The α-Sulfinyl Ligand–Transition Metal Bond. 2. α-Sulfinyl–Palladium(II) Complexes and Their Reactivity in Insertion Reactions

Patrick Veya and Carlo Floriani*

Section de Chimie, Université de Lausanne, Place du Château 3, CH-1005 Lausanne, Switzerland

Angiola Chiesi-Villa and Corrado Rizzoli

Istituto di Strutturistica Chimica, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Università di Parma, I-43100 Parma, Italy

Received July 12, 1993®

The deprotonation of ArSOCH₃ (Ar = C_6H_5 , 1; p-MeC₆H₄, 2) with KH in THF, followed by reaction with cis-[(PPh₃)₂PdCl₂], led to the Pd-C-bonded α -sulfinyl complexes trans- $[(PPh_3)_2(Cl)PdCH_2SOAr]$ (Ar = C₆H₅, 3; Ar = p-MeC₆H₄, 4). As expected, the "CH₂" unit appears as an AB part of an ABX₂ system (the two heterotopic protons being coupled with both P atoms). The structure of 3 was confirmed by X-ray analysis. The reaction of 3 and 4 with Bu^tNC afforded complexes [(PPh₃)(Bu^tNC)(Cl)PdC(NBu^t)C(HNBu^t)=CHSOAr] (Ar = $C_{6}H_{5}$, 5; Ar = p-MeC₆H₄, 6) via the replacement of PPh₃ by Bu^tNC and insertion of two molecules of the isocyanide into the Pd-C bond. The organic fragment resulting from the insertion of Bu^tNC was isolated in the β -enamino sulfoxide form and confirmed by an X-ray analysis on 5. The ionization of the Pd-Cl bond in 3 and 4 in MeCN led to the corresponding solvated cationic forms cis-[(PPh₃)₂(MeCN)PdCH₂SOAr] (Ar = C₆H₅, 10; Ar = p-MeC₆H₄, 11). The attempt to dehydrohalogenate 3 with the Wittig reagent $Ph_3P=CH_2$ led rather to the isolation of a zwitterionic complex where one of the PPh_3 groups had been replaced by Ph_3PCH_2 , $[(Cl)(PPh_3)(CH_2PPh_3)(CH_2SOPh)Pd], 12, containing two different \alpha-functionalized carbanions$ bonded to Pd(II). Crystallographic details: 3 is triclinic, space group $P\overline{1}$, a = 12.517(2) Å, b = 16.153(2) Å, c = 12.420(2) Å, $\alpha = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\beta = 119.40(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, Z = 2, and $R = 104.16(2)^{\circ}$, $\gamma = 10$ 0.046; 5 is monoclinic, space group C^2/c , a = 43.577(4) Å, b = 9.214(1) Å, c = 20.752(2) Å, $\alpha = 10.046$ $\gamma = 90^{\circ}, \beta = 101.20(1)^{\circ}, Z = 8$, and R = 0.037; 10 is triclinic, space group $P\bar{1}, a = 15.111(1)$ Å, b = 12.873(1) Å, c = 12.332(1) Å, $\alpha = 99.89(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 98.08(1)^{\circ}$, Z = 2, and R = 12.873(1) Å, $\alpha = 12.332(1)$ Å, $\alpha = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$, Z = 2, and $R = 12.332(1)^{\circ}$, $\beta = 101.44(1)^{\circ}$, $\gamma = 12.332(1)^{\circ}$ 0.049; 12 is triclinic, space group $P\bar{1}$, a = 11.897(1) Å, b = 14.891(2) Å, c = 11.357(1) Å, $\alpha = 11.357(1)$ Å, $\alpha =$ $104.24(1)^{\circ}$, $\beta = 98.49(1)^{\circ}$, $\gamma = 96.87(1)^{\circ}$, Z = 2, and R = 0.025.

Introduction

Both the enolate $(\mathbf{A})^1$ and α -sulfinyl anion $(\mathbf{B})^2$ have been developed largely as synthons in organic synthesis for making C-C bonds.

In a recent approach, early transition metals have been used to assist in the chemistry of the enolate A.³ Those

metals, which bind to the oxygen (C), maintain the wellknown nucleophilic characteristic of enolates at the "CH₂" center and, in addition, play an important role in controlling the stereochemistry, *e.g.*, of the aldol condensation reaction. A more limited use of late or low oxidation state transition metals has been reported. In such cases, the

441

^{*} To whom correspondence should be addressed.

<sup>Abstract published in Advance ACS Abstracts, December 15, 1993.
(1) For general references to metal-assisted enolate chemistry, see: (a) Evans, D. A.; Nelson, J. V.; Taber, T. Top. Stereochem. 1982, 1. (b) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1984; Vol. 3, Chapter 1, p 1. (c) Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1984; Vol. 3, Chapter 2, p 111. (d) Heathcock, C. H. In Comprehensive Carbanion Chemistry, Studies in Organic Chemistry 5; Buncel, E., Durst, T., Eds.; Elsevier: Lausanne, CH, 1984; p 177. (e) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1. (f) Heathcock, C. H. Aldrichimica Acta 1990, 23, 99. (g) Heathcock, C. H. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 2; Chapters 1.5 and 1.6. (h) Heathcock, C. H. In Modern Synthetic Methods; Scheffold, R., Ed.; Helvetica Chimica Acta: Basle, CH, 1992; p 1.</sup>

^{(2) (}a) Trost, B. A. Chem. Rev. 1978, 78, 363. (b) Solladié, G. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 157. (c) Solladié, G. Synthesis 1981, 185. (d) Posner, G. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 225. (e) Solladié, G. Pure Appl. Chem. 1988, 60, 1699. (f) Boche, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 277. (g) Krohn, K. In Organic Synthesis Highlights; Mulzer, J., Altenbach, H. J., Braun, M., Krohn, K., Reissig, H. U., Eds.; VCH: Weinheim, Germany, 1990 and references therein.

metals bind to the carbon of the enolate (\mathbf{D}) ,⁴ and the resulting chemistry is that expected for a M-C σ bond.

A similar use of transition metals has not, however, been introduced as a method of assisting in the chemistry of α -sulfinyl anions.² Our preliminary investigation in this field revealed the unsuccessful use of high-valent early transition metals leading essentially to deoxygenation reactions.⁵ Two classes of reactions leading to a metalcarbon-bonded α -sulfinglanion have been examined. The reaction of α -sulfinglations with metal carbonyls is reported in a previous paper.⁵ We report here the reaction with cis-[(PPh₃)₂PdCl₂]⁶ and the reactivity of the resulting C-M-bonded α -sulfinglations. Some preliminary results have been communicated.⁷

Results and Discussion

The synthesis of α -sulfinyl-palladium(II) complexes has been carried out via the transmetalation reaction from the corresponding potassium derivative, eq 1, and complexes 3 and 4 have been isolated. Such a strategy is not applicable to the enolate chemistry, where the enolato anion reduces Pd(II) to Pd(0).⁸

O Ⅱ Ar—S—CH ₃ <u>ii) cis((PPh₃)₂PdCl₂</u>	O PPh ₃ │ Ar—S—CH ₂ -Pd-Cl │ PPh ₃	(1)
Ar = C ₆ H ₅ , 1	Ar = C ₆ H ₅ , 3	
Ar = 4-MeC ₆ H ₄ , 2 , R(+)	Ar = 4-MeC ₆ H ₄ , 4	

(3) Lehnert, W. Tetrahedron Lett. 1970, 4723. Evans, D. A.; McGee, L. R. Tetrahedron Lett. 1980, 21, 3975. Maruyama, K.; Yamamoto, Y. Tetrahedron Lett. 1980, 21, 4607. Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21, 4233. Evans, D. A.; McGee, L. R. J. Am. Chem. Soc. 1981, 103, 2876. Reetz, M. T.; Peter, R. Tetrahedron Lett. 1981, 22, 4691. Nakamura, E.; Shimada, J.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 3341. Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 3343. Reetz, M. T.; Kesseler, K.; Jung, A. Tetrahedron 1984, 40, 4327. Mikami, K.; Takahashi, O.; Kasuga, T.; Nakia, T. Chem. Lett. 1985, 1729. Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1985, 26, 5807. Siegel, C.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 457. Nerz-Stromes, M.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 897. Uchikawa, M.; Hanamoto, T.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 4577. Uchikawa, M.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 4581. Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1987, 52, 3176. Murphy, P. J.; Procter, G.; Russell, A. T. Tetrahedron Lett. 1987, 28, 2037. Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135. Panek, J. ; Bula, O. A. Tetrahedron Lett. 1988, 29, 1661. Siegel, C.; Thornton, S E. R. J. Am. Chem. Soc. 1989, 111, 5722. Evans, D. A.; Urpi, F.; Somers, T. C.; Clarck, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215. Evans, D. A.; Clarck, J. S.; Metternich, R.; Novack, V. J.; Sheppard, J. S. J. Am. Chem. Soc. 1990, 112, 866. Evans, D. A.; Rieger, D. L.; Bilodeau,

M. T., Urpi, F. J. Am. Chem. Soc. 1991, 113, 1047.
(4) Stack, J. G.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. Organometallics 1990, 9, 453 and references therein.
(5) Veya, P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics

1993, 12, 4646.

(6) The in situ use of α -sulfinyl anions in the presence of Pd(II) has been reported, without any identification of $Pd(II)-\alpha$ -sulfinyl anion complex: Solladié-Cavallo, A.; Haesslein, J. L. Helv. Chim. Acta 1983, 66, 1760.

(7) Veya, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Organometallics 1993, 12, 253.

(8) (a) Yanase, N.; Nakamura, Y.; Kawaguchi, S. Chem. Lett. 1979,
(9) (a) Yanase, N.; Nakamura, Y.; Kawaguchi, S. Inorg. Chem. 1980,
19, 1575. (c) Bertani, R.; Castellani, C. B.; Crociani, B. J. Organomet.
Chem. 1984, 269, C15. (d) Wanat, R. A.; Collum, D. B. Organometallics 1986, 5, 120. (e) Floriani, C.; Veya, P.; Chiesi-Villa, A.; Rizzoli, C. Manuscript in preparation.

Figure 1. ORTEP view of complex 3 (30% probability ellipsoids). For clarity only the A position is given for the disordered α -sulfinyl group.

The transmetalation reaction proceeds with the rearrangement of the bis(triphenylphosphine)palladium(II) from the cis to the trans form.^{8,9} As expected, the CH_2 units appear as AB parts of ABX₂ systems in the ¹H NMR spectra of 3 and 4 (two triplets as a result of coupling with one another and with the two phosphorus atoms). Complexes 3 and 4 have been obtained in high yield (90%) and isolated as white crystalline solids stable to air. A major difference between 3 and 4 is the much higher solubility of the latter species in THF and CH₂Cl₂. Although we started with enantiomerically pure 2, under the reaction conditions of the experiment, the α -sulfinyl anion undergoes partial racemization. The $\alpha_{\rm D}$ of isolated 4 (116 ± 2°) decreases considerably after each recrystallization. In accord with this observation we can assume that the recrystallized solid is a mixture of the racemate and the pure enantiomer. By continuing recrystallization, the solid is enriched in the racemate, while the solution is enriched in the pure enantiomer. The crystal selected for an X-ray analysis happened to be a racemate. The structure of 3, crystallizing with a THF molecule in the lattice, is shown in Figure 1, while selected bond distances and angles are listed in Table 6. A square planar coordination geometry at the Pd atom is formed by the *trans*-phosphine ligand, the chlorine atom, and the C-bound α -sulfinyl anion. The displacements of atoms from the mean coordination plane show small but significant tetrahedral distortions: Pd1, -0.018(1) Å; P1, 0.079(2) Å; P2, 0.080(2) Å; Cl1, -0.011(2) Å; C7, -0.073(7) Å. The Pd-Cl [2.390(3) Å] bond length corresponds to the upper end of the range of values quoted in the literature [mean value 2.326(43) Å],¹⁰ and it is consistent with a strong trans effect caused by the α -sulfinyl carbanion. The Pd-C distance [2.053(9) Å] is in good agreement with the mean value [2.044(42) Å] quoted for Pd-CH₂R.¹⁰ The α -sulfinyl group shows a configurational disorder. Both enantiomers [R(A)] and S(B)] sharing the carbon atom bound to palladium are

⁽⁹⁾ Redfield, D. A.; Cary, L. W.; Nelson, J. H. Inorg. Chem. 1975, 14,
50. Verstuyft, A. W.; Nelson, J. H. Inorg. Chem. 1975, 14, 1501. Verstuyft,
A. W.; Cary, L. W.; Nelson, J. H. Inorg. Chem. 1976, 15, 3161.

⁽¹⁰⁾ Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.

Table 1. Experimental Data from X-ray Diffraction Studies on Crystalline Compounds 3, 5, 10 and 12

	3	5	10	12
formula	C43H37ClOP2PdS+C4H8O	C40H49ClN3OPPdS	C45H40NOP2PdS·CF3O3S·0.5C2H3N	C44H39ClOP2PdS
a (Å)	12.517(2)	43.577(4)	15.111(1)	11.897(1)
b (Å)	16.153(2)	9.214(1)	12.873(1)	14.891(2)
c (Å)	12.420(2)	20.752(2)	12.332(1)	11.357(1)
a (deg)	104.16(2)	90	99.89(1)	104.24(1)
β (deg)	119.40(2)	101.20(1)	101.44(1)	98.49(1)
γ (deg)	92.60(2)	90	98.08(1)	96.87(1)
$V(Å^3)$	2080.2(8)	8173.6(14)	2278.1(3)	1903.1(4)
Z	2	8	2	2
formula weight	877.7	792.7	980.8	819.7
space group	<i>P</i> 1 (No. 2)	C2/c (No. 15)	PĪ (No. 2)	PĨ (No. 2)
<i>t</i> (°C)	22	22	22	22
$\lambda(\mathbf{A})$	0.710 69	0.710 69	0.710 69	0.710 69
$\rho_{\rm calc} (\rm g \ \rm cm^{-3})$	1.401	1.288	1.430	1.430
μ (cm ⁻¹)	6.65	6.32	6.12	7.19
transmission coeff	0.853-1.000	0.875-1.000	0.891-1.000	0.936-1.000
R ^a	0.046	0.037	0.049	0.025
R_{w}^{b}	0.050	0.033	0.046	

 ${}^{a}R = \sum |\Delta F| / \sum |F_{o}|. {}^{b}R_{w} = [\sum w^{1/2} |\Delta F| / \sum w^{1/2} |F_{o}|].$

Table 2. Fractional Atomic Coordinates (×10⁴) for Complex 3^s

atom	x/a	у/b	z/c	atom	x/a	у/b	z/c
Pd1	315.0(5)	2982.3(3)	1304.5(5)	C31	-989(4)	2866(3)	-2057(4)
Cl1	-1141.7(17)	2886.3(12)	2007.2(18)	C32	-1300(4)	2102(3)	-3056(4)
P1	-1324.1(16)	2880.0(11)	-774.8(16)	C33	-1047(4)	2113(3)	-4028(4)
P2	1849.8(16)	2952.6(11)	3356.4(16)	C34	-482(4)	2888(3)	-4002(4)
S1A	1579(3)	2032(2)	-189(3)	C35	-171(4)	3652(3)	-3004(4)
S1B	2047(5)	2067(3)	487(6)	C36	-424(4)	3641(3)	-2031(4)
O1A	1912(8)	1468(6)	665(8)	C41	3488(3)	2982(3)	3789(4)
O1B	886(16)	1456(11)	673(16)	C42	4146(3)	3755(3)	3916(4)
O2	2927(11)	9452(8)	6930(9)	C43	5390(3)	3819(3)	4240(4)
C1	2951(4)	2348(3)	-176(5)	C44	5975(3)	3110(3)	4437(4)
C2	2712(4)	2540(3)	-1300(5)	C45	5317(3)	2336(3)	4310(4)
C3	3703(4)	2802(3)	-1440(5)	C46	4073(3)	2273(3)	3986(4)
C4	4933(4)	2872(3)	-455(5)	C51	1400(5)	1954(2)	3593(5)
C5	5172(4)	2679(3)	669(5)	C52	1036(5)	1183(2)	2589(5)
C6	4181(4)	2417(3)	808(5)	C53	723(5)	390(2)	2726(5)
C7	1605(6)	3097(4)	758(6)	C54	774(5)	370(2)	3867(5)
C11	-2196(4)	3762(2)	-869(4)	C55	1139(5)	1142(2)	4871(5)
C12	-2044(4)	4326(2)	266(4)	C56	1452(5)	1934(2)	4734(5)
C13	-2700(4)	5006(2)	203(4)	C61	2086(4)	3871(2)	4700(3)
C14	-3507(4)	5122(2)	-994(4)	C62	1348(4)	4502(2)	4453(3)
C15	-3658(4)	4558(2)	-2129(4)	C63	1530(4)	5205(2)	5477(3)
C16	-3003(4)	3878(2)	-2066(4)	C64	2449(4)	5277(2)	6749(3)
C21	-2441(5)	1871(3)	-1435(5)	C65	3186(4)	4646(2)	6997(3)
C22	-3690(5)	1768(3)	-2397(5)	C66	3005(4)	3943(2)	5972(3)
C23	-4492(5)	963(3)	-2927(5)	C71	3024(18)	8790(8)	7512(12)
C24	-4044(5)	261(3)	-2496(5)	C72	3026(18)	9153(9)	8628(16)
C25	-2795(5)	364(3)	-1535(5)	C73	3050(18)	10069(8)	8834(17)
C26	-1993(5)	1170(3)	-1004(5)	C74	2914(19)	10230(9)	7722(17)

^a The site occupation factors for the disordered S1 and O1 atoms are 0.65 and 0.35 for A and B, respectively.

alternatively present with different occupancies (see Experimental Section and Table 2). The O1A and O1B oxygen atoms, not involved in coordination to Pd [Pd...O1A, 3.42(1) Å; Pd...O1B, 3.40(2) Å] are involved in C-H...O intramolecular and intermolecular contacts, respectively: C52-01A, 3.19(2) Å; H52-01A, 2.10 Å; C52-H52--O1A, 165°; C53--O1B', 3.19(2) Å; H53--O1B', 2.11 Å; C53-H53...O1B', 164° [(') = -x, -y, -z).^{11a} The C1...C6 phenyl ring is nearly parallel to the coordination plane, the dihedral angle they form being 14.4(1)°. The S-C [mean values: S1-C7, 1.802(8) Å; S1-C1, 1.777(9) Å] and the S-O distances [mean value, 1.497(13) Å] are in good agreement with the mean values of 1.785(23) and 1.469(13) Å quoted for S-C and S-O bond lengths in S(O)- R_2 sulfoxides bonded to Pd via sulfur.¹⁰ Equally useful comparisons are with the Pd-O-bonded S(O)R₂ ligand [S–O, 1.520(21) Å; S–C, 1.788(20) Å]¹⁰ or the uncoordinated S(O)R₂ ligand [S–O, 1.497(13) Å; S–C, 1.806(25) Å].^{11b} However, the low accuracy of the S–O distances due to the presence of the configurational disorder of the α -sulfinyl group prevents any bond discussion. The phenyl rings in the triphenylphosphine ligands adopt a conformation such that two pairs of hydrogen atoms (H12, H62, H26, H52, Pd…H range: 2.88–3.18 Å) cap above and below the coordination plane in a typical fashion for *trans*-(PPh₃)-Pd complexes.

Reports of complexes containing C-M-bonded α -sulfinyl and α -sulfonyl anions are rare, two examples being found in $[(\eta^5-R_5C_5)(CO)_3WCH_2S(O)Ph]$ [R = H, Me]^{12a} and $[(PPh_3)AuCH(Ph)SO_2Bu^t]$,^{12b} though in the former case the sulfinyl anion is produced from the oxidation of the

^{(11) (}a) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.
(b) Allen, F. H.; Kennard, O.; Watson, D. J.; Brammer, L.; Orpen, G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

^{(12) (}a) Kneuper, H. J.; Zimmermann, C.; Harms, K.; Boche, G. Chem. Ber. 1989, 122, 1043. (b) A related metal α-sulfonyl complex [(PPh₃)-AuCH(Ph)SO₂Bu^t] has also been reported: Kneuper, H. J.; Harms, K.; Boche, G. J. Organomet. Chem. 1989, 364, 275.

corresponding sulfido. The Pd–C bond in complexes 3 and 4 can be envisaged as suitable for insertion reactions. We found, however, a rather low reactivity for such a Pd–C bond except toward the rather reactive isocyanides. The following pathway is proposed for the observed double insertion of Bu^tNC into the Pd(II)- α -sulfinyl ligand bond:

The structure of 5 is shown in Figure 2, and a selection of structural parameters is listed in Table 7. The square planar coordination of the metal is affected only by a significant out-of-plane distance of C13 [-0.212(5) Å]. The trans influence of the carbanion C13 causes the elongation of the Pd1-P1 distance [2.408(1) Å] in comparison with the conventional Pd-P bond lengths [2.320(38) Å].¹⁰ The two Pd–C bond distances suggest a pure σ bond^{8d} for Pd– C13 [2.041(4) Å] and a bond with multiple character¹³ for Pd-C18 [1.941(5) Å]. The proposed bonding scheme for the organic moiety formed from the insertion reaction is mainly supported by the following structural parameters: C7-C8, 1.343(7) Å; C13-N2, 1.264(6) Å; C8-N1, 1.349(6) Å; C8–C13, 1.509(8) Å. Some distortions in bond angles, particularly C8-N1-C9 [128.8(4)°] and C13-N2-C14 [127.0(5)°], should be related to intraligand steric hindrance, due to the presence of the bulky *tert*-butyl groups at the nitrogen atoms, rather than to electronic effects. This is suggested by the short intramolecular H102-H7 (1.92 Å) and H153-Pd (2.51 Å) contacts involving the hydrogen atoms from the C10 and C15 methyl carbons.

The torsion angles around the C8–C13 bond are N2– C13–C8–C7, 56.6(6)°, and N1–C8–C13–N2, $-125.6(5)^{\circ}$. The N1, C8, C13, C7 group of atoms is planar within experimental error, with the sulfur atom deviating by 0.298(1) Å from the plane, which is nearly perpendicular to the mean coordination plane [dihedral angle 79.5(1)°]. The mutual orientations of the ligands are mainly determined by a strong intramolecular NH…Cl hydrogen bond [N1…Cl1, 3.262(4) Å; H1…Cl1, 2.28 Å; N1–H1…Cl1, 155°] and by two Pd…H contacts filling the axial positions. They involve the H52 atom from the triphenylphosphine and the H153 atom from the C15 methyl carbon (Pd…H52, 2.75 Å; Pd…H153, 2.50 Å; H52…Pd…H153, 155°).

Reaction 2 requires the replacement of PPh₃ by Bu^tNC leading to the appropriate *cis* arrangement of the migrating and the inserting group. Such a migratory insertion proceeds twice with the concomitant enolization of the imino group adjacent to the sulfinyl residue to give 5 and 6. Regardless of the Bu^tNC/Pd ratio used, complexes 5 and 6 were formed, and it has not been possible to isolate any of the intermediates.

The spectroscopic results are in agreement with the suggested β -enamino sulfoxide form of 5 and 6. In particular, the chemical shifts for the enolic proton at 5.11 (complex 5) and 5.15 (complex 6) are very close to those found in the range 5.10-5.20 ppm for different β -enamino sulfoxides.¹⁴ The high $[\alpha_D]$ value for 6 is rather meaningless because the starting compound 4 is a mixture of the racemic and the pure starting enantiomeric form. An attempt was carried out to remove the organic ligand derived from the double insertion of Bu^tNC into the Pd-C bond of 3. The reaction was carried out by adding acetyl chloride to a THF solution of 5. We propose the following pathways leading to 7-9, which have been identified and characterized (see Experimental Section).

The demetalation of the organic fragment occurs with a partial degradation of the C-C skeleton. The alternative use of less reactive electrophilic reagents has not been pursued.

Complexes 3 and 4 were unreactive toward electronrich olefins or carbon monoxide under the same mild conditions. The lack of reactivity seems inconsistent with the observed Pd(II)-assisted reactivity of α -sulfinyl anions with olefins.⁶ This reaction was, however, carried out in a different way (addition of lithium- α -sulfinyl anion on Pd-complexed olefins) and does not proceed by insertion of the olefin on a preformed Pd- α -sulfinyl complex.

The rather low reactivity of 3 and 4 toward the inserting molecules, like CO and olefins, may be attributed both to the low electrophilic properties of the metal and to its coordinative saturation. The ionization of the Pd-Cl fragment should free a coordination site. Such an approach is reported in eq 4.

$$\begin{array}{c} PPh_{3} & PPh_{3} \\ ArSOCH_{2} & Pd-CI & CF_{3}SO_{3}Aq \\ PPh_{3} & PPh_{3} \end{array} \xrightarrow{(cF_{3}SO_{3}Aq)} ArSOCH_{2} - Pd-N=CMe \ (CF_{3}SO_{3}) \\ PPh_{3} & PPh_{3} \end{array} \tag{4}$$

A THF solution of CF_3SO_3Ag was added to an acetonitrile solution of 3 and 4, with formation of AgCl. Compounds 10 and 11 have been obtained in good yield as crystalline solids. The ¹H NMR spectra, both recorded in CD₃CN and CD₂Cl₂, are very similar to those of 3 and

⁽¹⁴⁾ Kawecki, R.; Kozerski, L. Tetrahedron 1986, 42, 1469.

 Table 3. Fractional Atomic Coordinates (×10⁴) for Complex 5

atom	x/a	y/b	z/c	atom	x/a	y/b	z/c
Pd1	3875 5(1)	1678 8(4)	4157(2)	C17	3008(2)	535(8)	-1421(4)
	4204 7(3)	1015 2(15)	-302.0(6)	C18	3573(1)	2225(5)	946(2)
S1	3000 7(3)	4862 9(17)	-1297(7)	C19	3206(1)	2796(6)	1754(3)
D1	A224 7(3)	905 7(15)	14014(6)	C20	2870(2)	2770(0)	1754(5) 1304(4)
	4224.7(3)	5986(4)	422(2)	C20	2077(2)	4249(0)	2009(4)
NI	3076(1)	J000(4) 4268(4)	423(2)	C21	3277(2)	4247(7)	2009(4)
INI NO	2220(1)	4306(4)		C22	3203(2)	207(5)	1976(3)
NZ N2	3339(1)	2151(5)	-/52(2)	C31 C32	4018(1)	-297(3)	18/0(2)
N3	3407(1)	2502(4)	1289(2)	C32	3/94(1)	-1200(6)	1517(2)
CI	2830(1)	5580(6)	-831(3)	C33	3621(1)	-2133(6)	1828(3)
C2	2824(1)	5046(7)	-1450(3)	C34	3674(2)	-2189(6)	2501(3)
C3	2595(1)	5579(7)	-1963(3)	C35	3895(1)	-1296(7)	2860(2)
C4	2386(1)	6613(8)	-1855(3)	C36	4068(1)	-359(6)	2558(2)
C5	2397(1)	7118(8)	-1237(4)	C41	4586(1)	-23(6)	1352(2)
C6	2623(1)	6590(7)	-717(3)	C42	4793(1)	635(6)	1022(2)
C7	3453(1)	5220(6)	-371(2)	C43	5068(1)	-67(9)	952(3)
C8	3664(1)	4178(6)	-411(2)	C44	5132(2)	-1422(9)	1200(4)
C9	4143(1)	5713(7)	-448(3)	C45	4927(2)	-2060(8)	1533(5)
C10	4025(1)	6652(7)	-1053(3)	C46	4655(1)	-1381(8)	1600(3)
C11	4477(1)	5286(7)	-451(3)	C51	4356(1)	2456(6)	1931(2)
C12	4131(2)	6574(7)	163(3)	C52	4221(1)	3781(6)	1771(3)
C13	3576(1)	2606(6)	-352(2)	C53	4309(2)	4979(7)	2164(4)
C14	3196(1)	2000(0)	-764(3)	C54	4536(2)	4848(8)	2710(4)
C14	2200(2)	191(9)	633(6)	C55	4530(2)	2542(0)	2710(4)
C15	3333(2)	-401(0)	-033(0)	C55	4079(1)	3343(7) 1242(7)	2077(3)
010	2992(2)	062(9)	-307(4)	0.50	4393(1)	2342(7)	2490(3)
		Table 4. Fracti	onal Atomic Coor	dinates (×104) for Complex 10	a	
atom	x/a	y/b	z/c	atom	x/a	y/b	z/c
Pd1	1845 0(4)	2237 6(4)	7409 5(4)	C15	1251(5)	33(6)	2666(5)
S1A	628(2)	3777(3)	8255(3)	C16	1179(5)	939(6)	3402(6)
SIR	501(3)	3821(4)	7518(4)	C21	2380(3)	3379(3)	5321(4)
S2A	5000(2)	1552(3)	3600(3)	C22	2200(3)	3265(3)	4410(4)
52A 63B	5672(21)	1332(3)	3033(3)	C22	2005(5)	J205(3) A109(3)	4202(4)
32D	1520 4(12)	1303(37)	2014(43)	C23	2447(2)	4106(3)	4302(4) 5105(4)
	1329.4(12)	2320.7(14)	3492.7(14)	C24	2042(2)	5100(3)	5105(4)
P2	2100.0(12)	2101.5(15)	9311.0(14)	025	3243(3)	2101(3)	6013(4)
FIA	4437(9)	303(11)	3920(13)	C20	2000(3)	4337(3)	0123(4)
F2A	4413(15)	/10(18)	2309(13)	C31	431(2)	2022(3)	4827(3)
F3A	4638(20)	2141(13)	39/1(23)	C32	300(2)	3397(3)	449/(3)
FIB	4549(12)	751(15)	4366(13)	C33	-487(2)	3799(3)	3993(3)
F2B	4439(17)	307(17)	2613(16)	C34	-1274(2)	3025(3)	3820(3)
F3B	4209(10)	1863(13)	3391(13)	C35	-1209(2)	2050(3)	4151(3)
O 1 A	1004(6)	4480(7)	7597(7)	C36	-356(2)	1849(3)	4654(3)
O1B	1189(8)	4439(10)	8590(10)	C41	1348(3)	2275(4)	10166(3)
O2	6027(6)	2213(6)	2948(8)	C42	569(3)	1477(4)	9930(3)
O3	6254(5)	551(5)	3512(6)	C43	-110(3)	1590(4)	10537(3)
O4A	6060(6)	2083(6)	4902(6)	C44	-12(3)	2500(4)	11380(3)
O4B	4947(44)	836(45)	1953(48)	C45	767(3)	3298(4)	11615(3)
N1	3200(4)	2149(5)	7324(5)	C46	1447(3)	3186(4)	11008(3)
N2	5481(13)	2287(15)	-688(16)	C51	3184(3)	3090(4)	10070(4)
CI	-566(3)	3772(4)	7951(6)	C52	3227(3)	4125(4)	9862(4)
Č2	-1194(3)	3688(4)	6930(6)	C53	3950(3)	4938(4)	10483(4)
C3	-2124(3)	3650(4)	6912(6)	C54	4630(3)	4716(4)	11311(4)
	_2426(3)	3697(4)	7915(6)	C55	4587(3)	3681(4)	11518(4)
Č	-2720(3) -1708(3)	3782(4)	8935(6)	C56	3864(3)	2867(4)	10898(4)
C6	-1750(5)	3810(4)	8053(6)	C61	2726(4)	_1268(3)	9653(5)
C0	-000(3)	3013(4) 3/35/5)	7501(5)	C62	2120(4)	-1200(3)	8600(5)
	202(4)	2423(3)	7301(3)	C03	2030(4)	-202(2)	0009(J) 9514(5)
08	3892(6)	2137(7)	/139(8)		2484(4)	(5) 787(3)	8314(3) 0463(5)
CYA	4/30(13)	2209(15)		004	2418(4)	/8/(3)	9403(3)
C9B	4887(16)	2000(18)	7190(20)	065	2505(4)	484(3)	10506(5)
C11	1606(4)	1124(5)	4540(5)	C66	2659(4)	-544(3)	10601(5)
C12	2121(4)	392(5)	4910(5)	C70	4569(19)	1125(10)	3445(11)
C13	2207(5)	-516(5)	4169(6)	C71	5225(13)	1534(14)	-403(16)
C14	1753(5)	-695(6)	3047(6)	C72	4980(16)	538(14)	-27(19)

^a The site occupation factors for the disordered atoms are 0.6 and 0.4 for S1A, O1A and S1B, O1B; 0.9 and 0.1 for S2A, O4A and S2B, O4B; 0.45 and 0.55 for F1A, F2A, F3A and F1B, F2B, F3B, respectively; 0.5 for C9A, C9B, N2, C71, C72.

4, with the enolic protons as AB systems coupled with the two P atoms (see previous discussion on 3). The *trans* geometry in solution is the same as that found in the solid state, as shown in the molecular structure of cation 10 reported in Figure 3. The structure consists of the packing of complex cations, $CF_3SO_3^-$ anions, and acetonitrile solvent molecules in the molar ratio 1/1/0.5. Selected bond distances and bond angles are given in Table 8. The structure of the cation is very close to that observed in the neutral complex 3. The coordination geometry is closer to planar than in complex 3, as shown by bond angles and displacements of atoms from the mean coordination plane: Pd1, -0.003(1) Å; P1, 0.022(2) Å; P2, 0.024(2) Å; N1, -0.070(7) Å; C7, -0.065(7) Å. Other parameters involving the [(PPh₃)₂Pd{CH₂S(O)Ph} fragment of the two complexes compare well with those in complex 3. The sulfoxide group shows a configurational disorder. Both enantiomers [R(A) and S(B)] sharing the carbon atom

Table 5. Fractional Atomic Coordinates (×104) for Complex 12

atom	x/a	y/b	z/c	atom	x/a	y/b	z/c
Pd1	3350.0(3)	7227.1(2)	1590.1(3)	C26	4456(4)	6246(3)	4802(4)
S1	1028.2(9)	6102.5(9)	2141.4(11)	C31	5878(3)	6536(2)	2845(3)
P 1	4862.1(8)	7349.9(6)	3200.0(8)	C32	6941(3)	6647(3)	3605(4)
P2	1355.8(8)	8071.5(7)	-75.7(8)	C33	7688(3)	6015(3)	3335(4)
Cl1	4712.9(9)	7347.8(7)	239.6(9)	C34	7373(4)	5253(3)	2317(4)
O 1	345(3)	6149(3)	3154(4)	C35	6325(4)	5119(3)	1582(4)
C1	1857(3)	5177(3)	2183(4)	C36	5569(4)	5758(3)	1823(3)
C2	2419(4)	4836(3)	1234(5)	C41	2326(3)	9174(3)	298(3)
C3	3022(5)	4109(4)	1257(6)	C42	3188(4)	9414(3)	1331(4)
C4	3047(6)	3699(4)	2208(8)	C43	3889(4)	10285(3)	1676(4)
C5	2468(8)	4030(5)	3146(7)	C44	3735(4)	10912(3)	967(5)
C6	1858(5)	4766(4)	3142(5)	C45	2854(5)	10697(4)	-20(5)
C7	2142(3)	7103(3)	2675(3)	C46	2155(4)	9823(3)	-365(4)
C8	2038(3)	7104(3)	52(3)	C51	578(3)	7933(3)	-1624(3)
C11	5799(3)	8500(2)	3741(3)	C52	1027(4)	7485(4)	-2626(4)
C12	6437(4)	8844(3)	4940(4)	C53	520(5)	7475(5)	-3817(5)
C13	7185(4)	9691(3)	5283(4)	C54	-440(6)	7878(4)	-3992(5)
C14	7325(4)	10203(3)	4451(5)	C55	-913(5)	8287(4)	-3015(6)
C15	6706(4)	9874(3)	3264(4)	C56	-416(4)	8319(3)	-1815(4)
C16	5945(3)	9034(3)	2910(4)	C61	316(3)	8222(3)	928(3)
C21	4494(3)	7129(2)	4626(3)	C62	-563(4)	7478(3)	790(4)
C22	4176(4)	7833(3)	5505(3)	C63	-1336(4)	7555(4)	1595(5)
C23	3872(4)	7651(3)	6565(4)	C64	-1240(4)	8357(4)	2526(5)
C24	3862(4)	6774(3)	6741(4)	C65	-385(4)	9106(4)	2661(4)
C25	4132(4)	6067(3)	5853(5)	C66	392(3)	9042(3)	1860(4)
C25	4132(4)	6067(3)	5853(5)	C66	392(3)	9042(3)	1860(4)

Table 6. Selected Bond Distances (Å) and Angles (deg) for Complex 3

Pd1-Cl1	2.390(3)	P2-C51	1.821(5)
Pd1-P1	2.338(2)	P2-C61	1.827(4)
Pd1-P2	2.334(2)	S1A01A	1.484(11)
Pd1C7	2.052(9)	S1A-C1	1.760(7)
P1-C11	1.825(5)	S1AC7	1.820(7)
P1-C21	1.816(5)	S1BO1B	1.510(14)
P1-C31	1.831(6)	S1B-C1	1.793(11)
P2-C41	1.842(4)	S1B-C7	1.783(9)
P2-Pd1-C7	91.8(2)	C1-S1B-C7	96.0(4)
$P_1 - P_{d_1} - C_7$	91.3(2)	O1B-S1B-C7	105.5(9)
P1-Pd1-P2	174.3(1)	O1B-S1B-C1	103.9(8)
C11-Pd1-C7	178.1(2)	S1B-C1-C6	103.4(4)
Cl1-Pd1-P2	86.9(1)	S1B-C1-C2	136.5(5)
C11-Pd1-P1	90.1(1)	S1A-C1-C6	127.1(4)
C1-S1A-C7	95.9(3)	S1A-C1-C2	112.9(4)
O1A-S1A-C7	106.8(4)	Pd1-C7-S1B	107.8(4)
O1A-S1A-C1	105.5(5)	Pd1-C7-S1A	109.4(4)

bound to palladium are alternatively present with different occupancies (see Experimental Section and Table 4). The O1A and O1B oxygen atoms not engaged in coordination to Pd [Pd. O1A, 3.31(1) Å; Pd. O1B, 3.33(1) Å] are involved in C-H...O intramolecular contacts which should be considered hydrogen bonds:^{11a} C26…O1A, 3.30(1) Å; H26---O1A, 2.19 Å; C26-H26---O1A, 153°; C52---O1B, 3.28(1) Å; H52-01B, 2.33 Å; C52-H52-01B, 150°. The C1...C6 phenyl ring is almost parallel to the coordination plane, the dihedral angle they form being $10.0(1)^{\circ}$. The S-C distances [mean values for S1-C7 and S1-C1, 1.808(8) and 1.780(7) Å, respectively] and the S-O distances [mean value 1.485(11) Å] are in good agreement with the values observed in complex 3. The phenyl rings in the triphenylphosphine ligands adopt a conformation which results in two pairs of hydrogen atoms (Pd...H range: 2.68-3.11 Å for H12, H62, H26, H52) capping above and below the coordination plane, as found in complex 3. The H atoms define approximately a plane perpendicular to the mean coordination plane (dihedral angle 74.6°). The acetonitrile ligand is coordinated in the normal linear fashion, with a Pd-N distance [2.089(6) Å] close to the value of 2.065(14) Å found, e.g., in $[(MeCN)PdCl_2(\mu$ dppm)PdCl₂(MeCN)].¹⁵ Packing is determined by several contacts involving the $CF_3SO_3^-$ anion, the acetonitrile

solvent molecule, and the cation, the shortest of which ranges from 3.2 to 3.5 Å.

The structure of 10 may contain the explanation for the lack of reactivity of 3 toward the inserting group. The coordination site freed from the ionization is *trans* to the potential migrating group and therefore does not allow a possible intramolecular process. The ease of reaction of 3 and 4 with isocyanides is due indirectly to the ability of Bu^tNC to replace one of the PPh₃ ligands, thus producing a *cis* position with respect to the migrating α -sulfinyl anion.

The chemistry of 3 and 4, involving mainly insertion reactions, is essentially controlled by the rather low polarity of the Pd–C σ bond, and by unfavorable arrangement of the potentially available coordination site filled by Cltrans to the α -sulfinyl anion. Our attempt to generate a Pd– α -sulfinyl carbene^{5,8d} sought to take advantage of the easy ionization (see reaction 4) of the Pd–Cl bond, and the plausible elimination of HCl using the Wittig reagent as a base.

Reaction 5, however, led to the simple substitution of one of the PPh₃ groups by the much more basic ylide ligand. Such types of ylide complexes have been discovered recently,¹⁶ and their use is quite interesting in acetylene and olefin polymerization.¹⁷ We should emphasize the peculiar presence of two α -functionalized carbanions

⁽¹⁵⁾ Olmstead, M. M.; Guimerans, R. R.; Farr, J. P.; Balch, A. L. Inorg. Chim. Acta 1983, 75, 199.
(16) (a) Vicente, J.; Chicote, M.-T.; Fernandez-Baeza, J. J. Organomet.

^{(16) (}a) Vicente, J.; Chicote, M.-T.; Fernandez-Baeza, J. J. Organomet. Chem. 1989, 364, 407. (b) Albanese, J. A.; Staley, D. L.; Rheingold, A. L.; Burmeister, J. L. J. Organomet. Chem. 1989, 375, 265. (c) Facchin, G.; Bertani, R.; Zanotto, L.; Calligaris, M.; Nardin, G. J. Organomet. Chem. 1989, 366, 409. (d) Vicente, J.; Chicote, M.-T.; Saura-Llamas, I.; Lopez-Muñoz, M. J.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1990, 3683.

Figure 2. ORTEP view of complex 5 (30% probability ellipsoids).

Table 7. Selected Bond Distances (Å) and Angles (deg) for

Complex 5						
Pd1-C11	2.341(2)	N3-C18	1.138(7)			
Pd1-P1	2.408(1)	N3-C19	1.449(8)			
Pd1-C13	2.040(4)	C7-C8	1.343(7)			
Pd1-C18	1.940(5)	C8C13	1.509(8)			
S101	1.502(4)	C9-C10	1.529(9)			
S1-C1	1.809(5)	C9-C11	1.509(7)			
S1–C7	1.740(5)	C9-C12	1.505(9)			
P1-C31	1.831(5)	C14-C15	1.400(10)			
P1-C41	1.812(5)	C14-C16	1.420(11)			
P1-C51	1.825(5)	C14-C17	1.456(9)			
N1-C8	1.349(6)	C19–C20	1.475(9)			
N1-C9	1.461(7)	C19–C21	1.451(10)			
N2-C13	1.264(6)	C19–C22	1.435(10)			
N2C14	1.467(8)					
C13-Pd1-C18	86.1(2)	S1C1C6	117.6(5)			
P1-Pd1-C18	89.0(1)	S1-C1-C2	120.9(4)			
P1-Pd1-C13	171.9(1)	C2C1C6	121.3(5)			
Cl1-Pd1-C18	175.1(1)	S1-C7-C8	122.5(4)			
Cl1-Pd1-C13	89.5(1)	N1C8C7	126.9(5)			
Cl1-Pd1-C1	95.7(0)	C7–C8–C13	119.5(4)			
C1-S1-C7	99.9(2)	N1-C8-C13	113.5(4)			
01-S1-C7	106.9(2)	N2-C13-C8	116.9(4)			
01-S1-C1	104.9(2)	Pd1C13C8	109.3(3)			
C8-N1-C9	128.8(4)	Pd1-C13-N2	133.7(4)			
C13-N2-C14	127.0(5)	Pd1-C18-N3	175.7(4)			
C18-N3-C19	176.6(5)					

around Pd(II) in complex 12, though the chemistry of such species has not yet been explored. The assignments for the rather complex ¹H NMR spectrum of 12 have been made (see Experimental Section) by careful comparison with those of complexes 3 and 10. A perspective view showing the atomic numbering scheme of 12 is reported in Figure 4. Selected bond distances and angles are given in Table 9. The four coordinated atoms are planar within experimental error, with palladium protruding by only 0.013(1) Å from the plane. Bond distances and angles within the coordination sphere are in good agreement with those observed in complex 3. The lengthening of the Pd– C8 distance with respect to the Pd–C7 distance could be a consequence of intraligand steric effects. The sulfoxide

Figure 3. ORTEP view of complex 10 (30% probability ellipsoids). For clarity only the A position is given for the disordered α -sulfinyl group.

group does not show any disorder. Bond distances and angles are in good agreement with those observed in complexes 3, 5, and 10. The C1--C6 phenyl ring is tilted by 55.5(1)° with respect to the coordination plane, with the H2 hydrogen atom lying at a distance of 2.99 Å from palladium in a direction forming a dihedral angle of 19.3° with the normal to the coordination plane. The H42 hydrogen atom, belonging to one of the PPh₃ ligands, forms a bipyramidal geometry around palladium with a Pd-H42 distance of 2.45 Å. The Pd.-H42 line forms a dihedral angle of 7.7° with the normal to the coordination plane. Such short distances can be viewed as three-center fourelectron interactions,¹⁸ though we cannot prove this by any NMR support, or they too may arise simply from rigid or sterically constrained ligands as pointed out by Lippard and co-workers.¹⁹

⁽¹⁷⁾ Ostoja-Starzewsky, K. A.; Born, L. Organometallics 1992, 11, 2701 and references therein.

Figure 4. ORTEP view of complex 12 (30% probability ellipsoids).

Table 8.	Selected Bond Distances (Å) and Angles (deg) for	
	Complex 10	

Pd1-P1	2.344(2)	P1-C11	1.810(6)
Pd1-P2	2.342(2)	P1-C21	1.801(5)
Pd1-N1	2.089(6)	P1-C31	1.820(4)
Pd1–C7	2.010(6)	P2-C41	1.817(5)
S1A-O1A	1.446(10)	P2-C51	1.804(4)
S1A-C1	1.767(6)	P2-C64	1.807(5)
S1A-C7	1.806(7)	N1-C8	1.106(12)
S1B-O1B	1.524(11)	C8–C9A	1.556(24)
S1B-C1	1.793(8)	C8–C9B	1.532(27)
C1B-C7	1.809(8)		
N1-Pd1-C7	176.3(3)	01B-S1B-C1	102.2(6)
P2-Pd1-C7	90.6(2)	Pd1-N1-C8	171.7(7)
P2-Pd1-N1	90.1(2)	S1B-C1-C6	137.8(5)
P1-Pd1-C7	90.8(2)	S1B-C1C2	102.1(4)
P1-Pd1-N1	88.5(2)	S1A-C1-C6	108.6(4)
P1-Pd1-P2	178.1(1)	S1A-C1-C2	131.3(4)
C1-S1A-C7	96.4(3)	Pd1-C7-S1B	107.3(3)
01A-S1A-C7	106.3(4)	Pd1-C7-S1A	107.4(3)
01A-S1A-C1	105.6(5)	N1-C8-C9B	165.9(13)
C1-S1B-C7	95.4(3)	N1-C8-C9A	163.2(11)
O1B-S1B-C7	105 1(6)		

Some comments concerning the intramolecular contacts of the structurally determined α -sulfinyl complexes 3, 5, 10, and 12 are worthy of mention at this point. Complexes 5 and 12, where the sulfoxide group is not affected by disorder, show a strong intramolecular contact involving the oxygen atom and the adjacent α carbon of the phenyl group: C6--O1, 2.851(6) Å (5), 2.892(8) Å (12); H6--O1, 2.34 Å (5), 2.29 Å (12); C6-H6-O1, 106° (5), 113° (12). These contacts, which give rise to a five-membered ring, could be interpreted as strong hydrogen bonds.^{11a}

In complexes 3 and 10, where the sulfoxide group shows a configurational disorder, similar contacts are present involving both the A and B positions of the oxygen atoms. Complex 3: C6...O1A, 3.070(13) Å; H6...O1A, 2.82 Å;

Table 9. Selected Bond Distances (Å) and Angles (deg) for Complex 12

p-		
2.323(1)	P1-C11	1.837(3)
2.411(1)	P1-C21	1.833(4)
2.047(4)	P1-C31	1.829(4)
2.119(3)	P2C8	1.762(5)
1.496(5)	P2C41	1.807(4)
1.794(5)	P2C51	1.813(3)
1.786(4)	P2-C61	1.799(4)
90.7(1)	O1-S1-C7	105.8(2)
87.1(1)	01-S1-C1	106.4(2)
177.7(1)	S1-C1-C6	118.8(3)
176.7(1)	S1-C1-C2	121.0(4)
92.5(1)	C2C1C6	120.1(4)
89.7(1)	Pd1C7S1	117.4(2)
100.5(2)	Pd1-C8-P2	120.2(2)
	2.323(1) 2.411(1) 2.047(4) 2.119(3) 1.496(5) 1.794(5) 1.786(4) 90.7(1) 87.1(1) 177.7(1) 176.7(1) 92.5(1) 89.7(1) 100.5(2)	2.323(1) P1-C11 2.411(1) P1-C21 2.047(4) P1-C31 2.119(3) P2-C8 1.496(5) P2-C41 1.794(5) P2-C51 1.786(4) P2-C61 90.7(1) O1-S1-C7 87.1(1) O1-S1-C1 177.7(1) S1-C1-C6 176.7(1) S1-C1-C2 92.5(1) C2-C1-C6 89.7(1) Pd1-C7-S1 100.5(2) Pd1-C8-P2

C2...O1B, 3.31(2) Å; H2...O1B, 3.07 Å. Complex 10: C2...O1A, 3.229(10) Å; H2...O1A, 3.04 Å; C6...O1B, 3.237(14) Å; H6...O1B, 3.04 Å. Nevertheless, the values of the H…O distances (2.82-3.07 Å) seem too long to be regarded as interactions. However, it is worthy of note that many of the peripheral carbon atoms which participate in the CH---Pd and CH---O contacts exhibit extremely large anisotropic displacements, indicating some degree of static and dynamic disorder. Thus, positions found for H atoms attached to these atoms are likely to be very inaccurate, a good example being C15 of complex 5.

Experimental Section

All reactions were carried out under an atmosphere of purified nitrogen. Solvents were dried and distilled before use by standard methods. cis-[(PPh₃)₂PdCl₂]²⁰ and Ph₃P=CH₂²¹ were synthesized as reported in the literature. The sulfoxides used are commercially available. Infrared spectra were recorded with a Perkin-Elmer 883 spectrophotometer, and ¹H NMR spectra were measured on a 2000-AC Bruker instrument.

Preparation of 3. Melted 1 (2.52 g, 18 mmol) was added with a syringe to a THF (100 mL) suspension of potassium hydride (0.76 g, 18.9 mmol) and the mixture stirred overnight. Then

⁽¹⁸⁾ Anklin, C. G.; Pregosin, P. S. Magn. Reson. Chem. 1985, 23, 671. Brammer, L.; Charnock, J. M.; Goggin, P. L.; Goodfellow, R. J.; Orpen, A. G.; Koetzle, T. F. J. Chem. Soc., Dalton Trans. 1991, 1789. Wehman-Ooyevaar, I. C. M.; Grove, D. M.; Kooijman, H.; van der Sluis, P.; Speck, A. L.; van Koten, G. J. Am. Chem. Soc. 1992, 114, 9916.

⁽¹⁹⁾ Sunquist, W. I.; Bancroft, D. P.; Lippard, S. J. J. Am. Chem. Soc. 1990. 112. 1590.

⁽²⁰⁾ Heck, R. F. Palladium Reagents in Organic Synthesis; Academic: New York, 1985; p 18. (21) Vogel's Textbook of Practical Organic Chemistry, 5th ed.;

Longman Scientifical and Technical: New York, 1989; p 495.

cis-[(PPh₃)₂PdCl₂] (11.37 g, 16.2 mmol) was added at room temperature and the suspension vigorously stirred for 1 day. A white microcrystalline solid formed after a few hours. It was filtered in the air, washed with THF (3×50 mL), and extracted under nitrogen with CH_2Cl_2 (50 mL) to eliminate KCl. A white crystalline solid formed (90%). Crystals suitable for X-ray analysis were obtained by recrystallization in THF. IR (Nujol): ν (S=O) 1094 (w) cm⁻¹. Anal. Calcd for C₄₃H₃₇ClOP₂PdS: C, 64.11; H, 4.63. Found: C, 64.10; H, 4.68. ¹H NMR (CD₂Cl₂): δ 2.18 (td, 1 H, A part of an ABX₂, CH₂Pd, $J_{Ab} = 9$ Hz, $2J_{AX} \approx 6$ Hz), 2.56 (q, 2 H, B part of an ABX₂, CH₂Pd, $J_{AB} = 9$ Hz, $2J_{BX}$ = 9 Hz) (the quartet is very likely from the overlap of two triplets due to the fact that the $J_{\rm HH}$ and $J_{\rm HP}$ are almost identical), 6.70 (m, Ph, 2 H), 7.15 (m, Ph, 3 H), 7.48 (m, Ph, 18 H), 7.78 (m, Ph, 12 H). ¹³C NMR (CD₂Cl₂): δ 49.1 (CH₂Pd), 124.1-136.3 (Ph). ³¹P NMR (CD₂Cl₂): δ 29.2 (s).

Preparation of 4. Melted (R)-(+)-2 (0.59 g, 3.83 mmol) was added with a syringe to a THF (50 mL) suspension of potassium hydride (0.156 g, 3.89 mmol) and the mixture stirred overnight. Then cis-[(PPh₃)₂PdCl₂] (2.70 g, 3.85 mmol) was added at room temperature and the suspension vigorously stirred for 1 day. A white microcrystalline solid formed after a few hours. It was filtered in the air, washed with THF (20 mL), and extracted under nitrogen with CH₂Cl₂ (50 mL) to eliminate KCl. A white crystalline solid formed, which was filtered and dried. Another crop of product was collected by evaporating solution to dryness and redissolving the residue in toluene (30 mL) and pentane (30 mL) (90%). Anal. Calcd for C44H39ClOP2PdS: C, 64.48; H, 4.80. Found: C, 63.81; H, 4.93. ¹H NMR (CD₂Cl₂): δ 2.18 (td, 1 H, A part of an ABX₂, CH₂Pd, $J_{AB} = 8.5$ Hz, $J_{AP} \approx 6$ Hz), 2.55 (q, 1 H, B part of an ABX₂, CH₂Pd, $J_{AB} = 8.5$ Hz, $J_{BP} \approx 9$ Hz), 6.65 (d, Ph, 2 H), 6.97 (d, Ph, 2 H), 7.48 (m, PPh, 20 H), 7.79 (m, PPh, 10 H). ¹³C NMR (CD₂Cl₂): δ 21.7 (s, MePh), 49.0 (s, CH₂Pd), 124.2–147.2 (m, Ph). ³¹P NMR (CD₂Cl₂): δ 29.0 (s). [α]_D = +116 $\pm 2^{\circ}$ (c = 0.665) in THF.

Preparation of 5. A THF (20 mL) solution of Bu^tNC (0.90 g, 10.8 mmol) was added dropwise to a THF (40 mL) suspension of 3, affording in a few minutes a clear solution. The solvent was evaporated and the yellow oil redissolved in ether (50 mL). White crystals suitable for X-ray analysis slowly grew, which were filtered and dried (81%). IR (Nujol): v(NH) 3309 (w), v(N=C) 2206 (w), ν (C=N) 1632 (w) cm⁻¹. Anal. Calcd for C₄₀H₄₉ClN₃OPPdS: C, 60.60; H, 6.23; N, 5.30. Found: C, 60.39; H, 6.39; N, 5.07. ¹H NMR (C_6D_6): δ 1.05 (s, Bu^t, 9 H), 1.17 (s, Bu^t, 9 H), 1.88 (s, Bu^t, 9 H), 5.11 (s, =CHSO, 1 H), 6.90-7.10 (m, Ph, 12 H), 7.7 (m, Ph, 6 H), 8.55 (m, Ph, 2 H). ³¹P NMR (C₆D₆): δ 12.3 (s).

Preparation of 6. A THF (20 mL) solution of Bu^tNC (0.23 g, 2.77 mmol) was added dropwise to a THF (20 mL) suspension of 4, affording in a few minutes a clear solution. The solvent was evaporated and the yellow oil redissolved in ether (50 mL). A white crystalline solid slowly formed, which was filtered and dried (39%). Anal. Calcd for C₄₁H₅₁ClN₃OPPdS: C, 61.04; H, 6.37, N, 5.21; P, 3.84. Found: C, 61.56; H, 6.25, N, 5.40; P, 3.87. ¹H NMR (C_6D_6): δ 1.06 (s, Bu^t, 9 H), 1.19 (s, Bu^t, 9 H), 1.90 (s, Bu^t, 9 H), 2.06 (s, MePh, 3 H), 5.15 (s, =CHSO, 1 H), 6.9-7.1 (m, Ph, 12 H), 7.7 (m, Ph, 6 H), 8.55 (m, Ph, 2 H). ³¹P NMR (C₆D₆): δ 12.2 (s). $[\alpha]_D = -131.1 \pm 2.0^\circ$ (c = 1.030) in THF.

Reaction of 5 with MeCOCl. To a suspension of 3 (3.05 g, 3.78 mmol) were added first Bu^tNC (0.94 g, 11.35 mmol) and then, when all the solids had dissolved, CH₃COCl (0.60 g, 7.64 mmol) dropwise with a syringe. After a few minutes, 7 formed as a light yellow precipitate and was filtered off (82%). The filtrate was evaporated to dryness, yielding a yellow oil, which was analyzed by IR, ¹H NMR, and GC-MS.

7: IR (Nujol), ν (N=C) 2235 (s) cm⁻¹. Anal. Calcd for C23H24Cl2NPPd: C, 52.85; H, 4.63; N, 2.68. Found: C, 52.60; H, 4.95; N, 2.89. ¹H NMR (CD₂Cl₂): δ1.14 (s, Bu^t, 9 H), 7.4-7.8 (m, Ph, 15 H). ³¹P NMR (C₆D₆): δ 28.1 (s).

8: IR (Nujol), ν (C=O) 1751 (s) and ν (S=O) 1021 (s) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 2.16 (s, Me, 3 H), 5.46 (s, COCH₂SO, 2 H), 7.35 (m, Ph, 5 H). MS: $M^+ = 182$.

9: MS, $M^+ = 161$.

Preparation of 10. A CH₃CN (20 mL) solution of CF₃SO₃Ag (0.90 g, 3.5 mmol) was added dropwise to a CH₂Cl₂ (80 mL) solution of 3. A white precipitate suddenly formed, which was filtered off. The solvents were evaporated to 10 mL, and ether (50 mL) was added. At 0 $^{\circ}\mathrm{C}\,a$ yellow microcrystalline solid formed (75%). Crystals suitable for X-ray analysis were obtained by recrystallization in a 1/3 CH₂Cl₂/ether mixture. IR (Nujol): ν -(CN) 2309 (w) and 2287 (w) cm⁻¹. Anal. Calcd for $C_{46}H_{40}$ -F₃NO₄P₂PdS₂: C, 57.54; H, 4.20; N, 1.46. Found: C, 57.26; H, 4.35; N, 1.87. ¹H NMR (CD₃CN): δ 2.02 (s, CH₃CN, 3 H), 2.43 (bm, SOCH₂Pd, 1 H), 2.88 (bm, SOCH₂Pd, 1 H), 6.63 (m, PhSO, 2 H), 7.3 (m, PhSO, 3 H), 7.6-7.9 (m, PPh, 30 H). ³¹P NMR (CD₃CN): δ 31.3 (s). ¹H NMR (CD₂Cl₂): δ 1.97 (s, Me, 3 H), 2.36 (td, 1 H, A part of an ABX₂, CH₂Pd, $J_{AB} = 9$ Hz, $2J_{AX} \approx 6$ Hz), 2.91 (td, 1 H, B part of an ABX₂, CH₂Pd, J_{AB} = 9 Hz, $2J_{BX} \approx$ 11 Hz), 6.5–7.9 (m, Ph, 35 H). ¹³C NMR (CD₂Cl₂): δ 2.4 (s, Me), 48.7 (s, CH₂Pd), 123.6 (s, CF₃SO₃-), 123.8 (s, CNPd), 127.7-145.0 (m, Ph). ³¹P NMR (CD₂Cl₂): δ 24.7 and 37.9 (2s).

Preparation of 11. A CH₃CN (10 mL) solution of CF₃SO₃Ag (0.22 g, 0.8 mmol) was added dropwise to a CH₂Cl₂ (40 mL) solution of 4. A white precipitate was formed and filtered off. The solvents were evaporated to 10 mL, and ether (50 mL) was added. At 0 °C yellow crystals formed (77%). IR (Nujol): v-(CN) 2311 (w) and 2281 (w) cm⁻¹. Anal. Calcd for C₄₇H₄₂F₃NO₄P₂PdS₂: C, 57.94; H, 4.34; N, 1.44. Found: C, 57.32; H, 4.35; N, 1.34. ¹H NMR (CD₃CN): δ 2.02 (s, CH₃CN, 3 H), 2.28 (s, MePh, 3 H), 2.40 (bm, SOCH₂Pd, 1 H), 2.88 (bm, SOCH₂Pd, 1 H), 6.52 (d, PhSO, 2 H), 7.08 (d, PhSO, 2 H), 7.6–7.9 (m, PPh, 30 H). ³¹P NMR (CD₃CN): δ 31.2 (s). $[\alpha]_D = +272.0 \pm 1^\circ$ (c = 1.342) in THF.

Preparation of 12. To a THF (50 mL) suspension of 3 (0.72 g, 0.9 mmol) was added Ph₃P=CH₂ (0.25 g, 0.9 mmol) dropwise until complete dissolution of the starting product. The light yellow solution was evaporated to dryness, the residue redissolved in CH_2Cl_2 (10 mL), and ether (60 mL) added. A white crystalline solid formed (82%). Crystals suitable for X-ray analysis were grown in a 1/4 CH₂Cl₂/ether mixture. Anal. Calcd for C44H39ClOP2PdS: C, 64.47; H, 4.80. Found: C, 64.80; H, 5.00. ¹H NMR (CD₂Cl₂): δ 1.65 (td, 1 H, A part of an ABX₂, CH₂, J_{AB} = 9 Hz, $2J_{AX} \approx 12$ Hz), 1.83 (bm, CH₂, 2 H), 2.39 (td, 1 H, B part of an ABX₂, CH₂, $J_{AB} = 9$ Hz, $2J_{BX} \approx 12$ Hz), 7.30–7.85 (m, Ph, 35 H). ¹³C NMR (CD₂Cl₂): δ 1.90 (d, CH₂Pd), 4.10 (d, CH₂Pd), 43.2 (d, PdCH₂SO), 125.3-136.2 (12 s, Ph), 150.7 (s, Ph). ³¹P NMR (CD₂Cl₂): δ 26.3 (s) and 33.2 (s).

X-ray Crystallography. The crystals of 3, 5, 10, and 12 were mounted in glass capillaries and sealed under nitrogen. The reduced cells were obtained with use of TRACER.²² Crystal data and details associated with structure refinement are given in Table 1. Data were collected at room temperature (295 K) on a single-crystal diffractometer (Rigaku AFC6S for 3, Philips PW1100 for 5 and 12, and Siemens AED for 10). For intensities and background individual reflections profiles were analyzed.²³ The structure amplitudes were obtained after the usual Lorentz and polarization corrections, and the absolute scale was established by the Wilson method.²⁴ The crystal quality was tested by ψ scans showing that crystal absorption effects could be neglected for complexes 5, 10, and 12 and not for complex 3. Only the data of complex 3 were then corrected for absorption using a semiempirical method.²⁵ The function minimized during the least-squares refinement was $\sum w |\Delta F|^2$. A weighting scheme $\{w = w\}$ $k/[\sigma^2(F_o) + g|F_o|^2]$ based on counting statistics was applied.²⁶ Unit weights were used for 12 since this gave the best agreement factors and analysis of variance. Anomalous scattering corrections

⁽²²⁾ Lawton, S. L.; Jacobson, R. A. TRACER. A cell reduction program. Ames Laboratory, Iowa State University of Science and Technology, Ames, IA, 1965.

⁽²³⁾ Lehmann, M. S.; Larsen, F. K. Acta Crystallogr., Sect. A: Cryst. Phys. Diffr., Theor. Gen. Crystallogr. 1974, A30, 580-584.
 (24) Wilson, A. J. C. Nature (London) 1942, 150, 151.
 (25) North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr.,

Sect. A: Crystallogr. Cryst. Chem. 1968, A24, 351.

⁽²⁶⁾ Sheldrick, G. SHELX-76 System of Crystallographic Computer Programs; University of Cambridge: Cambridge, England, 1976.

were included in all structure factor calculations.^{27b} Scattering factors for neutral atoms were taken from ref 27a for non-hydrogen atoms and from ref 28 for H. Among the low-angle reflections no correction for secondary extinction was deemed necessary. All calculations were carried out on an IBM AT personal computer equipped with an INMOS T800 Transputer using SHELX-76.26 Solution and refinement were based on the observed reflections. The structures were solved by the heavy-atom method starting from a three-dimensional Patterson map.

Complex 3. Refinement was first done isotropically, then anisotropically by full-matrix least squares for all non-H atoms except for those affected by disorder. All the hydrogen atoms but those related to the THF molecule, which were ignored, were located from a difference Fourier map and introduced in the final refinement as fixed contributors (isotropic U's fixed at 0.10 Å²). During the refinement the phenyl rings were constrained to be regular hexagons (C–C = 1.395 Å). The SOCH₂ group was found to be affected by a configurational disorder, implying the presence of the two enantiomeric forms sharing the C7 carbon atom. The disorder was solved by considering the sulfur and oxygen atoms to be statistically distributed over two positions (A and B) related by a pseudo mirror plane running through the phenyl ring. They were isotropically refined with the site occupation factors given in Table 2. The final difference map showed no unusual features, with no significant peaks above the general background.

Complexes 5 and 12. Refinement was first done isotropically, then anisotropically by full-matrix least squares for all non-H atoms. All the hydrogen atoms were located from a difference Fourier map and introduced in the final refinement as fixed contributors (isotropic U's fixed at 0.08 Å²). The final difference map showed no unusual features, with no significant peaks above the general background.

Complex 10. Refinement was first done isotropically, then anisotropically by full-matrix least squares for all non-H atoms except for the CF₃SO₃- anion and the sulfoxide group, which were found to be affected by disorder. The anion exhibits 2-fold disorder of the sulfur, oxygen, and fluorine sites with occupancy factors given in Table 4. The sulfoxide group was found to exhibit configurational disorder similar to that observed in complex 3. Two of the disordered atoms were allowed to vary anisotropically [S2A, O4A having site occupancy factors of 0.9(1)], the remainder being isotropically refined, as well as the three atoms of an acetonitrile solvent molecule which was found disordered around a center of symmetry. At the last stage of refinement the C9 methyl carbon reached a rather high U_{33} thermal parameter showing an inconsistent contact with the N2 atom of acetonitrile solvent. It was then considered statistically disordered over two positions (A and B), one of them (A) consistent with the disordered acetonitrile solvent [C9...N2, 3.29(3) Å]. Except for those associated with the disordered acetonitrile solvent and C9 methyl carbon, all hydrogen atoms were located from difference Fourier maps and introduced in the final refinement as fixed contributors $(U_{iso} = 0.10 \text{ Å}^2)$. During the refinement the phenyl rings were constrained to be regular hexagons (C–C = 1.395 Å). Constraints were also applied to the C-F bond distance of the CF₃SO₃- anion [1.30(1) Å] and to the N-C and C-C bonds of the acetonitrile solvent [1.13(1) and 1.46(1) Å, respectively]. The final difference map showed no unusual features, with no significant peaks above the general background.

Final atomic coordinates are listed in Tables 2-5 for non-H atoms and in Tables SII-SV for hydrogens. Thermal parameters are given in Tables SVI-SIX and bond distances and angles in Tables SX-SXIII.29

Acknowledgment. We would like to thank the "Fonds National Suisse de la Recherche Scientifique" (Grant No. 20-33420-92) and Ciba-Geigy Co. (Basel) for financial support.

Supplementary Material Available: Experimental details associated with data collection and structure refinement (Table SI), hydrogen atom coordinates (Tables SII-SV), thermal parameters (Tables SVI-SIX), and bond distances and angles (Tables SX-SXIII) for complexes 3, 5, 10, and 12 (17 pages). Ordering information is given on any current masthead page.

OM9304669

^{(27) (}a) International Tables for X-ray Crystallography; Kynoch
Press: Birmingham, England, 1974; Vol. IV, p 99; (b) p 149.
(28) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys.

^{1965, 42, 3175.}

⁽²⁹⁾ See paragraph at the end of this paper regarding supplementary material.