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Summary: The organolanthanide complex ($-Me&&- 
SmCH(TMS)2 serves as a precatalyst for the efficient 
and regiospecific hydroaminationlcyclization of aliphatic 
and aromatic aminoalkynes RC=C(CH2),,NH2 to yield 
the corresponding heterocycles RCH~C=N(CH~).-ICH~. 
Kinetic and mechanistic evidence argues that the turn- 
over- limitingstep is intramolecular alkyne insertion into 
the Sm-N bond followed by rapid protonolysis of the 
resulting Sm-C bond. 

The insertion of olefinic functionalities into metal- 
ligand u bonds is particularly facile in bis(cyc1openta- 
dieny1)lanthanide coordination spheres (eq 1).lp2 For 

- 

aminoolefins, such insertions can be coupled to subsequent 
Ln-C protonolysis to effect regiospecific and stereo- 
selective catalytic hydroamination/cyclization pr~cesses .~ 
Thermodynamic considerations4*5 pose the interesting 
situation for alkynes6J (Scheme l), that the insertion 
process (step 1) is estimated to be -35 kcal/mol more 

* Abstract published in Aduance ACS Abstracts, January 15, 1994. 
(1) Molander, G. A. In The Chemistry of the Metal-Carbon Bond; 

Hartley, F. R., Ed.; Wiley London, 1989; Vol. 5, Chapter 8. (b) Schumann, 
H. In Fundamental and Technological Aspects of Organo-/-Element 
Chemistry; Marks, T. J., Fragala, I., Eds.; D. Reidel: Dordrecht, Holland, 
1985; Chapter 1. (c) Evans, W. J. Adu. Organomet. Chem. 1985,24,131- 
177. (d) Kagan, H. B.; Namy, J. L. In Handbook on the Physics and 
Chemistry of Rare Earths; Gschneider, K. A,, Eyring, L., Eds.; Elsevier: 
Amsterdam, 1984; Chapter 50. (e) Schumann, H.; Genthe, W. In ref IC, 
Chapter 53. (f) Marks, T. J.; Ernst, R. D. In Comprehensive Organo- 
metallic Chemistry; Wilkinson, G.,  Stone, F. G .  A., Abel, E. W., Eds.; 
Pergamon Press: Oxford, U.K., 1982; Chapter 21. 

(2) (a) Molander, G. A,; Hoberg, J. 0. J. Am. Chem. SOC. 1992, 114, 
3123-3126. (b) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; 
Schumann, H.; Marks, T. J. J.  Am. Chem. SOC. 1985,107,8091-8103. (c) 
Jeske, G.; Schock, L. E.; Mauermann, H.; Swepston, P. N.; Schumann, 
H.;Marks, T. J. J.  Am. Chem. SOC. 1985,107,8103-8110. (d) Jeske, G.; 
Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. Am. Chem. 
SOC. 1985,107,8111-8118. (e) Wataon,P. L.;Parshall, G. W.Acc.  Chem. 
Res. 1985, 18, 51-55. 

(3) (a) Gagn6, M. R.; Stern, C. L.; Marks, T. J. J.  Am. Chem. SOC. 1992, 
114. 275-294. (b) Gam& M. R.: Brard. L.: Conticello. V. P.: Giardello. 
M. A.; Stern, C: L.; Marks, T. J. Organometallics 1992, 11, 2003-2005: 
(c) Gagn6, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 

(4) Metal-ligand bond enthalpies from: (a) Giardello, M. A.; King, W. 
A.; Nolan, S. P.; Porchia, M.; Sishta, C.; Marks, T. J. In Energetics of 
Organometallic Species; Martinho Si", J. A., Ed.; Kluwer: Amsterdam, 
1992; pp 35-54. (b) Nolan, S. P.; Stern, D.; Hedden, D.; Marks, T. J. ACS 
Symp. Ser. 1990,428,159-174. (c) Nolan, S. P.; Stern, D.; Marks, T. J. 
J. Am. Chem. SOC. 1989,111,7844-7853. (d) Schock, L. E.; Marks, T. 
J. J.  Am. Chem. SOC. 1988,110,7701-7715. (e) Bruno, J. W.; Marks, T. 
J.; Mom, L. R. J. Am. Chem. SOC. 1983,105, 68244832. 

(5) Organic fragment bond enthalpies from: (a) Griller, D.; Kanabus- 
Kaminska, J. M.; Maccoll, A. J. Mol. Struct. 1988, 163, 125-131. (b) 
McMillan, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982,33,493- 
532 and references therein. (c)  Benson, S. W. Thermochemical Kinetics, 
2nd ed.; Wiley: New York, 1976; p 309. (d) Benson, S. W. J. Chem. Educ. 
1965,42,502-518. 
(6) Catalytic cycles based on alkyne insertion into Ln-C bonds: (a) 

Heeres, H. J.; Teuben, J. H. Organometallics 1991,10, 1980-1986 and 
references therein. (b) Heeres, H. J.; Meetama, A.; Teuben, J. H.; Rogers, 
R. D. Organometallics 1989,8, 2637-2646. 

1716-1718. 

Scheme 1. Catalytic Cycle for the Hydroamination 
and Cyclization of Aminoalkynes 

AHz-35kcaUmd 1 I 

exothermic than for olefins, while protonolysis (step 2) is 
estimated to  be -10-20 kcal/mol less exothermic 
(approximately thermoneutral). If efficient, such ami- 
noalkyne catalytic cycles could offer a route to a diverse 
variety of alkaloid precursors (e.g., indolizidines, quino- 
lizidines) as well as a complement to recently reported 
organo group 4-centered stoichiometric8 and catalyticFJ 
alkyne hydroamination processes which proceed via en- 
tirely different (noninsertive) mechanistic pathways.1° We 
report here the rapid, regioselective, catalytic hydro- 
amination/cyclization of aminoalkynes in lanthanide co- 
ordination spheres and some initial observations regarding 
scope and mechanism. 

The rigorously anaerobic reaction of Cp'ZSmCH- 
(TMS)z2b (Cp' = $-MesCs; TMS = MeaSi) with a variety 
of dry, degassed aminoalkynes (typically [catalyst] = 1.5- 
20 mM, [substrate] = 0.3-3.0 M) proceeds regiospecifically 
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Table 1. Catalytic Results for the 
Organolanthanide-Catalyzed HydroaminationKycIization of 

Aminoalk y nes 
entry no. substrate (ref) product (ref) N,, h-I (temp, OC)O 

Communications 

I1 (2l)b 
ph* phe 2830 (60)b 

1 

68,13a 2 (21)c 
1 8  

4 (2l)b 
Ph 4 - ph% >12 (60)b 

,8,13a,b 
2 8  

3 0.11 (60)b 

P h m  0.03 (60)c 
3” 813a,b 

4 ,,,* TMs< >7600 (21)b9d 

4‘1 91’ 

96 (21)b9d 5 + 4  28 (21)c 
5’2 

a Turnover frequencies measured in C6D6. Cp’zSmCH(TMS)z as 
theprecatalyst. MezSiCp”zSmCH(TMS)2 as the precatalyst. NMR- 
scale and scale-up reaction. 

(295 % ) to completion in hydrocarbon solvents (benzene, 
toluene) as shown in Table l.ll Reactions and reaction 
rates38 were conveniently monitored by NMR spectros- 
copy, and known substratesaJz and products13 were 
identified by comparison with literature lH/l3C NMR 
spectral data and/or with data for authentic samples. New 
compounds were characterized by l H / W  NMR and high- 
resolution MS.ll Entries 4 and 5 were also carried out on 
larger (0.25-0.50 g) preparative scales, and pure 9 and 10 
were isolated in 92% and 60% yields, re~pective1y.l~ 

Several features of this catalytic reaction are noteworthy 
and provide both informative parallels and contrasts to 
the corresponding organolanthanide-catalyzed aminoolefin 
cyclizations. The present process is capable of forming 
five-, six-, and seven-membered heterocycles with a variety 
of substituents CY to the acetylenic moiety. With regard 
to rate, the present cyclizations are N 10-100 times more 
rapid than the corresponding olefinic transformations for 
the same catalyst, temperature, and reaction conditions.38 
Indeed, N t  for the process 4 - 9 considerably exceeds the 
rate which can be accurately measured at  room temper- 
ature. A detailed kinetic study of 5 - 10” reveals the 
reaction to be zero-order in substrate over a -10-fold 
concentration range and first-order in catalyst over a -50- 
fold concentration range (eq 2). As in the case of 

(11) See the supplementary material for full synthetic details, char- 
acterization of new compounds, and kinetic plots. 

(12) Tietze, L. F.; Bratz, M.; Pretor, M. Chem. Ber. 1989,122,1955- 
1961. 
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1987,28,2353-2354. (b) Hoffmann, R. V.; Buntain, G. A. J. Org. Chem. 
1988,53,3316-3321 and references therein. (c) Hua, D. H.; Miao, S. W.; 
Bharathi, S. N.; Katauhira, T.; Bravo, A. A. J. Org. Chem. 1990,55,3682- 
3684. (d) Ananthapadmanabhan, S.; Raja, T. K.; Srinivasan, V.; Simon, 
A.Zndian J. Chem. 1988,27& 580. (e) Fraser,R. R.;Banville, J.; Akiyama, 
F.; Offermanns, N. C. Can. J. Chem. 1981,59, 705-709. 

(14) Under an Ar atmosphere in a 25-mL reaction vessel, 20.0 mg (34.5 
pmol) of Cp’ZSmCH(TMS)z was stirred in 3.5 mL of dry benzene with 
0.25 g (1.6 mmol) of l-amino-5-(trimethylsilyl)-4-hexyne (4)” for 2 days 
at  room temperature. The light yellow solution waa then filtered through 
a frit and the filtrate vacuum-transferred to another container. The 
benzene was next removed by short-path distillation at atmospheric 
pressure to yield 0.23 g (92%) of 9 as a colorless liquid (>95% purity by 
1H NMR and GC-MS). Spectral and analytical data are in good agreement 
with the proposed formulation.11 

u = k[substratelOISml’ (2) 

aminoolefin cyclization, the present ring size dependence 
of cyclization rates is 5 > 6 >> 7, consistent with classical, 
stereoelectronically controlled cyclization processes.3*J5 
Also noteworthy are the marked substituent effects on 
the cyclization rates, with TMS >> CH3 5 Ph in Table 1, 
entries 4, 5, and 1, respectively. When taken together, 
these observations suggest that the turnover-limiting step 
in aminoalkyne hydroamination/cyclization is alkyne 
activation/insertion at  the electrophilic lanthanide center. 
The preference for a quasi-seven-membered transition 
state (e.g., A) is in accord with the aforementioned ring- 

6t 

A 

size effects and earlier stereochemical observations on 
organolanthanide-catalyzed o l e f i n  h y d r o -  
a m i n a t i ~ n . ~ ~ ? ~  The observed activating effects of TMS 
substitution are in accord with known organosilicon 
chemistry.16 

Cp’zLn- versus Me2SiCp”zLn-olefin activation rate 
differences (Cp” = q5-Me4Cs) are usually an informative 
gauge of the steric demands in insertion transition states 
a t  such metal centers.bpdvh Interestingly, and in marked 
contrast to the aminoolefin cyclization,h the present results 
(Table 1) evidence a deceleration rather than an accel- 
eration in rate when the more openZC MezSiCp“2Sm- is 
used as the catalyst (Table 1). It would thus appear that 
the steric demands in transition states for lanthanide- 
mediated alkyne insertions are somewhat relaxed. The 
reasons likely reflect a combination of smaller substrate 
steric bulk, differing substrate molecule coordinationP 
and a more reactant-like transition state for such an 
exothermic process.17 

These results demonstrate that organolanthanide cen- 
ters are competent for the efficient, regioselective insertion 
of alkynes into metal-amide bonds and that such processes 
can be incorporated into efficient catalytic cycles. Note- 
worthy are the high turnover frequencies, marked sub- 
stituent effects, similar rate laws, and differing steric 
demands vis-&vis the corresponding aminoolefin trans- 
formations. 
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