Steric and Electronic Probes for a-Agostic Interaction in a Niobium Ethyl Complex

Michel Etienne

Laboratoire de Chimie de Coordination du CNRS, UPR 8241 liée par conventions à 1'Universitb Paul Sabatier et 1'Institut National Polytechnique de Toulouse, 205 Route de Narbonne, 31077 Toulouse Cedex, France

Received September 23, 199F

Summary: The new ethyl complexes Tp'Nb(Cl)(CH2- CH3)(PhC---C-R) (Tp' = *hydridotris(3,5-dimethylpyrazolyl)borate;* $R = CH_3$, $2a$; $R = CH_2CH_3$, $2b$) are shown *to exhibit an a-hydrogen agostic interaction. The reason why the a-agostic interaction is preferred over a more conventional @-agostic interaction is proposed to lie on stericgrounds. Accordingly, the bulkier benzyl ligand in* $Tp'Nb(Cl)(CH_2Ph)(PhC=CCH_3)$ (3) coordinates in an η^I fashion, whereas the good π -donor methoxy ligand in $Tp'Nb(OCH₃)(CH₂CH₃)(PhC=CCH₃)$ (4) *weakens the a-agostic bond.*

Alkyl complexes exhibiting β -hydrogen agostic interaction are much more numerous than those with α -hydrogen agostic bonds.¹ Similarly, β -hydride elimination is generally more facile than α -hydrogen elimination.² This is particularly the case for the heavier group *5* metals niobium and tantalum.³ A recent example⁴ is found in the reaction of the imido complex $CpNb(NR)Cl₂$ with ethylmagnesium chloride that leads to an ethene complex via @-hydride elimination. **A** rare case of competition between α - and β -hydrogen elimination⁵ results in an equilibrium between a tantalum neopentyl ethene complex and a tantalum neopentylidene ethyl complex. We describe herein the synthesis and characterization of stable *a-agostic ethyl* complexes of niobium together with some preliminary observations on the occurrence of such a system (see Scheme 1). **As** far as we are aware, only one example of a very weak α -agostic interaction in an 18 electron ethyl complex has been reported.⁶ α -Agostic alkyls have recently been identified as intermediates or transition states during Ziegler-Natta type polymerization of olefins.'

Addition of 1 equiv of ethylmagnesium chloride to a toluene solution of $Tp'NbCl_2(PhC=CC-R)$ ($Tp' = hydri$ dotris(3,5-dimethylpyrazolyl)borate; $R = CH_3$, 1a; $R =$

 CH_2CH_3 , 1b)⁸ affords the orange chloro ethyl derivatives

(6) Yeeuda, H.; Yamamoto, H.; **Arai,** T.; Nakamura, A.; Chen, J.; Kai, **Y.;** Kasai, N. Organometallics 1991, 10, 4058.

 $Tp'Nb(Cl)(CH_2CH_3)(PhC=CH_2) (R=CH_3, 2a;R=CH_2 CH₃$, 2b) in greater than 80% yield (Scheme 1). Prominent ¹H NMR data include an $AM₃X$ pattern for the niobium bound ethyl group of 2a **and** 2b.9 One of the diastereotopic methylene protons H_A is deshielded [for 2a, δ 3.84 (dq, J_{AX} = 12.8 Hz, J_{AM} = 7.7 Hz, 1H, NbHCHCH₃); for 2b, and the other one H_X is conspicuously shielded [for 2a, δ 0.37 (dq, *J_{AX}* = 12.4 Hz, *J_{MX}* = 6.2 Hz, 1H, NbHCHCH₃);
for 2b, δ 0.37 (dq, *J_{AX}* = 12.7 Hz, *J_{MX}* = 6.3 Hz, 1H, NbHCHCH311, whereas the methyl group appears **as** a doublet of doublets [for $2a$, δ 1.15, J_{AM} = 7.6 Hz, J_{MX} = 6.1 Hz; for 2b, δ 1.13, J_{AM} = 7.6 Hz, J_{MX} = 6.2 Hz]. These δ 4.02 (dq, J_{AX} = 12.6 Hz, J_{AM} = 7.8 Hz, 1H, NbHCHCH₃)]

(8) Etienne, M.; White, P. S.; Templeton, J. L. Organometallics 1991, 10, 3801.

(9) All the complexes described here exist **a~** mixtures of two isomers differing in the alkyne orientation with respect to the Tp' ligand.⁸ Only data for the major isomer **are** reported but all observations and conclusions are **also** valid for the minor isomers. **Full** data **are** available in the supplementary material. All complexes were synthesized following the same procedure described in detail for $\mathrm{Tp^{\prime}Nb(Cl)(CH_{2}CH_{3})}$ (2a). To a vigorously stirred toluene (30 **mL)** solution of Tp'NbClr (PhC=CCH₃) (la) (0.840g, 1.45 mmol) cooled to -25 °C is added dropwise under dinitrogen an ethereal solution of ethylmagnesium chloride (0.8 mL of a 2.0 M solution). The temperature is maintained at -20 °C for 1 h. The resulting orange slurry is further stirred for 1 h at room temperature. The solvent is partially evaporated under vacuum to ca. 20 mL, and an equal volume of hexanes is added. The slurry is filtered
through a pad of Celite that is washed several times with hexanes. The
clear orange solution is evaporated to dryness to give either an orange oil or powder. Recrystallization from toluene (minimum amount)/hexane mixtures gives orange microcrystals of 2a in 86% yield **(0.720** g, 1.25 mmol).

^{*} Abstract published in Aduance ACS Abstracts, January 1, 1994. (1) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. *Inorg.* Chem. 1988, **36,** 1.

⁽²⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University
Science Books: Mill Valley, CA, 1987.
(3) Schrock, R. R. Acc. Chem. Res. 1979, 12,

^{1992,237.}

⁽⁵⁾ Fellman, J. D.; Schrock, R. R.; Traficante, D. D. Organometallics 1982,1, 481.

^{(7) (}a) Piers, W. E.; Bercaw, J. E. *J.* Am. Chem. SOC. 1990,112,9406. (b) Krauledat, H.; Brintzinger, H.-H. Angew. Chem., Int. Ed. Engl. 1990, 29,1412. (c) Proeenc, M.-H.; Janiak, C.; Brintzinger, H.-H. Organometallics 1992,11, 4036.

Figure 1. ORTEP plot of $\mathbf{Tp}^{\prime}Nb(\mathbf{Cl})(\mathbf{CH}_2\mathbf{CH}_3)$ - $(PhC=CC-CH₂CH₃)$ $(2b)$.

spectral features are temperature independent in the 213- 323 K range. In the 13C NMR spectrum, the methylene carbon bound to niobium gives a broadened (due to coupling to the niobium nucleus) doublet of doublets [for $2a, \delta$ 86.5 (dd, $w_{1/2} = 12$ Hz, $J_{CH} = 108$, 129 Hz, NbHCHCH₃); for 2b, δ 86.3 (dd, $J_{\text{CH}} = 108$, 130 Hz, NbHCHCH3)l. Both of these lH and 13C NMR features are characteristic of a static α -hydrogen (H_x) agostic interaction.^{1,10,11}

The molecular structure of 2b determined by X-ray diffraction¹⁵ is shown in Figure 1. The overall geometry is that observed previously⁸ for $Tp'NbCl_2(PhC=CC-$ CH₃): the alkyne bisects the Cl- $Nb-CH_2CH_3$ angle (vertical geometry), the niobium being in a roughly octahedral environment if the alkyne is considered to occupy one coordination site. Evidence for an α -agostic interaction in the crystal comes from the following data: the Nb- $-C_{\alpha}$ bond length (Nb- $C21 = 2.17$ (2) Å) is significantly shorter than a simple niobium-carbon single bond and the Nb- C_{α} - C_{β} angle is more obtuse $(Nb-C21-C22 = 126(1)°)$ than that observed in anagostic¹² or even very weak⁶ α -agostic complexes (Cp₂Nb- $(CH_2CH_3)(C_2H_4),¹² Nb-C_{\alpha} = 2.316(8) Å, Nb-C_{\alpha}-C_{\beta} =$ $118.6(7)$ °; $\text{Cp}_2\text{Nb}(\text{CH}_2\text{CH}_3)(\text{CH}_3\text{C}=\text{CCH}_3)$, $\text{Nb}-\text{C}_{\alpha} =$ sub 2.31(1) A, Nb-- C_{α} -- C_{β} = 121(1)°; typical niobium-carbon double bonds: $C_5Me_5Nb(=CHPh)(NR)(PMe_3),^{16}2.026-$

(4) Å; $\text{Tp}'(\text{CH}_3\text{O})\text{Nb}$ [=C(Ph)C(CH₃)C(CH₃) O],¹⁷ 1.983-

(10) More precisely in the case of group 5 alkyl complexes, these data significantly differ from those for the nonagostic ethyl ethene complex12 Cp₂Nb(CH₂CH₂)(C₂H₄) and compare well with those of the a-agostic tantalum complex¹³ $[\eta^5$ -C₅(tBu)(CH₂tBu)₂(CH₂CMe₂CH₂)₂]TaCl₂ and wi ¹ th those of the recently described *a*-agostic neopentylniobium¹⁴ complex
CpNb(N-2,6-C_eH₃iPr₂)(CH₂tBu)₂.

(11) Comparison of the solid state infrared spectra of 2a and 2b with those of other Tp'NbXY(PhC=CR) complexes, including 3 and 4, in the 3000-2000-cm⁻¹ region does not securely allow any reduced **carbon-hydrogen stretch assignment. Note that the boron-hydrogen stretch from the Tp' ligand is observed around 2550 cm-1.**

(12) Guggenberger, L. J.; Meakin, P.; Tebbe, F. N. J. *Am. Chem.* **SOC. 1974, 96, 5420.**

(13)van der Heidjen, H.; Gal, A. W.; Pasman, P.; Orpen, A. G.

Organometallics **1985, 4, 1847. (14) Poole, A. D.; Williams, D. N.; Kenwright, A. M.; Gibson, V. C.; Clegg, W.; Hockless, D. C. R.; O'Neil, P. A.** *Organometallics* **1993,** *12,* **2.549).** --

(15) Crystal data: orthorhombic, D_{2h} ¹⁵-Pbca, $a = 16.272(3)$ Å, $b = 17.663(2)$ Å, $c = 19.802(3)$ Å, $V = 5690(2)$ Å, $Z = 8$, λ (Mo K α_1) = 0.7093 Å, $\lambda_{real} = 1.365$ g·cm⁻³, $\mu = 5.24$ cm⁻¹. The final residuals **refined against 1663 unique data with** $F_0^2 > 5\sigma(F_0^2)$ **were** $R = 0.067$ **and** $R_{\rm w}$ = 0.075. Full details of the structure are available as supplementary **material.**

(5) **A).** The data for our complex compare well with those of a tantalum α -agostic complex $[\eta^5$ -C₅(tBu)- $(CH_2tBu)_2(CH_2CMe_2CH_2)_2]TaCl_2$ (Ta- $-C_\alpha = 2.176(7)$ Å, Ta- C_{α} - C_{β} = 128.6(4)^o),¹³ and with those of the recently described α -agostic neopentylniobium complex CpNb(N-2,6-C₆H₃iPr₂)(CH₂tBu)₂ (Nb--C_{α} = 2.174(3) and 2.215(3) A, Nb-C_a-C_β = 131.2(2) and 132.5(3)[°]).¹⁴ Similar geometric trends have been observed in neopentylthorium¹⁸ and benzyltitanium¹⁹ α -agostic complexes.

We have started to systematically probe the factors that could lead to such an interaction. The benzyl derivative $Tp'Nb(Cl)(CH_2Ph)(PhC=CCH_3)$ **(3)** obtained by treatment of la with benzylmagnesium chloride (Scheme 1) definitely has a normal η^1 -benzyl group, as revealed by spectroscopic data. The methylene protons give an AB quartet in the ¹H NMR spectrum [δ 3.95 and 3.21 (d, J = 9.5 Hz)] and in the ¹³C spectrum, the methylene carbon bound to niobium resonates at δ 89.6 (br t, J_{CH} = 120 Hz), the ipso-carbon of the benzyl group being observed around δ 153.²⁰ Interestingly, the case of the methoxy ethyl complex $\text{Tp}'\text{Nb}(\text{OCH}_3)(\text{CH}_2\text{CH}_3)(\text{PhC}=\text{CCH}_3)$ **(4)** (Scheme 1) is a not a clear cut situation. The lH and 13C NMR data ^{[1}H NMR (unchanged between 193 and 323 K) in toluene- d_8) δ 2.69 (dq, $J = 14.0, 7.1$ Hz, 1H) and 1.60 $(dq$ (pseudosextet), $J = 7.0$, 14.0 Hz, 1H) NbC H_2CH_3 , 1.09 $(t, J = 7.4 \text{ Hz}, \text{NbCH}_2\text{CH}_3)$; ¹³C NMR δ 51.8 (br t, $J_{\text{CH}} =$ 116 Hz, $NbCH₂CH₃$; at 183 K, the triplet pattern is no longer resolved, the signal being exceedingly broad] cannot be taken as evidence for an α -agostic interaction in 4: the difference between the 'H NMR chemical shifts of the methylene protons is between those of 2a and **3,** and chemical shifts themselves are only marginally exceptional in 4. Also the ${}^{1}J_{CH}$ value is "normal" but might well be an average for a "low" and a "high" value (see data for **2)** for a fluxional system, so that if there is any α -interaction it is much weaker than that in 2a and 2b. Presumably, the methoxide ligand being a better π -donor than chloride more efficiently competes with one of the C_{α} -H bonds of the ethyl group for donation into a vacant niobium orbital.

Complexes of the type $Tp'Nb(X)(Y)(PhC=CR)$ are formally 16 electron species, the metal being either Nb- (III), d^2 , or Nb(V), d^0 , if the alkyne is considered substantially reduced. The availability of the LUMO in the Cp series $CpNb(X)(Y)(PhC=CR)$ is hampered by a large HOMO-LUMO gap, 21 although reactions with isonitriles and carbon monoxide have been observed in both the Cp and Tp' series.^{17,22} Thus there is an empty orbital available for interaction with one of the C_{α} —H bonds and, again, the case of complex 4 containing a good π -donor methoxide ligand is significant in this respect. Work is in progress to understand the bonding in our Tp' complexes. Finally, recall that a β -agostic interaction is much

⁽¹⁶⁾ Cockroft, J. K.; Gibson, V. C.; Howard, J. A. K.; Poole, A. D.; Siemeling, U.; Wilson, C. *J. Chem.* **SOC.,** *Chem. Commun.* **1992, 1668. (17) Etienne, M.; White,P. S.; Templeton, J. L.** *Organometallics* **1993,**

^{12,} **4010. (18) Bruno, J. W.; Smith,** *G.* **M.; Marks, T. J.; Fair, C. K.; Schultz, A.**

J.; Williams, J. M. *J. Am. Chem. SOC.* **1986,** *108,* **40.**

⁽¹⁹⁾ Mena, M.; Pellinghelli, P. A.; Royo, P.; Serrano, R.; Tiripiccho, A. J. Chem. Soc., Chem. Commun. 1986, 1118.
(20) For a comparison between the different coordination modes of **the benzylligand, see: (a) Scholz, J.; Rehbaum, F.; Thiele, K.-H.; Goddard, R.; Betz, P.; Kruger, C. J.** *Organomet. Chem.* **1992,443,93. (b) Legzdins, P.; Jones, R. H.; Phillips, E. C.; Yee, V.; Trotter, J.; Einstein, F. W. B.** *Organometallics* **1991,** *10,* **986.**

⁽²¹⁾ Curtis, M. D.; Real, J.; Kwon, D. *Organometallics* **1989,8,1644. (22) Curtis, M. D.; Real, J.; Hirpo, W.; Butler, W. M.** *Organometallics* **1990,** *9,* **66.**

412 *Organometallics, Vol. 13, No. 2, 1994*

more sterically demanding than an α -agostic interaction¹ and that steric properties are part of the unique ligating characteristics of the **Tp'** ligand.23 Shielding **of** the metal **by** the Tp' ligand prevents the bending **of** the ethyl **group** necessary for a β -agostic interaction. The fact that the bulkier benzyl ligand in 3 coordinates in an η^1 fashion corroborates this idea.

Acknowledgment. Dr. Noël Lugan is acknowledged for helpful discussions.

Supplementary Material Available: A textual presentation of full analytical and spectroscopic data for complexes **2a, 2b,** 3, and **4,** photocopies of the **13C** and **13C(lH)** NMR spectra of **2a** and **2b,** and X-ray structural parameters for **2b** including tables of experimental data, atomic coordinates, thermal parameters, and bond distances and angles (15 pages). Ordering information is given on any current masthead page.

OM930659W

⁽²³⁾ *(a)* Desmond, T.; **Lalor,** F. J.; Ferguson, G.; Parvez, M.; Ruhl, B. *J. Chem. SOC., Chem. Commun.* **1983,55. (b)** Curtis, M. D.; Shiu, **K.-B.;** Butler, W. M. *J. Am. Chem. SOC.* **1986,108,1550. (c)** Feng, S. G.; White, **P. S.;** Templeton, J. **L.** *J. Am. Chem. SOC.* **1990,** *112,* **8192.**