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Summary: Synthesis of rac-[((1,2,3,4-tetraphenyl-1,3-
butadiene-1,4-diyl)germylene)bis(1-n*-indenyl)]dichlo-
rozirconium (1) was achieved with substantial suppres-
sion of the undesired meso diastereomer as predicted by
MM?2 force field calculations. The corresponding zir-
conocenium ion of I polymerizes propylene with high
catalytic activity and stereospecificity to very high
molecular weight. The characteristics of this catalysis
are essentially independent of polymerization temper-
ature over a broad temperature range.

Much of the research on metallocene catalysis has been
directed toward the synthesis of group 4 ansa-metal-
locenes! as precursors to stereospecific olefin polymeri-
zation catalysts.2 We have synthesized a new spiroger-
mylene precursor (Figure 1), rac-[((1,2,3,4-tetraphenyl-
1,3-butadiene-1,4-diyl)germylene)bis(1-n5-indenyl)]-
dichlorozirconium (1). The cation of 1 polymerizes
propylene with high activity (A) and stereospecificity (1Y)
over a broad temperature range (T}).

The chief challenge in homogeneous Ziegler-Natta
catalysis is to design a molecular structure which strongly
directs the regio- and stereochemical pathways for mono-
mer incorporation. Isotactic propagation requires Cp-
symmetric ansa-zirconocene precursors, the synthesis of
which usually produces both racemic and meso diaster-
eomers. The meso isomer lacks profacial selectivity;
several methods have been reported to suppress its
formation.*? Qur approach was to design a ligand,
calculate the racemic/meso ratio of its metallocene com-
plexes by a molecular mechanics (MM2) calculation,?
and proceed with synthesis only when the prognosis is
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Figure 1. MM2-derived model structure of 1. All unlabeled
atoms are carbon.

favorable for the racemic diastereomer. The steric ener-
gies for the two diastereomers of 1 are E, = 11.5 kcal/mol
and E ey = 13.4 kcal/mol. This result indicates that the
formation of the desired rac isomer will dominate the
diastereomeric mixture in the synthesis of 1.9

All reactions were carried out using Schlenk or glove-
box techniques under an argon atmosphere. 1,4-Dilithio-
1,2,3,4-tetraphenylbutadiene!® and 1,1-dichlorotetraphe-
nyl-1-germacyclopentadiene (2)!! were obtained by liter-
ature methods. 1,1-Bis(indenyl)tetraphenyl-1-germ-
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Table 1. Propylene Polymerizations Catalyzed with 1+ *

run no. Tp (°C) [Zr] (uM) [TIBA] (mM) time (min) yield (g) Ab T (°C) 1Y¢ (%) 10-5M,4
1 25 10 20 25. 0.96 9.18 X 106 150.71 81.1 592
2 0 10 24 23 2.10 1.46 x 107 157.23 93.8 8.39
3 ~20 10 3.0 10 1.05 1.34 x 107 157.30 94.3 8.54
4 -40 10 35 10 1.20 1.27 x 107 157.82 94.0 8.04
5 ~60 10 4.0 10 0.83 7.53 X 106 157.57 92.5 7.54

@ Conditions: toluene 50 mL; Pc,u, = 10 psig. b A in units of g of PP/[(mol of Zr)-{CsHg)-h]. ¢ Weight percentage of PP insoluble in refluxing

n-heptane. 4 M,, by viscosity.

acyclopentadiene (3) was prepared by the reaction of 2
equiv of indenyllithium and 2 in refluxing THF for 48 h
in 63.0% yield. Anal. Caled for C4HasGe: C, 83.79; H,
5.20. Found: C, 83.50; H, 5.10.

The ligand 3 (5.16 g, 7.67 mmol) in 100 mL of THF was
reacted with n-BuLi (9.59 mL of 1.6 M solution in hexane)
for 4 h at room temperature to form, after washing and
drying, the dilithiated derivative of 3 in quantitative yield.
The product was added to a suspension of ZrCl, (1.79 g,
7.67 mmol) in CHCl; at —78 °C, and the reaction mixture
was then warmed to room temperature with stirring for
an additional 12 h. The product, obtained by filtering
through a Celite plug, removing solvent in vacuo, and
washing with hexane, was found by *H NMR to be a
mixture of rac and meso (rac/meso =~ 7/1) isomers of 1
with some polymeric material. Purification!?afforded 1.42
g (22.6% yield) of 1. Anal. Caled for CyHj3,ClyGeZr
(819.48): C, 67.42; H, 3.94. Found: C, 67.00; H, 4.52. 'H
NMR (C¢Dg) as measured on a Bruker/IBM 200 AC
spectrometer: & 7.70~-6.50 (m, 28H), 6.10 (d, J = 3.23 Hz,
2H), 5.79 (d, J = 3.23 Hz, 2H).

Propylene was polymerized by the zirconocenium in-
termediate of the title complex (1%), which was formed in
situ by the reaction of 1, triisobutylaluminum (TIBA),
and triphenylcarbenium tetrakis(pentafluorophenyl)bo-
rate.!® The polymerization procedures have been given
in detail elsewhere.l4 The polymerization behaviors of 1+
are much more insensitive to T} than those of rac-[((1,4-
butanediyl)silylene)bis(1-n®-indenyl)]alkylzirconoceni-
um ion (416 and rac-{(dimethylsilylene)bis(1-n*-indenyl)]-
alkylzirconocenium ion (5+),1% which are compared below.

The key performance parameters for the catalyst 1*,
activity and stereospecificity, are invariant of T}, between
-60 and 0 °C. The T'n and My, data for the isotactic poly-
(propylene)® it produced are shown in Table 1. The
average values with standard deviations for T from —60
to 0 °C are A = (1.25 = 0.23) X 107 g of PP/[(mol of Zr)--
[CsHgl-h], Twm = 157.5 £ 0.5 °C, IY = 93.7 + 0.8%, and
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M, = (8.1 £0.4) X 105. In comparison, both the activities
and the stereospecificities of 4* and 5* decrease with
increasing T, as do T'm and My, of the poly(propylene)
formed by them.1315 At T, = 25 °C, the performance of
1+ suffers some decline: IY = 81.1%, My, = 5.9 X 105, T,
= 150.7 °C, and A = 9.2 X 10% g of PP/[(mol of
Zr)-[CsHgl-h). However, these results are still superior to
those for other catalysts such as 4*, which at 25 °C has IY
= 52.2%, My = 8.4 X 104, and T, = 143.5 °C.

The ansa-zirconocene catalysts discussed above all have
unperturbed structures of very high stereospecificity, as
indicated by the highIY, Ty, and M,, of the isotactic poly-
(propylene) they produce at T}, = 55 °C. The reason
these attributes decline with the increase of T, is not fully
understood. One can envisualize a thermally activated
distortion of the catalytic structures to lower the stere-
oselectivity. This perturbation may also promote §-H
elimination to lower the polymer molecular weight. The
other contributory process is the exchange of the prop-
agating chains in the two opposite antipods of the catalytic
species.l” The excessively bulky germanium bridging
moiety probably enhances the stereorigidity of the zir-
conocenium structure against conformation change or
bimolecular exchange of its polymer ligands. The occur-
rence of 8-H elimination is also appreciably suppressed so
that a very high M,, of 800 000 was maintained over a
broad T, range of 60 to 0 °C. Unexpectedly, this steric
effect does not cause a significant reduction of polymer-
ization activity, since catalysts 1* and 4* have very similar
propylene polymerization activities, Whether the Geatom
exerts a more positive influence than the Si atom in olefin
w-complexation or migratory insertion, or both, merits
further investigation. Unfortunately, 1* is unstable above
50 °C and its performance as a catalyst under manufac-
turing conditions cannot be assessed.
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