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Summary: The organolanthanide complex (n°- MesCs)s-
SmCH(TMS); serves as a precatalyst for the efficient
and regiospecific hydroamination/cyclization of aliphatic
and aromatic aminoalkynes RC=C(CHj),NH; to yield

e ——
the corresponding heterocycles RCH,;C=N(CH,),-;CH,.
Kinetic and mechanistic evidence argues that the turn-
over-limiting stepisintramolecular alkyneinsertion into
the Sm—N bond followed by rapid protonolysis of the
resulting Sm—C bond.

The insertion of olefinic functionalities into metal-
ligand ¢ bonds is particularly facile in bis(cyclopenta-
dienyl)lanthanide coordination spheres (eq 1).1.2 For

>Ln—x + = —— >Ln-\_x (1)
aminoolefins, such insertions can be coupled tosubsequent
Ln-C protonolysis to effect regiospecific and stereo-
selective catalytic hydroamination/cyclization processes.?
Thermodynamic considerations®® pose the interesting
situation for alkynes®? (Scheme 1), that the insertion
process (step 1) is estimated to be ~35 kcal/mol more
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Scheme 1. Catalytic Cycle for the Hydroamination
and Cyclization of Aminoalkynes
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exothermic than for olefins, while protonolysis (step 2) is
estimated to be ~10-20 kcal/mol less exothermic
(approximately thermoneutral). If efficient, such ami-
noalkyne catalytic cycles could offer a route to a diverse
variety of alkaloid precursors (e.g., indolizidines, quino-
lizidines) as well as a complement to recently reported
organo group 4-centered stoichiometric® and catalytics-10
alkyne hydroamination processes which proceed via en-
tirely different (noninsertive) mechanistic pathways.1* We
report here the rapid, regioselective, catalytic hydro-
amination/cyclization of aminoalkynes in lanthanide co-
ordination spheres and some initial observations regarding
scope and mechanism.

The rigorously anaerobic reaction of Cp’sSmCH-
(TMS)? (Cp’ = 75-Me;sCs; TMS = Me;Si) with a variety
of dry, degassed aminoalkynes (typically [catalyst] = 1.5~
20mM, [substrate] = 0.3-3.0 M) proceeds regiospecifically
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Table 1. Catalytic Results for the
Organolanthanide-Catalyzed Hydroamination/Cyclization of

Aminoalkynes
entryno.  substrate (ref) product (ref) Ny, h! (temp, °C)e
1 __HN N 77 (21)®
S SR & BN}
15 68.133 2 (21)6
2 HaN op~y?" 421)8
Ph—:\) /\O >12 (60)¢
28 78,135,b
3 HN o~ 0.11 (60)?
Ph—= 0.03 (60)¢
311 8138,!)
4 e _H=N7 TMSA{‘] >7600 (21)b4
4 git
5 ._=—H’N7 /\tNJ 96 (21)p4
28 (21)¢
512 1013C

4 Turnover frequencies measured in C¢Dg. ¥ Cp’2SmCH(TMS); as
the precatalyst. ¢ Me;SiCp”,SmCH(TMS), as the precatalyst. ¢ NMR-
scale and scale-up reaction.

(295%) to completion in hydrocarbon solvents (benzene,
toluene) as shown in Table 1.1! Reactions and reaction
rates® were conveniently monitored by NMR spectros-
copy, and known substrates®!? and products!® were
identified by comparison with literature 'H/13C NMR
spectral data and/or with data for authentic samples. New
compounds were characterized by !H/13C NMR and high-
resolution MS.!! Entries 4 and 5 were also carried out on
larger (0.25-0.50 g) preparative scales, and pure 9 and 10
were isolated in 92% and 60% yields, respectively.l4
Several features of this catalytic reaction are noteworthy
and provide both informative parallels and contrasts to
the corresponding organolanthanide-catalyzed aminoolefin
cyclizations. The present process is capable of forming
five-, six-, and seven-membered heterocycles with a variety
of substituents a to the acetylenic moiety. With regard
to rate, the present cyclizations are ~10-100 times more
rapid than the corresponding olefinic transformations for
the same catalyst, temperature, and reaction conditions.3®
Indeed, N for the process 4 — 9 considerably exceeds the
rate which can be accurately measured at room temper-
ature. A detailed kinetic study of 5 — 101! reveals the
reaction to be zero-order in substrate over a ~10-fold
concentration range and first-order in catalyst over a ~50-
fold concentration range (eq 2). As in the case of
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Communications

v = k[substrate]’[Sm]} 2)

aminoolefin cyclization, the present ring size dependence
of cyclization rates is 5 > 6 > 7, consistent with classical,
stereoelectronically controlled cyclization processes.3s:15
Also noteworthy are the marked substituent effects on
the cyclization rates, with TMS > CH;s 2 Ph in Table 1,
entries 4, 5, and 1, respectively. When taken together,
these observations suggest that the turnover-limiting step
in aminoalkyne hydroamination/cyclization is alkyne
activation/insertion at the electrophilic lanthanide center.
The preference for a quasi-seven-membered transition
state (e.g., A) is in accord with the aforementioned ring-

8+
Aan\~~H6—
s IN
R 5—\\!

5+

A

size effects and earlier stereochemical observations on
organolanthanide-catalyzed olefin hydro-
amination.3a The observed activating effects of TMS
substitution are in accord with known organosilicon
chemistry.16

Cp’sLn~ versus MesSiCp”sLn—olefin activation rate
differences (Cp” = n5-Me4Cs) are usually an informative
gauge of the steric demands in insertion transition states
at such metal centers.2ed:32 Interestingly, and in marked
contrast to the aminoolefin cyclization,32 the present results
(Table 1) evidence a deceleration rather than an accel-
eration in rate when the more open? Me;SiCp”sSm- is
used as the catalyst (Table 1). It would thus appear that
the steric demands in transition states for lanthanide-
mediated alkyne insertions are somewhat relaxed. The
reasons likely reflect a combination of smaller substrate
steric bulk, differing substrate molecule coordination,32
and a more reactant-like transition state for such an
exothermic process.l’

These results demonstrate that organolanthanide cen-
ters are competent for the efficient, regioselective insertion
of alkynes into metal-amide bonds and that such processes
can be incorporated into efficient catalytic cycles. Note-
worthy are the high turnover frequencies, marked sub-
stituent effects, similar rate laws, and differing steric
demands vis-4-vis the corresponding aminoolefin trans-
formations.
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