the parameter has been extracted correctly from the spectrum, the inconsistency would signalize that for  $15^{\cdot\cdot\cdot2+}$  the point-dipole approximation is not strictly applicable. This could derive from a direct (throughspace) Cr\*+-Co-Co-Cr\*+ interaction which fakes a shorter distance between the terminal paramagnetic bis(arene)metal units. It must be admitted, however, that in the case of the dication  $4^{*2+}$ , which contains the configuration Cr\*+-Ni--Cr\*+ and orthogonal sandwich units, application of the point-dipole model for the calculation of the interchromium distance worked very well.<sup>4</sup> Thus, the reliability of intermetallic distances obtained from the rigid solution EPR spectra of organometallic biradicals is limited by the lack of independent evidence concerning the detailed mechanism of spin-spin interaction.<sup>20</sup>

#### Scheme 3

Dimethoxethane (DME)/(n-Bu)<sub>4</sub>NClO<sub>4</sub>, -50 °C, vs. SCE:



DME/(n-Bu)4NClO4, -50°C, vs. SCE:



### **Experimental Section**

Synthetic and spectroscopic work was carried out under an atmosphere of dinitrogen; cyclic voltammetry was conducted under argon. The following instruments were used: Bruker AC-300 and AM-400 (NMR); Varian EE 12 (EPR, X-band); Varian MAT CH7A (EI-MS); AMEL Models 552, 568, 563; Nicolet storage oscilloscope 3091; glassy carbon working electrode; Pt wire counter electrode; saturated calomel reference electrode; EG+G (PAR) Model 273; Pt disk working electrode; Pt wire counter electrode; SCE reference electrode; and Electrochemical Analysis Software Model 270 (cyclic voltammetry, differential pulse voltammetry). Measurements were performed in the media dimethoxyethane (DME)/(n-1) $Bu_4NClO_4$ , 0.1 M, and methylene chloride/(*n*-Bu)<sub>4</sub>NPF<sub>6</sub>, 0.1 Μ.

Bis[bis((dimethylphosphano)- $\eta^6$ -benzene)vanadium]bis( $\mu$ -carbonyl)dicarbonyldicobalt (Co-Co) (14). Bis( $\eta^4$ norbornadiene)dicobalt tetracarbonyl (11)<sup>9</sup> (0.27 g, 0.65 mmol) and bis(dimethyl- $\eta^6$ -benzene)vanadium (12)<sup>22</sup> (0.42 g, 1.29 mmol) are dissolved in 50 mL of petroleum ether, 40/60, and stirred under reflux for 8 h. The brown precipitate is washed with petroleum ether and extracted with 100 mL of boiling toluene. Upon cooling to 6 °C, the complex 14 (0.35 g, 61%) crystallizes as dark-brown cubes. Anal. Calcd for C<sub>36</sub>H<sub>44</sub>-O<sub>4</sub>P<sub>4</sub>Co<sub>2</sub>V<sub>2</sub>: C, 48.89; H, 5.02. Found: C, 48.25; H, 4.65. IR(Nujol): v(CO) 1945 s, 1910 s, 1735 m, 1705 s.

Bis[bis((dimethylphosphano)- $\eta^6$ -benzene)chromium]bis(µ-carbonyl)dicarbonyldicobalt (Co-Co) (15). The procedure is analogous to that given for 14. From 11 (0.20 g, 0.48 mmol) and  $13^4$  (0.35 g, 1.07 mmol) is obtained 15 (0.27 g, 63%) as reddish brown cubes. Anal. Calcd for  $C_{36}H_{44}O_4P_4$ -

<sup>(20)</sup> For a discussion of the applicability of the point-dipole approximation, see: Samuel, E.; Harrod, J. F.; Gourier, D.; Dromzee, Y.; Robert, F.; Jeannin, Y. Inorg. Chem. 1992, 31, 3252.
(21) Program MAGRES: Kejsers, C. P.; Reijerse, E. J.; Stam, P.; Dumont, M. F.; Gribnau, M. C. M. J. Chem. Soc., Faraday Trans. 1 1987, 82, 2612.

<sup>1987, 83, 3613.</sup> 

<sup>(22)</sup> The complex  $(Me_2P-\eta^6-C_6H_5)_2V$  (12) was prepared in analogy to the synthesis of  $(Ph_2P-\eta^6-C_6H_5)_2V$ : Elschenbroich, Ch.; Stohler, F. Chimia 1974, 28, 730.



Figure 6. EPR spectra of the biradical complex 14". (a) Fluid solution (toluene) at 293 K. (b) Stimulated trace.<sup>20</sup> (c) Rigid solution (toluene) at 121 K.

Co<sub>2</sub>Cr<sub>2</sub>: C, 48.77, H, 5.01. Found: C, 48.37; H, 5.25. IR-(Nujol): v(CO) 1940 s, 1910 s, 1720 m, 1700 s. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>5</sub>-CD<sub>3</sub>):  $\delta$  1.49 (CH<sub>3</sub>, <sup>2</sup>J(<sup>1</sup>H, <sup>31</sup>P) = 6.9 Hz, 24 H), 4.34 (para, 4 H), 4.45 (meta, 8 H), 4.66 (ortho, 8 H) ppm.  $^{13}C\{^{1}H\}NMR$  $(C_6D_5CD_3): \delta 17.5 (CH_3), 75.5 (para), 77.9 (meta), 79.6 (ortho)$ ppm.  ${}^{31}P{}^{1}H}NMR (C_6D_5CD_3): \delta 12.2 ppm.$ 

Bis[bis(dimethylphosphano)- $\eta^{\theta}$ -benzene)chromium]bis(µ-carbonyl)dicarbonyldicobalt (Co-Co) bis(hexafluorophosphate) [15(PF<sub>6</sub>)<sub>2</sub>]. To a solution of 15 (0.19 g, 0.11 mmol) in 100 mL of toluene at 0 °C are added 20 mL of saturated, aqueous KPF<sub>6</sub> solution and 2 mL of 4-pyridinecarboxaldehyde. After the mixture is vigorously stirred for 1 h, the green precipitate is filtered and washed with water, toluene, and diethyl ether. Recrystallization from acetone/ diethyl ether yields  $15(PF_6)_2$  (0.10 g, 77%) as green needles. Anal. Calcd for  $C_{36}H_{44}Co_2Cr_2F_{12}P_6$ : C, 36.75; H, 3.78. Found: C, 37.01; H, 4.03. IR(CH<sub>2</sub>Cl<sub>2</sub>): v(CO) 1956 s, 1937 s, 1741 m, 1718 m. IR(Nujol): v(CO) 1965 s, 1935 s, 1750 s, 1740 m

Crystal Structure Determination of 14. A crystal of 14 was mounted in a thin-walled capillary under argon and adjusted on a goniometer head. X-ray intensity data were collected on an Enraf-Nonius CAD4 diffractometer by using an  $\omega$ -scan with Mo K<sub>a</sub> radiation ( $\lambda = 71.073$  pm, graphite monochromator) at 20 °C. The structure was solved by direct



Figure 7. EPR spectra of  $15^{-2+}(PF_6)_2$  in rigid solution  $(DMF/CHCl_3)$  at 126 K.

methods and refined by full-matrix least-squares techniques (SHEXLTL-Plus<sup>23</sup>). An extinction correction and a numerical absorption correction  $(R_{int} = 0.042)$  were applied to all data. Hydrogen atoms were included by using a riding model with d(C-H) = 96 pm and a refined isotropic thermal parameter of 6.1·10<sup>-22</sup> m<sup>2</sup>. Tables for bond lengths, bond angles, and  $U_{\rm eq}$ (equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor) were generated with the program PLATON.24

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Supplementary Material Available: ORTEP drawing and stereoview of the structure of 14 and tables of bond lengths and bond angles, atomic coordinates, and isotropic thermal parameters (11 pages). Ordering information is given on any current masthead page.

#### OM9403481

Laboratory: Oak Ridge, TN, 1965.

<sup>(23)</sup> Sheldrick, G. M. SHELXTL-Plus, Release 4.2 for Siemens R3 Crystallographic Research Systems; Siemens Analytical X-Ray Instruments Inc.: Madison, WI, 1990.
(24) Spek, A. L. PLATON-92; Utrecht, 1992.
(25) Johnson, C. K. ORTEP. ORNL-3794; Oak Ridge National