Heteroatom Exchange Reactions in Imidoosmium(II) Systems: Cleavage of Os-N Multiple Bonds and Formation of Os-X Bonds (X = O, S, C)

Richard I. Michelman, Graham E. Ball, Robert G. Bergman,* and Richard A. Andersen^{*}

Department of Chemistry, University of California, Berkeley, California 94720-9989

Received August 12, 1993[®]

The monomeric imido complex CymOsN-t-Bu (2) (Cym = η^{6} -p-cymene) was used as a convenient precursor in exchange reactions with a variety of H-X bonds (X = O, S, C). Complex 2 reacts with alkoxides HOCMe(CF_3)₂, pinacol, catechol, and 1,2-(H_2N)(HO)C₆H₄ to give CymOs- $(NH-t-Bu)[OCMe(CF_3)_2]$ (4), $CymOs[OC(CH_3)_2C(CH_3)_2O]$ (5), $CymOs[1,2-O_2C_6H_4]$ (6), and $CymOs[1,2-O(HN)C_6H_4]$ (7), respectively. $CymOs(O-t-Bu)_2$ (3) was not formed by this method but was generated by treatment of $[CymOsCl_2]_2$ (1) with KO-t-Bu. Addition of H_2N -t-Bu to 3 gave 2, and reaction of 5 with catechol gave 6. Complex 6 adds PMe₃ to give CymOs[1,2- $O_2C_6H_4$ (PMe₃) (8). Catechol, 1,2-(H₂N)₂C₆H₄, or H₂N-p-tol hydrogen bond or coordinate to the metal in 6 or $CymOs[1,2-(NH)_2C_6H_4]$ (10). Reactivity patterns generally correlate with the pK_a of the substrate, but other factors are also involved. Several analogous thiolate complexes were also prepared. For example, imido complex 2 or bis(tert-butoxide) 3 reacted readily with t-Bu-SH to give CymOs(S-t-Bu)₂ (13). The analogous osmium complexes with $2,6-Me_2C_6H_3$ and 2,4,6-Me₃C₆H₂ groups attached to the sulfur atoms (14 and 15, respectively) were obtained by treatment of imido complex 2 with the appropriate thiols. However, reaction of 2 with p-tol-SH gave the dimeric thiolate complex $[CymOs(S-p-Me-C_6H_4)_2]_2$ (16). Complex 2 also reacts with carbon acids. The more acidic C-H bond of $H_2C(COMe)_2$ (acacH) caused the addition of 2 mol of diketone with tert-butylamine loss to give CymOs[CH(COMe)₂][(OC(Me))₂CH-(0,0] (18) whereas the weaker acid $(H_2C(CO_2Me)_2)$ added only once across the Os-N bond to give CymOs(NH-t-Bu)[CH(CO₂Me)₂] (17). Treatment of dichloro dimer [CymOsCl₂]₂ with K_2CO_3 and acacH quantitatively provided yellow CymOs(acac-O,O)Cl (19). Monoacetylacetonato complex 19 was treated with AgOAc (Ac = COMe) to give CymOs(acac)(OAc) (21). Dimethyl malonate complex 17 was independently treated with acacH and $H_2C(CO(Ph))_2$ to give $CymOs[CH(CO_2Me)_2][(OC(Me))_2CH]$ (22) and bright red $CymOs[CH(CO_2Me)_2][(OC(Ph))_2CH]$ (23). Carbon-proton NMR coupling data provided evidence for the presence of carbon-metal bound diketonate ligands in 17, 18, 22, and 23.

Introduction

Late transition metal complexes with M-X bonds (X = O, N, S)¹⁻⁵ are critical intermediates in many catalytic processes,^{1,6} such as hydrodesulfurization,⁷ hydrodeamination,^{8,9} and catalytic cracking.¹⁰ The preparation and direct study of these species enables a thorough investigation of their properties, including relative bond strengths.

The imido complex CymOsN-t-Bu (2) (Cym = η^6 -pcymene)¹¹ is a convenient precursor to such metal-

- (2) For a review of amides of the platinum group metals, see: Fryzuk,
 (A) D.; Montgomery, C. D. Coord. Chem. Rev. 1989, 95, 1.
 (3) Glueck, D. S.; Newman-Winslow, L. J.; Bergman, R. G. Organometallics 1991, 10, 1463.
 (4) Glueck, D. S.; Bergman, R. G. Organometallics 1991, 10, 1479.
 (5) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. Organometallics 1991, 10, 1479. 1991, 10, 1875
- (6) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles (a) Commun. J. P., Hegedus, L. S., Noroh, J. R., Finke, R. G. Frinciples and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
 (7) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387.
 (8) Guziec, F. S., Jr.; Wei, D. J. Org. Chem. 1992, 57, 3772.
 (9) Djukic, J. P.; Rose-Munch, F.; Rose, E. J. Chem. Soc., Chem.

heteroatom species, as well as metal-carbon bonded compounds.^{12,13} σ -Ligand metathesis reactions with 2 have enabled us to study complexes of this type, many of which are formally unsaturated. We report here the full details of this work.14

Results

Synthesis of Osmium Alkoxide Complexes. The alkoxide complexes described in this paper were synthesized using the CymOs fragment (Cym = η^6 -p-cymene) as outlined in Scheme 1. Treatment of $[CymOsCl_2]_2(1)$ with 3 equiv of KO-t-Bu in THF yielded the deep-red bis-(alkoxide) compound CymOs(O-t-Bu)₂ (3) in 47% yield. Although this complex was characterized spectroscopically, its instability in the solid state (decomposition results in the formation of *p*-cymene and intractable materials) prevented adequate microanalysis. This material was therefore used immediately after formation. Attempted

[•] Abstract published in Advance ACS Abstracts, January 15, 1994. (1) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163 and references therein.

Commun. 1991, 1634. (10) Murrell, L. L.; Grenoble, D. C.; Kim, C. J.; Dispenziere Jr., N. C. J. Catal. 1987, 107, 463.

⁽¹¹⁾ Michelman, R. I.; Bergman, R. G.; Andersen, R. A. Organometallics 1993, 12, 2741.

⁽¹²⁾ For a review of transition metal imido chemistry, see: Nugent, W. .; Mayer, J. M. Metal Ligand Multiple Bonds; John Wiley and Sons: New York, 1988.

⁽¹³⁾ For a review of the organometallic chemistry of (arene)Os complexes, see: LeBozec, H.; Touchard, D.; Dixneuf, P. Adv. Organomet. Chem. 1989, 29, 163.

⁽¹⁴⁾ Part of this work has appeared as a communication: Michelman, R. I.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 5100.

purification by sublimation or chromatography on silica gel or alumina III was unsuccessful. Compound 3 did not react with the donor ligands (N,N-dimethylamino)pyridine or PMe₃, and it decomposed upon addition of XylNC (Xyl = $2,6-Me_2C_6H_3$). Reactions of 1 with LiO-t-Bu or NaO-SiMe₃ resulted in formation of intractable materials.

Treatment of a C_6D_6 solution of bis(alkoxide) 3 with 1 equiv of H₂N-t-Bu resulted in rapid generation of CymOsN-t-Bu (2). Imido complex 2 can be prepared directly from 1 and LiNH-t-Bu.^{11,14} Free HO-t-Bu was observed in the reaction solution by ¹H NMR spectroscopy, and no osmium-containing starting material remained.

No 3 was observed in the ¹H NMR spectra from +21 to -89 °C when 3.4 equiv of HO-t-Bu and 2 were mixed in toluene- d_8 . Treatment of 2 with the more acidic alcohol $HOCMe(CF_3)_2$, however, gave the red-orange oil CymOs- $(NH-t-Bu)[OCMe(CF_3)_2]$ (4) in 87% yield. This product exhibits NH resonances at δ 11.07 and *tert*-butyl proton signals at δ 1.13 in the ¹H NMR spectrum. The ¹³C{¹H} NMR resonances at δ 6.10 and 32.1 are consistent with the tert-butyl group, and resonances at δ 125.9 (quart) and 80.3 (sept) showed coupling to the 19 F of the OCMe(CF₃)₂ group ($J_{\rm HF}$ = 291.7 Hz and 27.0 Hz, respectively). The ¹⁹F¹H NMR spectrum of 4 shows only one resonance, at δ -77.8. No line shape changes were observed in the ¹H and ¹⁹F{¹H} NMR spectra from +44 to -73 °C. The N-H stretch was not observed in the infrared spectrum of 4. The reaction of LiOCMe(CF₃)₂ with CymOs(NH₂-t-Bu)- Cl_2 (generated as a metastable species by addition of tertbutylamine to [CymOsCl₂]₂) gave a mixture of products, none of which were 4.

Chelating Alkoxide Complexes. Pinacol (HOC-(CH₃)₂C(CH₃)₂OH) reacted with imide 2 to give red $CymOs[OC(CH_3)_2C(CH_3)_2O]$ (5) in >98% yield by ¹H NMR spectroscopy. The compound was isolated as needles from Et₂O in 34% yield. The pinacolate complex 5 is much more robust than bis(alkoxide) 3, and it is isolable at room temperature. Complex 5 was inert to photolysis and thermolysis, showing no C-C bond cleavage products,

as was observed for analogous complexes of Ru, Rh, and Pt.15-17

Imide 2 reacted with 1 equiv of catechol $(1,2-(HO)_2C_6H_4)$ at room temperature to yield red CymOs $[1,2-O_2C_6H_4]$ (6) in 69% yield. Complex 6 was also formed in 59% yield from 5 and 1.25 equiv of catechol. On treatment with $1,2-(H_2N)(HO)C_6H_4, 2 \text{ gave CymOs}[1,2-O(HN)C_6H_4]$ (7) in 99% yield, which exhibits an NH resonance at δ 8.68 in the ¹H NMR spectrum and an N-H stretch at 3342 cm⁻¹ in the IR spectrum. Catecholate 6 formed an adduct with PMe₃, CvmOs[1,2-O₂C₆H₄](PMe₃) (8), in 99% yield. This complex shows a single ³¹P{¹H} NMR resonance at δ-23.3.

The addition of 1.2-diaminobenzene to 6 resulted in the formation of an adduct 9 (Scheme 2). No free 6 was

observed in the product solution, and the resonances for the p-cymene and catecholate ligands appeared in the ¹H NMR spectrum at different chemical shifts than those observed for 6. In addition, the resonances for the diamine are broadened. This indicates that the diamine is coordinated to 6, and two possible coordination modes are shown in Scheme 2 (Os-N coordination and hydrogen bonding). The room temperature spectrum is an averaged one. When the solution was heated at 45 °C for 19 h, $CymOs[1,2-(NH)_2C_6H_4]$ (10)¹¹ was obtained in 98% yield, as determined by ¹H NMR spectroscopy.

The reverse reaction was investigated by treating 10 with 2.8 equiv of catechol at room temperature (Scheme 2). This returned mostly 10, and the new complex 11 as observed by separate resonances in the ¹H NMR spectrum (3:2). The structure of 11 is likely to be a hydrogen-bonded

⁽¹⁵⁾ Wong, K.-Y.; Che, C.-M.; Li, C.-K.; Chu, W.-H.; Zhou, Z.-Y.; Mak,
T. C. W. J. Chem. Soc., Chem. Commun. 1992, 754.
(16) Andrews, M. A.; Gould, G. L. Organometallics 1991, 10, 387.
(17) McCallum, J. S.; Glueck, D. S.; Tagge, C. D.; Bergman, R. G.

Unpublished results.

complex. Similar species exist with Cp*Rh catecholates.¹⁸ At higher temperatures (+77 °C) the ¹H NMR spectrum shows only 10, whereas the bound-catechol complex 11 is formed exclusively at -42 °C. Interestingly, no 11 was observed in the conversion of 9 to 10. This is presumably due to both the lower concentration of catechol in the 9 to 10 reaction (1 equiv of catechol to 1 equiv of 10) vs the direct reaction of 10 and catechol above (2.8 equiv of catechol to 1 equiv of 10), and the presence of excess 1,2-diaminobenzene in the 9 to 10 conversion.

Catecholate 6 also forms a complex with H₂N-*p*-tol (Scheme 2). The 1:1 complex 12 shows variable temperature behavior in the ¹H NMR spectrum. The two aromatic *p*-cymene resonances change in chemical shift by 0.60 and 0.71 ppm as the temperature is varied from -55 to +90 °C. The NH₂ resonance moves from δ 4.20 at -5 °C to δ 2.81 at +90 °C but is not observed at temperatures lower than -5 °C. The two sides of the catecholate ligand do not show asymmetry at lower temperatures, though the possibility of rapid exchange precludes a definitive structural assignment.

Reactions of 2 with other alcohols were less successful. Treatment of 2 with isopropanol resulted in the formation of several unstable products, as observed by ¹H NMR spectroscopy. Reactions with HO-*p*-tol or HO(2,6-Me₂C₆H₃) generated single complexes that were stable in solution but decomposed to intractable materials when the solvent (C₆D₆) was lyophilized. The reaction of 2 with water proceeded slowly (and only with partial conversion) to intractable materials.

Thiolate Complexes. Exchange reactions of imido complex 2 with thiols were rapid (<45 min) (Scheme 3).

Treatment of 2 with HSR (R = t-Bu, 2,6-Me₂C₆H₃ (Xyl), 2,4,6-Me₃C₆H₂ (Mes)) gave the violet (bis)thiolate complexes CymOs(S-t-Bu)₂ (13), CymOs(SXyl)₂ (14), and CymOs(SMes)₂ (15) in 83–94% yield. Complex 13 was also synthesized from 3 and HS-t-Bu. Free H₂N-t-Bu and HO-t-Bu were observed in the ¹H NMR spectra of the reaction solutions from 2 and 3 with HS-t-Bu, respectively. Variable temperature ¹H NMR spectra of 13 from +25 to -88 °C showed only one type of *tert*-butyl resonance, indicating that either only a monomer is present in solution or bridge-terminal exchange in a dimer or higher oligomer is rapid.¹⁹ Two different thiolate signals (bridging and terminal) were observed in the room temperature ¹H NMR Organometallics, Vol. 13, No. 3, 1994

871

Figure 1. ¹H NMR spectra of 14 in toluene- d_8 from +33 to -60 °C (0-6 ppm region only). Et₂O is marked with *, and the methyl resonance of the solvent is marked with †.

spectrum of the dimer $[CymOs(S-p-tol)_2]_2$ (16), prepared from 2 and HS-p-tol (Scheme 3), and it is therefore reasonable to postulate that 13 is a monomer. Unfortunately, 16 decomposed slowly in the solid state to intractable materials, so further characterization was not possible.

Arenethiolate complexes 14 and 15 showed similar variable temperature ¹H NMR behavior (Figure 1). The 33 °C spectrum of 14 in toluene- d_8 (Figure 1a) showed resonances for a single compound, consistent with CymOs-(SXyl)₂. Cooling 14 to -21 °C (Figure 1c) resulted in decoalescence of both the Cym and the SXyl resonances. Resonances for two complexes (2:1) were apparent in the spectrum at -40 °C (Figure 1e). Further cooling to -60 °C (Figure 1f) showed no change in the ratio of the two species (as monitored by the *p*-cymene resonances), but the xylyl resonances for the dominant species split into two different resonances (1:1). The -65 °C spectrum of 15 showed similar features. Concentration and solvent dependence studies of 15 showed no significant change in the ratio of the two species at -65 °C (Table 1).

Crossover experiments were run with 14 and 15. The two complexes were mixed in C_6D_6 , and ${}^{13}C{}^{1}H{}$ and DEPT NMR spectra¹⁹ showed a 1:2:1 ratio of 14, a new material that presumably is CymOs(SXyl)(SMes), on the basis of chemical shifts (Figure 2), and 15 (eq 1). A similar

$$\bigoplus_{R=1}^{R=1} O \ll_{SR}^{SR} + \bigoplus_{R=1}^{H} O \ll_{SXyi}^{SXyi} \implies 2 \bigoplus_{R=1}^{H} O \ll_{SR}^{SXyi} \quad (1)$$

$$\begin{array}{c}
R = 1 - Bu (13) \\
R = 2.4,6 - Me_3 C_8 H_2 (15)
\end{array}$$

⁽¹⁸⁾ Espinet, P.; Bailey, P. M.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 1542.

⁽¹⁹⁾ Derome, A. E. Modern NMR Techniques for Chemistry Research; Pergamon Press: Oxford, U.K., 1987; pp 143–151.

Table 1. ¹H NMR Sample Data for Experiments with 15 at -65 °C

[15] (mM)	solvent	ratio of compounds ^a
6.1	toluene-d ₈	2.0:1
21	toluene- d_8	1.9:1
6.1	CD ₂ Cl ₂	2.1:1

^a Based on integration of aromatic p-cymene resonances.

Figure 2. DEPT135 spectrum of the reaction mixture of 14 and 15 in C_6D_6 with expansions.

experiment with 13 and 14 showed resonances for the expected mixed product CymOs(S-t-Bu)(SXyl) (or possibly the dimer) in the ¹H NMR spectrum.

Reactions of 2 with Carbon Acids. Treatment of 2 with 1 equiv of dimethyl malonate $(H_2C(CO_2Me)_2)$ gave the dark-red compound CymOs(NH-t-Bu)[CH(CO_2Me)_2] (17) in 85% yield (Scheme 4). When 2 equiv of $H_2C(CO_2-$

 Me_{2} was added to 2, no further reaction was observed. The use of 1 equiv of $D_2C(CO_2Me)_2$ yielded CymOs(NDt-Bu)[CD(CO₂Me)₂] (17- d_2), which allowed the resonances for NH to be assigned at δ 13.20 and CH at δ 4.83 in the ¹H NMR spectrum. The infrared spectrum for 17 displays an N-H stretch at 3261 cm⁻¹; the N-D stretch was observed at 2425 cm⁻¹ in the spectrum of $17-d_2$. The coupled ¹³C NMR spectrum of 17 shows a doublet at δ 36.7 with J_{CH} = 138 Hz for the methine carbon. This is consistent with sp^3 hybridization at the carbon center. Table 2 shows chemical shifts and coupling constants of compounds derived from carbon acids that were prepared in this work. The ¹³C chemical shifts of the Os-CH(CO₂Me)₂ fall in the range 31–58 ppm with $J \approx 140$ Hz, whereas those that are oxygen bound fall at higher δs with $J \approx 160$ Hz. An inverse H-C correlated NMR (HMQC) spectrum²⁰ of the cross

(20) Subramanian, S.; Bax, A. J. Magn. Reson. 1985, 85, 565.

Table 2. ¹H and ¹³C NMR Chemical Shifts (δ), C-H Coupling Constants (J_{CH}), and Hybridization for Carbon Acid Complexes 17-23

	bonding C-H δ (ppm) ^b	(ppm) ^b	lou		
compd	mode ^a	¹ H	13C	(Hz)	hybridization
17	1	4.83	36.7	138	sp ³
18	2	5.12	101.3	159	sp ²
	1	4.61	57.7	134	sp ³
19	2	5.14	100.7	160	sp ²
20	2	6.65	95.8	158	sp^2
21	2	5.08	99.7	159	sp ²
22	2	5.10	100.9	159	sp ²
	1	4.17	31.1	138	sp ³
23	2	6.63	113.3	158	sp ²
	1	4.47	31.7	138	sp ³
Cp*Ir(acac)Cl ^{21,c}	2	5.19			•
Cp*Ir(acac) ₂ ^{21,c}	2	5.20			
	1	4.74			
CymRu(acac)Cl ^{22,c}	2	5.11			

^a 1 = unidentate, C-bound; 2 = bidentate, O,O-bound. ^b All spectra recorded at 25 °C in C₆D₆ (except as in c). ^c Spectra recorded in CDCl₃.

Figure 3. Inverse H–C correlated NMR spectrum of 17 showing only the osmium bound C–H resonance: vertical dimension 13 C, annotated with the normal 13 C{¹H} NMR spectrum; horizontal dimension ¹H.

peak due to the carbon resonance that appears at 36.7 ppm and the proton resonance at 4.83 ppm displays satellites for ¹⁸⁷Os⁻¹³C and ¹⁸⁷Os⁻¹H coupling (Figure 3), verifying the Os–C connectivity (${}^{1}J_{OsC} = 56.6$ Hz; $J_{OsH} = 10.6$ Hz).

Treatment of 17 with 2.6 equiv of H_2NXyl gave new resonances in the ¹H NMR spectrum after 30 min which were consistent with CymOs(NHXyl)[CH(CO₂Me)₂] (24) in 33% yield (Scheme 5). Addition of more amine produced CymOsNXyl (25)^{11,14} (83% yield), along with H₂Nt-Bu and H₂C(CO₂Me)₂, as verified by ¹H NMR spectroscopy. The reverse reaction with 25 and 6 equiv of H₂C-(CO₂Me)₂ did not give 24. No isolable products were formed from the reaction of 17 and PPh₃, PMe₃, XylNC, or I₂.

Addition of 2 equiv of H₂C(COMe)₂ (acacH) to 2 resulted in the formation of yellow CymOs[CH(COMe)₂-C][(OC- $(Me)_2CH-O,O]$ (CymOs(acac)₂, 18) in 74% yield (Scheme 4). The coupled ¹³C NMR spectrum of 18 showed resonances with $J_{CH} = 159 \text{ Hz} (\delta 101.3) \text{ and } 134 \text{ Hz} (\delta 57.7)$ for the methine carbon on the O,O-bound acac ligand and C-bound acac ligand, respectively (Table 2). The carbonyl absorption for the C-bound acac appears at 1678 cm⁻¹ in the infrared spectrum. No resonances for CymOs(NHt-Bu)[C-CH(COMe)₂] or CymOs(NH-t-Bu)[(OC(Me))₂CH-O,O] were observed by ¹H NMR spectroscopy when 2 was treated with 1 equiv of acacH, but 0.5 equiv of 18 was formed instead.

Treatment of dichloro dimer 1 with K₂CO₃ and acacH quantitatively provided yellow CymOs(acac-O,O)Cl (19) (Scheme 6). Addition of 2 equiv of acacH and K_2CO_3 to

1 only gave 19; no 18 was observed. The coupled ¹³C NMR spectrum of 19 showed $J_{CH} = 160$ Hz at $\delta 100.7$ for the acac methine carbon, indicating that the $(OC(Me))_2CH$ ligand is O,O-bound, and the methine carbon is sp^2 hybridized. The similar diphenyl diketonato complex CymOs- $[(OC(Ph))_2CH-O,O]Cl (20)$ (Scheme 6), prepared in 57% yield from 1, K_2CO_3 , and $H_2C(CO(Ph))_2$, shows $J_{CH} = 158$ Hz. Neither 19 nor 20 shows a carbonyl stretch in the IR at frequencies higher than 1600 cm⁻¹. The synthesis of CymOs[CH(CO₂Me)₂]Cl (0,0- or C-bound) was not successful with $H_2C(CO_2Me)_2$, K_2CO_3 , and 1.

Monoacetylacetonato complex 19 was treated with AgOAc (Ac = COMe) to give CymOs(acac)(OAc) (21) in 94% yield (Scheme 6). This compound showed a typical carbonyl absorption for OAc and $J_{CH}(acac) = 159 \text{ Hz}$ obtained from the ¹³C satellites in the ¹H NMR spectrum. Complex 19 did not react with Li(acac), KCH(COPh)₂, or KO-t-Bu, while 21 decomposed to intractable products in the presence of KCH(COPh)₂. Complex 19 did, however, react with 6 equiv of LiNH-t-Bu to give imide 2.

Dimethyl malonate complex 17 was independently treated with acacH and $H_2C(CO(Ph))_2$ to give yellow $CymOs[CH(CO_2Me)_2][(OC(Me))_2CH]$ (22) and bright red $CymOs[CH(CO_2Me)_2][(OC(Ph))_2CH]$ (23) in 90% and 58% yields, respectively (Scheme 7). The malonatediketone complexes exhibit the chemical shift and coupling constant data shown in Table 2. As discussed above for the other complexes listed in Table 2, these data rule out alternative structures such as CymOs[(OC(OMe))₂CH-O,O][CH(COR)₂-C] (R = Me, Ph).

Interestingly, only intractable materials were recovered from the reaction of 2 with $H_2C(CO(Ph))_2$. The reaction appeared to first give a complex with NH-t-Bu and CH-(COPh)₂ groups, as seen in the ¹H NMR spectrum, before

Table 3. pK, Data for Several Heteroatom	Compounds
--	-----------

heteroatom reagent	pK _a (DMSO) ²⁸
PhSH (ArSH)	10.3
n-BuSH (t-BuSH)	17.0
PhOH	18.0
PhNH ₂ (XvlNH ₂)	30.6
t-BuOH	32.2

decomposing in solution (free p-cymene was observed). No reaction occurred between 2 and PhCOMe, as observed by ¹H NMR spectroscopy.

Discussion

Imide/Alcohol and Imide/Thiol Exchange Reactions with Imide 2. In contrast to the inert M-N linkages in most transition metal imido complexes,^{12,21} the d⁶ osmium(II) species CymOsN-t-Bu (2) reacts readily with a variety of H-X bonds (X = O, S, C). In most cases, this involves cleavage of the osmium-nitrogen triple bond. {}^{11,22,23} These σ -ligand metathesis reactions^{1,24-27} are general and usually occur rapidly at room temperature to give CymOs- $(XR)_2$. The stability of these species is dependent on the nature of the substituent (X) bonded to the metal as well as R.

Reactions proceeded forward from 2 when it was treated with proton-heteroatom bonded reagents HXR such as alcohol $HOCMe(CF_3)_2$ to give 4, diols pinacol and catechol to give 5 and 6, and amino alcohol $1,2-(HO)(H_2N)C_6H_4$ to give 7 (Scheme 1). Thiols HS-t-Bu, HSXyl, HSMes, and HS-p-tol reacted to give 13, 14, 15, and 16 (Scheme 3), and previous work with 2 has demonstrated that the reaction is successful with amines H_2NXyl and 1,2-diaminobenzene, giving 25 and 10, respectively.^{11,14}

The reactions with protic acids appear to depend, at least partially, on pK_a (Table 3). The thiols employed, with pK_a values of 17 or less in DMSO,²⁸ react with imide 2 to give CymOs(SR)₂, while HO-t-Bu ($pK_a = 32.2$) does not react (the pK_a of PhNH₂ is 30.6, and that of H₂N-t-Bu will be higher). The alcohol HOCMe $(CF_3)_2$ is more acidic

 ⁽²¹⁾ Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123.
 (22) Glueck, D. S.; Wu, J.; Hollander, F. W.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 2041.

⁽²³⁾ Glueck, D. S.; Green, J. C.; Michelman, R. I.; Wright, I. N. Organometallics 1992, 11, 2441. (24) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J.

E. J. Am. Chem. Soc. 1987, 109, 1444.

⁽²⁵⁾ Bryndza, H. E.; Calabrese, J. C.; Marsi, M.; Roe, D. C.; Tam, W.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 4805 and references therein. (26) Bryndza, H. E.; Fultz, W. C.; Tam, W. Organometallics 1985, 4, 939

⁽²⁷⁾ Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, 119 and references therein.

⁽²⁸⁾ Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

than HO-t-Bu due to the electron-withdrawing fluorines, and gives the mono-exchange product 4 when added to 2. The complex CymOs[OCMe(CF₃)₂]₂ was not observed, despite the presence of additional alcohol in reaction solutions of 4. The reaction may not proceed from the mixed compound 4 because of the stabilizing effects offered by NH-t-Bu over OCMe(CF₃)₂, perhaps due to NH-t-Bu being a better π -donor than OCMe(CF₃)₂. The 16-electron osmium center has empty orbitals for use in π -bonding with the nitrogen p-orbital, thus strengthening the Os—N bond. In the hypothetical bis(alkoxide) complex, the two OCMe(CF₃)₂ ligands would be required to compete for the Os orbital and presumably destabilize the complex. The preceding argument has been invoked in Mo=O bonding.²⁹

An approximate acidity comparison between the diols pinacol (pK_a of t-BuOH = 32) and catechol (pK_a of PhOH = 18) accounts for the fact that treatment of pinacolate 5 with catechol yields catecholate 6 and pinacol (Scheme 1). Another example involves the treatment of bis-(alkoxide) 3 with HS-t-Bu ($pK_a \approx 17$) to give (bis)thiolate 13 and HO-t-Bu ($pK_a = 32.2$). However, there are inconsistencies with the acidity guideline for predicting the direction of these exchange reactions. In a 1:1 exchange, the less acidic 1,2-(H₂N)₂C₆H₄ (based on PhNH₂ ($pK_a = 30.6$) and PhOH ($pK_a = 18.0$)) displaces catechol from 6, but the back-reaction was not observed. Similarly, *tert*-butylamine successfully replaced 2 equiv of *tert*butanyl alcohol from 3, generating 2.

The direction of reactions we have observed for the σ -ligand metathesis reactions must depend on both pK_a 's and metal-ligand ionic dissociation energies, as shown in eqs 2-6. For example, the equilibria giving rise to the pK_a

$$RNH_2 \rightleftharpoons RNH^- + H^+ \tag{2}$$

$$H^{+} + OR^{-} \rightleftharpoons H - OR'$$
(3)

$$\mathbf{M} - \mathbf{OR}' \rightleftharpoons \mathbf{M}^+ + \mathbf{OR}^- \tag{4}$$

 $M^{+} + NHR^{-} \rightleftharpoons M - NHR \tag{5}$

$$RNH_2 + M - OR' \rightleftharpoons H - OR' + M - NHR$$
 (6)

values for an alkoxide and an amine are shown in eqs 2 and 3. Only if the ionic dissociation energies of M-OR' (eq 4) and M-NHR (eq 5) were equal would the simple pK_a values control the direction of exchange. The fact that some of the exchange equilibria do not correlate with the relative pK_a 's of the organic reaction partners requires that the energies of eqs 4 and 5 can work in opposition to eqs 2 and 3. Thus in the conversion of 6 to 10, the Os-N ionic dissociation energy must be greater than that for Os-O, such that the difference in pK_a between the diol and the diamine is overcome.

We do not know the mechanism of these reactions, but the imide/alcohol and imide/thiol exchange reactions may be initiated by either hydrogen bonding to the imido nitrogen or by metal complexation of the entering reagent. Hydrogen bonding or coordination could facilitate subsequent transfer of a proton to the leaving ligand. The latter option is similar to the mechanism proposed for imide/amine exchange, in which a deuterium isotope effect of 5.7 was observed.¹¹ The difficulty in differentiating between hydrogen bonding and precoordination to the metal in complexes 9, 11, and 12 makes the prediction of reactivity more intricate because the barrier to proton transfer may be substantially modified by complexation of the incoming reagent to the osmium center.

It is important to consider these possibilities when looking at related systems.^{3,30} Several rhodium catecholates,¹⁸ prepared earlier with catechol and aqueous base, are isolated with associated water molecules. The structure of one of these compounds shows hydrogen bonding of catechol in the solid state to the oxygens of the catecholatorhodium fragment. Maitlis suggested that the additional species (H₂O or catechol, as determined by analytic and spectroscopic methods) attached to the catecholate ligand are necessary to stabilize the crystal lattice.¹⁸ These compounds retain bound H₂O when phosphine adducts are formed, but the phosphines are labile. In contrast, we have found that the osmium catecholate 6 can be generated from 2 without excess catechol or water, as can CymOs- $[1,2-O(NH)C_6H_4]$ (7) and CymOs $[1,2-(NH)_2C_6H_4]$ (10).¹¹ Reaction of 6 with phosphine gave 8, which is a donor complex. A fluxional process similar to that observed in the Cp*Rh complexes would explain the difficulty in observing the quaternary p-cymene carbons in the ¹³C- ${^{1}H} NMR$ spectrum of 8.

Similar to the Cp*Rh complexes¹⁸ and other late metal phenoxide complexes,^{31,32} catechol is likely to be hydrogen bonded in CymOs[1,2-(NH)₂C₆H₄]·(HO)₂C₆H₄ (11). Coordination of N to Os in the amine complexes 9 and 12 is reasonable, on the basis of the formation of 8 with phosphine. However, we cannot definitively assign the bonding mode for the amine compounds. Maitlis does suggest, however, that the Rh-N bond is stronger than the Rh-O bond. Our results with Os-N vs Os-O agree with this hypothesis, as observed in the ligand exchange of 6 to 10 with 1,2-diaminobenzene. The O-H bond in phenol and the N-H bond in aniline are about equal in energy, 87 and 88 kcal/mol, respectively.³³ Assuming the effects of disubstitution on the aromatic rings (HXC_6H_5) vs $(HX)_2C_6H_4$) are similar for X = O and NH, the Os-N bond must be stronger.

Entropy also plays a critical role in the reactions of 2 with alcohols *tert*-butyl alcohol and pinacol. No reaction was observed when imido complex 2 was treated with HOt-Bu, suggesting $\Delta G > 0$ for the imide to bis(alkoxide) reaction. Further investigation of this reaction by low temperature (-89 °C) ¹H NMR spectroscopy did not show resonances for 3, as might be expected if ΔS was preventing this reaction from proceeding at room temperature. However, the pinacolate 5 and *tert*-butylamine were readily formed from 2 and pinacol (Scheme 1). This difference between the reactivity of HO-t-Bu and pinacol with 2 is best explained by the chelate effect.⁶

Structures of the 16-Electron Complexes CymOs- $(XR)_2$ (X = O, S). The bis(alkoxide) complexes 3, 5, and 6, as well as the mixed amide/alkoxide complexes 4 and 7, would be 16-electron, d⁶ metal compounds as monomers,

⁽²⁹⁾ Goddard, W. A., III Science 1985, 227, 917 and references therein.

 ⁽³⁰⁾ Simpson, R. D.; Bergman, R. G. Organometallics 1993, 12, 781.
 (31) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371.

⁽³²⁾ Osakada, K.; Ohshiro, K.; Yamamoto, A. Organometallics 1991, 10, 404.

⁽³³⁾ McMillen, D. F.; Golden, D. M. Ann. Rev. Phys. Chem. 1982, 33, 493.

which are uncommon for the (arene)Os fragment.¹³ Although we have not been successful in obtaining crystal structures of these materials, mononuclear structures are proposed on the basis of comparison with other similar structurally characterized complexes.^{1,2,17,34,35} Furthermore, thiolates are more prone to bridge than alkoxides due to their larger size (van der Waals radii).³⁶ By analogy with monomeric bis(*tert*-butanethiolate) **13** (see below), bis(*tert*-butoxide) **3** is likely to be mononuclear, although its instability precluded further studies.

There is a relatively small, but growing, number of late transition metal alkoxide complexes.¹ With respect to unsaturated compounds, a case has recently been made that π -donation of electron density from alkoxide ligands to ruthenium³⁷ and iridium³⁸ stabilizes the metal centers. A similar effect may be important in the osmium compounds described here, but there are no spectroscopic data to confirm this. It is significant, however, that the 16electron alkoxide complex 3 does not react with donor ligands such as PMe₃, particularly since the stable complex Cp*Ir(PMe₃)(S-t-Bu)₂ is known.³⁹ The better π -donating ability of oxygen vs sulfur is consistent with this observation.

The C–C bond cleavage observed with some late-metal pinacolate complexes^{15–17,35} did not occur with 5 upon photolysis or thermolysis. Apparently, these processes are not favored for the third-row d⁶ metal Cp*Ir and CymOs centers.

The monomeric nature of bis(tert-butanethiolate) 13 is strongly supported by the accessibility of dimer 16, which has a clearly distinguishable NMR spectrum. The room temperature ¹H NMR spectrum of 16 exhibits two types of S-p-tolyl groups, which are most directly assigned to those in the terminal and bridging positions. The compound was not obtained pure so this inequivalence must be considered tentative at present. However, it provides evidence that if 13 were dimeric, it would have to have either a substantially different structure or rapidly exchanging thiolate groups.

The nuclearity of arenethiolates 14 and 15 is less clear. The gas phase mass spectral data for 15 show only the presence of a monomeric parent ion, but the solution aggregation may be different. The crossover experiment with 14 and 15 suggests the arenethiolate groups exchange on a chemical time scale since three distinct species (eq 1) are observed by DEPT135 NMR spectroscopy (Figure 2). Compounds 14 and 15 were identified by their chemical shifts in the DEPT NMR spectrum, and resonances lying near (or between) those for 14 and 15 are assigned to CymOs(SXyl)(SMes).

The variable temperature ¹H NMR spectra of 14 and 15 (Figure 1) each showed two compounds at lower temperatures. This suggests that several equilibrium or exchange processes were slowed as the temperature was decreased. An explanation consistent with the data is the

Table 4. pKa Data for Several Carbon Acid Compounds

carbon acid	pK ₈ (DMSO) ²⁸
$H_2C(COMe)_2$	13.3
$H_2C(COPh)_2$	13.4
$H_2C(CO_2Me)_2$	16.4
PhCOMe	24.7

formation of dimers at low temperature in solution. These dimers can undergo bridge-terminal exchange and cistrans isomerization (Scheme 8). At room temperature, [CymOs(SAr)₂]₂ dissociation to monomers would account for crossover reactions resulting in the formation of CymOs(SXyl)(SMes) or CymOs(SXyl)(S-t-Bu) (eq 1). This is slowed at -21 °C and two complexes (trans and cis) are observed in a 2:1 ratio. Further cooling slows the rate of bridge-terminal exchange, in which an Os-S bond of a bridging arenethiolate (SAr_B) is first broken. The major isomer undergoes slower bridge-terminal exchange than the minor analog, on the basis of the -60 °C ¹H NMR spectrum of 14 (Figure 1f) and the -65 °C spectrum of 15 $(\Delta G^*_{A}(\text{exchange}) > G^*_{B}(\text{exchange}))$. The ¹H NMR integrations of the spectra of both 14 and 15 at these temperatures suggest that the species that undergoes slower bridge-terminal exchange is the more populous. Complete dissociation to monomers is an alternate route for cis-trans isomerization, but it does not help to reconcile the different rates of bridge-terminal exchange.

The results of the variable temperature experiments suggest that the nuclearity of the thiolate complexes is governed by the size of the substituent. The smaller S-ptol compound (16) appears to be a dimer and the large S-t-Bu ligand of 13 enforces a monomeric structure, but can form a mixed bridging complex with 14, as postulated in the crossover experiment. We are currently not able to confidently assign structures for the SXyl (14) and SMes (15) complexes but both monomeric and dimeric forms are presumably accessible.

Synthesis of Carbon Acid Complexes. Imide 2 also reacts with carbon acids, and the pK_a values for several of these acids are shown in Table 4. These values coincide with the reactivity trends toward imide 2, such that the

⁽³⁴⁾ For an example of an Os(VI) catecholate complex, see: Nielson, A. J.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1978, 1501.

⁽³⁵⁾ For a review of transition metal-mediated carbonyl coupling reactions including pinacolate complexes, see: Kahn, B. E.; Rieke, R. D. Chem. Rev. 1988, 88, 733.

⁽³⁶⁾ Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960.

⁽³⁷⁾ Poulton, J. T.; Folting, K.; Streib, W. E.; Caulton, K. G. Inorg. Chem. 1992, 31, 3190.
(38) Lunder, D. M.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G.

⁽³⁵⁾ Lunder, D. M.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G. J. Am. Chem. Soc. 1991, 113, 1837.

⁽³⁹⁾ Klein, D. P.; Kloster, G. M.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 2022.

Figure 4. Alternative structure for 17.

more acidic C-H bond of $H_2C(COMe)_2$ added two diketones with *tert*-butylamine loss to give 18, the weaker acid $(H_2C(CO_2Me)_2)$ adds across the Os-N bond to give 17, and the less acidic C-H bond of PhCOMe does not react with 2. This trend also applies to the reactivity of 17 with $H_2C(COR)_2$ (R = Me, Ph), which yields 22 and 23, and $H_2C(CO_2Me)_2$, which shows no reactivity.

The ability of a proton donor to precoordinate to the metal center (or chelate) must play a role in these σ -ligand metathesis reactions. This is particularly apparent when comparing PhCOMe to the heteroatom reagents (Table 3). Although PhCOMe, with a pK_a of 24.7 (in DMSO), did not react with imido complex 2, XylNH₂, with a pK_a of 32.2, reacted to form xylylimide CymOsNXyl (25).^{11,14} The mechanism proposed for the imide/amine exchange involves precoordination of the reacting amine.¹¹ Any mechanism involving hydrogen bonding alters the simple pK_a argument.

Solution Structure of Diketonate Complexes. Some structural questions arise in viewing these carbon acid compounds, and NMR spectroscopy was important in determining the structure of amide-malonate complex 17. The NH and CH resonances in the ¹H NMR spectrum were assigned by comparison with the spectrum of the deuterated compound $17 \cdot d_2$. This confirmed the existence of the late metal-alkylamide bond, of which there are few examples.^{1,2} The commonly observed β -elimination pathway^{25,26,40} is not available here, helping to stabilize the NH-*t*-Bu fragment.

The most striking feature of complex 17, however, is that the diester ligand appears (on the basis of the $J_{\rm CH}$ value of 138 Hz) to adopt a conformation that leaves the osmium center formally unsaturated, rather than adopting the 18-electron O,O-bound malonate bonding mode shown in Figure 4, or some O,C-hybrid bonding.⁴¹ The nuclear spin of ¹⁸⁷Os (I = 1/2) offered the opportunity to verify the proposed connectivity by observing the ${}^{1}J({}^{187}\text{Os}{}^{-13}\text{C})$ and $^{2}J(^{187}Os-^{1}H)$ couplings. The $^{13}C{^{1}H}$ NMR spectrum of 17 (Figure 3) showed several satellites, due to both ¹⁸⁷-Os-13C coupling and the 13C-13C couplings. The nearly equal natural abundance of the two nuclei (^{13}C (1.1%) and ¹⁸⁷Os (1.64%)) made unequivocal assignment of coupling constants difficult in the 1D experiment. A 2D inverse ¹H-¹³C correlation (HMQC)²⁰ performed with ¹³C decoupling during acquisition (Figure 3) established ${}^{1}J_{OsC}$ = 56.6 Hz and ${}^{2}J_{OsH}$ = 10.8 Hz by observation of the satellites due to the ¹⁸⁷Os—¹³C—¹H isotopomer (0.018% abundant). The second set of satellites is due to the $^{1}H-^{13}C-^{13}C=0$ isotopomer (0.024% abundant). This is further confirmed by performing the experiment without ¹³C decoupling, in which case an extra splitting due to ${}^{3}J_{^{1}H}-{}^{^{13}C}=0$ (=4 Hz) is introduced in the satellites of the ${}^{1}H-{}^{^{13}C}-{}^{^{13}C}=0$ isotopomer. Although there is some information in the literature on $J(^{187}\text{Os}-X)$ (X = H, P), 42,43 coupling constant data for ¹⁸⁷Os-¹³C are rare, appearing only for carbonyl clusters,44,45 on samples that were enriched with either ¹⁸⁷Os or ¹³C. ${}^{2}J_{OsH}$ values have been reported for some osmium methyl complexes⁴⁶ where the values were considerably smaller than in this case (5.4–6.0 Hz). The 2D technique used here can be performed at natural abundance and generated the coupling information in a short period of time (ca. 4 h). The observation of the $^{2}J_{\text{OsH}}$ coupling also facilitated the observation of the ¹⁸⁷Os resonance of 17 (δ_{Os} = -1155) via a 2D ¹H—¹⁸⁷Os HMQC experiment, further confirming the binding mode of this ligand. A similar experiment was performed on CymOs- $[CH(COMe)_2-C][(OC(Me))_2CH-O,O]$ (18) which revealed δ^{187} Os = -628 and ${}^{2}J_{OsH}$ = 7.9 Hz for the proton of the C-bound acac ligand.

The mono- β -diketonato complexes 19–21 showed a $J_{\rm CH}$ value of 158-160 Hz (Table 2), which is consistent with the presence of sp² carbon centers and O.O-binding in the diketonate ligands.⁴¹ These values were useful in making proper NMR assignments for bis(acetylacetonato) complex 18. Other (mono)acetylacetonato complexes of Cp*Ir⁴⁷ and CymRu⁴⁸ gave informative chemical shift and coupling data as well. They do not show infrared absorption bands above 1625 cm⁻¹ for the C–O bonds, which is also true for 19-21 (not including the carbonyl absorptions of OAc). Cp*Ir(acac-C)(acac-O,O) has been prepared from [Cp*-IrCl₂]₂, Na₂CO₃, and acacH,⁴⁷ but the reaction of [Cym-OsCl₂]₂, K₂CO₃, and acacH gave only (mono)diketonato complex 19. This complex, as well as the $(PhCO)_2CH$ derivative 20, are spectroscopically similar to those in the Ir and Ru systems (Table 2).

Various palladium diketonato complexes have been studied in an effort to determine what controls the linkage mode of the ligand.⁴⁹ The keto-enol character of the diketone was cited as the major factor governing the bonding type (O,O or C). This theory was further expanded in a review on this subject.⁴¹ As applied to the osmium complexes, the keto-enol equilibrium correlates with the bonding observed in 17-23. The equilibrium of the free ligand (eq 7) parallels the preferred linkage mode

in the metal complexes. Consistent with the pK_a values (Table 4), the equilibrium lies much farther to the right for R = Me or Ph than for OMe.

Mechanism of Formation of 18. In the reaction of acacH with 2, the first step may be similar to those

 ⁽⁴⁰⁾ Diamond, S. E.; Mares, F. J. Organomet. Chem. 1977, 142, C55.
 (41) Kawaguchi, S. Coord. Chem. Rev. 1986, 70, 51 and references therein.

⁽⁴²⁾ Mann, B. E. Annual Reports on NMR Spectroscopy; Academic Press Limited: New York, 1991; Vol. 23, p 141.
(43) Benn, R.; Joussen, E.; Lehmkuhl, H.; Oriz, F. L.; Rufinska, A. J.

⁽⁴³⁾ Benn, R.; Joussen, E.; Lehmkuhl, H.; Oriz, F. L.; Rufinska, A. J. Am. Chem. Soc. 1989, 111, 8754.

 ⁽⁴⁴⁾ Gallop, M. A.; Johnson, B. F. G.; Lewis, J. 1987, 1831.
 (45) Koridze, A. A.; Kizas, C. A.; Astakhova, N. M.; Petrovski, P. V.; Grishin, Y. K. J. Chem. Soc., Chem. Commun. 1981, 853.

Grishin, Y. K. J. Chem. Soc., Chem. Commun. 1981, 853. (46) Benn, R.; Brenneke, H.; Joussen, E.; Lehmkuhl, H.; Ortiz, F. L.

Organometallics 1990, 9, 756. (47) Rigby, W.; Lee, H.-B.; Bailey, P. M.; McCleverty, J. A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 387.

<sup>P. M. J. Chem. Soc., Dalton Trans. 1979, 387.
(48) Carmona, D.; Ferrer, J.; Oro, L. A.; Apreda, M. C.; Foces-Foces,</sup> C.; Cano, F. H.; Elguero, J.; Jimeno, M. L. J. Chem. Soc., Dalton Trans. 1990, 1463.

⁽⁴⁹⁾ Dash, G. C.; Mishra, R. C.; Panda, D.; Mohapatra, B. K. Polyhedron 1985, 4, 1297.

postulated for the reaction of 2 with alcohols (eq 8). The ketone oxygen can then donate electrons to the metal

center, generating a complex C (eq 9), which is structurally similar to 19–21. Attack of C by another acacH could then lead to the observed product 18 and *tert*-butylamine (eq 10). Efforts to prepare intermediate C with 19 and LiNH-t-Bu were not successful, however, possibly due to the excess of LiNH-t-Bu. Li(acac) was presumably formed from the excess LiNH-t-Bu, preventing acacH from reacting with the 2 in solution.

Another possible intermediate is the C-bound complex **D** in eqs 11 and 12. If 17 can be considered a model for **D**, the addition of $H_2C(COR)_2$ (R = Me, Ph) to 17 to give

22 and 23 (Scheme 7) supports the intermediacy of **D** in the formation of 18. Both **C** and **D** are plausible, and rearrangement at the metal center due to other known binding modes of β -diketones⁴¹ may be reasonable in these intermediates, although ligand switching was not observed for Cp*Ir(acac)₂.⁴⁷ Regardless, the balance between C- or O,O-bound complexes, and mono- or disubstituted carbon acid complexes, is complicated.

Reactions of Carbon Acid Complexes. The reactivity of complexes 17–23 is also intricate. The 16-electron species 17 does not add donor ligands. However, changing N-t-Bu for NXyl by treatment of 17 with H₂NXyl appears to proceed through CymOs(NHXyl)[CH(CO₂Me)₂] but continues on to xylylimide 25 (Scheme 5), further demonstrating how delicate the balance is in these ligand arrangements. Of note is the fact that while 17 is formed from 2 and dimethyl malonate, a second equiv of H₂C(CO₂-Me)₂ will not displace H₂N-t-Bu from 17 to give CymOs[(OC(OMe))₂CH-O,O][CH(CO₂Me)₂-C]. The β diketones H₂C(COR)₂ (R = Me, Ph), though, readily protonate the NH-t-Bu ligand of 17 to give 22 and 23. This again correlates with the pK_a values (Table 4), such that only the more acidic diketones will react with 17. Attempts to replace the Cl or OAc ligands of 19 or 21 with diketonates did not lead to (bis)diketonato complexes (i.e. 18), and 19 did not give CymOs(acac)(O-t-Bu) with KO-t-Bu. In contrast, CymRu(acac)Cl reacts smoothly with X⁻ to give CymRu(acac)X (X = halogens, azide, pyrazole and its derivatives).⁴⁸ This difference in reactivity is presumably due to the change from the second- to the third-row transition metals.⁵⁰ Despite the difficulties encountered in reactions with M(diketonate), 18 was easily prepared from imide 2 and 2 equiv of acacH.

Experimental Section

General Data. Unless otherwise noted, all reactions and manipulations were performed in dry glassware under a nitrogen atmosphere at 20 °C in a Vacuum Atmospheres 553-2 drybox equipped with a MO-40-2 inert gas purifier, or using standard Schlenk techniques. The amount of O_2 in the drybox atmosphere was monitored by a Teledyne Model No. 316 trace oxygen analyzer. All ¹H NMR spectra were recorded on either a 200-MHz or a 300-MHz Fourier transform instrument constructed at the University of California, Berkeley, NMR facility by Mr. Rudi Nunlist (equipped with Nicolet Model 1280 data collection systems), or a Bruker AM-400, AM-500, and AMX-400 spectrometers. For ¹⁸C{¹H} NMR chemical shift assignments, the *p*-cymene carbon atoms are numbered as follows:⁵¹

The 2D ¹H-¹³C spectra were recorded on a Bruker AMX-300 spectrometer at 27 °C using the standard HMQC technique,^{20,52} including a BIRD pulse and an optimized delay for suppression of ¹²C bound proton signals, spectra being recorded both with and without ¹⁸C decoupling. 2D ¹H-¹⁸⁷Os HMQC spectra⁵² were recorded on a Bruker AMX 600 spectrometer at 25 °C operating at 600.14 and 13.68 MHz for ¹H and ¹⁸⁷Os, respectively. A broadband VSP probe was used on which the 90° pulse for ¹⁸⁷Os was ca. 40 μ s. Initially, a wide sweep width (5200 ppm) was used in the 187 Os dimension (f₁) to locate 187 Os resonances. The experiment was then run with a narrower sweep width (731 ppm) to improve digital resolution and rule out folding of the 187Os resonance. Delays in the HMQC experiments were optimized for the appropriate value of ${}^{2}J({}^{187}Os-{}^{1}H)$. ${}^{187}Os$ chemical shifts were set relative to OsO_4 by using $I(OsO_4) = 2.282343$ with downfield shifts being positive.

Infrared spectra were recorded on a Nicolet 510 Fourier transform spectrometer or a Mattson Galaxy Series FTIR 3000 spectrometer. Elemental analyses were conducted by the University of California, Berkeley, Microanalysis Facility, and mass spectra were recorded by the University of California, Berkeley, Mass Spectrometry laboratory on AEI MS-12 or Kratos MS-50 mass spectrometers. Mass spectral results are reported by the most abundant isotopes (i.e. ¹⁹²Os). When transferring condensable gases, neat gas was allowed to expand into a bulb of known volume at a known temperature and then it was condensed into the reaction flask at -196 °C. The pressure of the added gas was measured with a MKS Baratron gauge.

Benzene, tetrahydrofuran (THF), diethyl ether, and toluene were distilled from sodium-benzophenone. Pentane and hexane were distilled from lithium aluminum hydride. Methylene chloride was distilled from CaH₂ and acetone was distilled from MgSO₄. [CymOsCl₂]₂⁵³ (Cym = η^6 -p-Cymene) (1) and CymOsN-

⁽⁵⁰⁾ Ziegler, T.; Cheng, W.; Baerends, E. J.; Ravenek, W. Inorg. Chem. 1988, 27, 3458.

⁽⁵¹⁾ Arthur, T.; Stephenson, T. A. J. Organomet. Chem. 1981, 208, 369

⁽⁵²⁾ Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Magn. Reson. 1983, 55, 301.

⁽⁵³⁾ Kiel, W. A.; Ball, R. G.; Graham, W. A. G. J. Organomet. Chem. 1990, 383, 481.

t-Bu^{11,14} were prepared by literature methods. Amines H₂N-t-Bu and H₂N(2,6-Me₂C₆H₃) were stirred over CaH₂ for 24 h and then distilled under reduced pressure before use. All 1,2-(HX)₂C₆H₃ (X = O, NH) and H₂N-p-tol were purified by sublimation. Thiols HSR (R = t-Bu, Xyl) were dried over CaH₂ then distilled under reduced pressure before use. Trimethylphosphine was purchased from the Strem Chemical Co. and vacuum transferred from Na/K. Unless otherwise noted, all other reagents were used as received from commercial suppliers.

CymOs(O-t-Bu)₂ (3). A solution of KO-t-Bu (45 mg, 0.40 mmol) in THF (3 mL) was added dropwise to a stirred solution of 1 (104 mg, 0.132 mmol) in THF (8 mL). The solvent was removed under reduced pressure after 5 min. The residue was dissolved in pentane (5 mL) and filtered. The solvent was removed from the filtrate *in vacuo* giving 44 mg (0.94 mmol, 47%) of deep-red 3 as an oily solid: ¹H NMR (C₆D₆) δ 5.81 (d, J = 5.9 Hz, 2H, MeC₆H₄CHMe₂), 5.75 (d, J = 6.0, 2H, MeC₆H₄-CHMe₂), 2.24 (sept, J = 6.9, 1H, MeC₆H₄CHMe₂), 1.81 (s, 3H, MeC₆H₄CHMe₂), 1.53 (s, 18H, C(CH₃)₃), 1.20 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ¹³C{¹H}NMR (C₆D₆) δ 83.8 (C5), 78.3 (C(CH₃)₃), 73.9 (C2), 70.2 (C3 or C4), 68.3 (C3 or C4), 33.7 (C(CH₃)₃), 33.5 (C6), 23.6 (C7), 21.7 (C1); IR (KBr) 2961 (s), 2925 (m), 2870 (m), 1467 (w), 1383 (w), 1363 (w), 1019 (w), 869 (w), 839 (w), 816 (w). The thermal instability of 3 precluded microanalysis.

Reaction of 3 with H_2N-t-Bu. CymOs(O-t-Bu)₂ (3) (10 mg, 0.021 mmol) was dissolved in C₆D₆ (0.7 mL). The solution was degassed using a freeze-pump-thaw cycle, and H_2N -t-Bu (0.021 mmol) was added by vacuum transfer. The ¹H NMR spectrum of this solution showed resonances for complex 2 in 80% yield (verified by comparison with an authentic sample) and HO-t-Bu.

CymOs(NH-t-Bu)[OCMe(CF₃)₂] (4). A stirred toluene solution (7 mL) of 2 (47.3 mg, 0.120 mmol) was treated with $HOCMe(CF_3)_2$ (53 mg, 0.29 mmol) in toluene (2 mL). The solution was stirred for 10 min, and the solvent was then removed in vacuo. The solid residue was extracted into (Me₃Si)₂O, filtered through Celite, and the solvent was removed from the filtrate under reduced pressure leaving 59.9 mg (0.104 mmol, 87%) of a red-orange thick oil 4: ¹H NMR (C_6D_6) δ 11.07 (br s, 1H, NH), $5.34 (d, J = 5.7, 2H, MeC_6H_4CHMe_2), 5.24 (d, J = 5.7, 2H, MeC_6H_4$ CHMe₂), 2.15 (sept, J = 6.9, 1H, MeC₆H₄CHMe₂), 1.89 (s, 3H, MeC₆H₄CHMe₂), 1.44 (s, 3H, OCMe(CF₃)₂), 1.13 (s, 9H, CMe₃), 1.11 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ¹³C{¹H} NMR (C₆D₆) δ 125.9 (quart, J = 291.7, OCMe($(CF_3)_2$), 86.7 (C5), 80.3 (sept, J =27.0, OCMe(CF₃)₂), 77.4 (C2), 70.3 (br s, C3 or C4), 69.2 (br s, C3 or C4), 61.0 (CMe₃), 32.8 (C6), 32.1 (CMe₃), 24.1 (C7), 22.0 $(OCMe(CF_3)_2)$, 21.3 (C1); ¹⁹F{¹H} NMR $(C_6D_6) \delta$ -77.8; IR $(CH_2-$ Cl₂) 3061 (w), 2997 (w), 2966 (m), 1475 (m), 1385 (m), 1365 (m), 1358 (m), 1306 (m), 1207 (s), 1182 (s), 951 (m), 870 (m), 1103 (s), 1032 (m), 1078 (s) cm⁻¹. The compound is an uncrystallizable oil, and attempts at microanalysis were unsuccessful.

 $CymOs[OC(CH_3)_2C(CH_3)_2O]$ (5). $HOC(CH_3)_2C(CH_3)_2OH$ (32 mg, 0.27 mmol) in pentane (3 mL) was added dropwise to a pentane solution (10 mL) of 2 (76 mg, 0.19 mmol) with stirring. The solution was stirred at room temperature for 1 h and the solvent was then removed under reduced pressure giving an oil. Crystallization of the oil from Et₂O at -30 °C gave red needles of 5 (29 mg, 0.066 mmol) in 34% yield. An independent experiment on a small scale in $C_6 D_6$ showed that 5 was generated in solution in >98% NMR yield: ¹H NMR (C_6D_6) δ 5.82 (d, J $= 6.0, 2H, MeC_{6}H_{4}CHMe_{2}, 5.73 (d, J = 5.9, 2H, MeC_{6}H_{4}CHMe_{2}),$ 2.28 (sept, J = 6.9, 1H, MeC₆H₄CHMe₂), 1.95 (s, 3H, MeC₆H₄-CHMe₂), 1.39 (s, 12H, OCMe₂CMe₂O), 1.20 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ¹³C{¹H} NMR (C₆D₆) δ 88.3 (C5), 85.6 (OCMe₂-CMe₂O), 78.3 (C2), 68.8 (C3 or C4), 66.3 (C3 or C4), 33.7 (C6), 27.5 (OCMe₂CMe₂O), 23.4 (C7), 21.0 (C1); electron impact mass spectrum (EIMS) parent ion envelope m/e (obs I, calc I) 439 (45.8, 44.6), 440 (89.7, 71.1), 442 ([M]+, 100, 100); IR (KBr) 3035 (m), 2963 (s), 2924 (m), 1443 (w), 1379 (w), 1353 (w), 1134 (s), 948 (m), 893 (m), 719 (w), 649 (m) cm⁻¹. Anal. Calcd for $C_{16}H_{26}O_2O_3$: C, 43.62; H, 5.95. Found: C, 43.66; H, 5.68.

 $CymOs[1,2-O_2C_6H_4]$ (6). A toluene solution (2 mL) of 1,2- $(HO)_2C_6H_4$ (15 mg, 0.14 mmol) was added to a stirred toluene solution (3 mL) of 2 (51 mg, 0.13 mmol). The color of the solution immediately changed to red. The solvent was removed in vacuo after 20 min. The residue was washed with pentane (1 mL), extracted into Et₂O, and filtered through Celite. The filtrate was concentrated to 3 mL, layered with 1 mL of pentane, and cooled to -40 °C. After 12 h a red precipitate was collected, yielding 39 mg of product (0.090 mmol, 69%): ¹H NMR (C₆D₆) δ 7.69 (dd, J_1 (apparent) = 5.9, J_2 (apparent) = 3.5, 2H, C₆H₄), 6.9 $(dd, J_1(apparent) = 5.9, J_2(apparent) = 3.4, 2H, C_6H_4), 5.85 (d,$ $J = 5.8, 2H, MeC_{6}H_{4}CHMe_{2}, 5.73$ (d, $J = 5.8, 2H, MeC_{6}H_{4}$ - $CHMe_2$), 2.17 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.82 (s, 3H, $MeC_{6}H_{4}CHMe_{2}$, 1.08 (d, $J = 6.9, 6H, MeC_{6}H_{4}CHMe_{2}$); ¹³C{¹H} NMR (C6D6) & 165.6 (ipso-C6H4), 119.7 (C6H4), 115.2 (C6H4), 90.3 (C5), 80.9 (C2), 68.0 (C3 or C4), 65.6 (C3 or C4), 33.3 (C6), 23.2 (C7), 20.5 (C1); IR (KBr) 3057 (m), 3045 (m), 2964 (m), 2920 (m), 2870 (w), 2900 (w), 1471 (s), 1259 (s), 814 (m), 806 (m), 754 (m), 661 (m) cm⁻¹. Anal. Calcd for C₁₆H₁₈O₂Os: C, 44.43; H, 4.19. Found: C, 44.40; H, 4.13.

Generation of 6 in Solution from 5. An NMR tube was charged with 5 (5.5 mg, 0.012 mmol), Cp₂Fe (1.3 mg, 0.0070 mmol, 0.58 equiv), and C₆D₆ (0.7 mL). Two one pulse ¹H NMR spectra were acquired. The ring bound methyl resonances of the *p*-cymene were integrated vs the Cp resonances of the internal standard, and the values from the two spectra were averaged. Under an atmosphere of N₂, catechol (1.6 mg, 0.015 mmol, 1.3 equiv) was added at 25 °C. ¹H NMR spectra were obtained after 8 h, as described above. In this manner the yield was determined to be 59%. The NMR spectra from this reaction were identical to those of 6 prepared from 2. No resonances for the osmium starting material were observed.

 $CymOs[1,2-O(NH)C_{6}H_{4}]$ (7). A toluene solution (3 mL) of $1,2-(HO)(H_2N)C_6H_4$ (20 mg, 0.18 mmol) was added to a stirred toluene solution (3 mL) of 2 (72 mg, 0.18 mmol). The color of the solution changed to deep red, and the solvent was removed in vacuo after 30 min. The residue was washed with hexane (2 mL), extracted into toluene, and filtered. The solvent was removed from the filtrate under reduced pressure, yielding 78 mg of the deep-red solid product (0.18 mmol, 99%): ¹H NMR $(C_6D_6) \delta 8.68$ (br s, 1H, NH), 7.64 (d, $J = 7.8, 1H, C_6H_4$), 7.22 (d, $J = 7.7, 1H, C_6H_4$, 7.02 (overlapping dd, J(apparent) = 7.2, 1H, C_6H_4), 6.88 (overlapping dd, J(apparent) = 7.3, 1H, C_6H_4), 5.46 $(d, J = 4.7, 2H, MeC_6H_4CHMe_2), 5.39 (d, J = 4.8, 2H, MeC_6H_4$ - $CHMe_2$), 2.17 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.91 (s, 3H, $MeC_6H_4CHMe_2$, 1.07 (d, $J = 6.9, 6H, MeC_6H_4CHMe_2$); ¹³C{¹H} NMR (C₆D₆) δ 167.5 (O-ipso-C₆H₄), 151.7 (N-ipso-C₆H₄), 119.9 $(C_6H_4), 118.0 (C_6H_4), 115.2 (C_6H_4), 114.2 (C_6H_4), 90.8 (C5), 80.5$ (C2), 68.4 (C3 or C4), 66.0 (C3 or C4), 33.0 (C6), 23.9 (C7), 20.8 (C1); IR (KBr) 3342 (m), 3066 (m), 3049 (m), 2956 (m), 2926 (s), 2868 (m), 1579 (m), 1479 (s), 1450 (m), 1298 (s), 1273 (s), 1246 (m), 811 (m), 714 (m), 737 (s), 702 (m) cm⁻¹. Anal. Calcd for C₁₆H₁₉NOOs: C, 44.53; H, 4.44; N, 3.25. Found: C, 44.27; H, 4.42; N, 3.33.

 $CymOs[1,2-O_2C_6H_4](PMe_3)$ (8). A C₆D₆ solution (0.7 mL) of 6 (6.0 mg, 0.014 mmol) was degassed using one freeze-pumpthaw cycle. Neat PMe₃ (0.014 mmol) was condensed into the reaction flask at -196 °C, and the flask was then allowed to warm to room temperature and stir for 1.5 h. The solvent was removed in vacuo and the orange residue was washed with pentane (1 mL), extracted into toluene, and filtered through Celite. The solvent was removed from the filtrate under reduced pressure, yielding 7.0 mg, of product (0.14 mmol, 99%): ¹H NMR (C₆D₆) δ 7.19 (dd, J_1 (apparent) = 5.7, J_2 (apparent) = 3.5, 2H, C₆H₄), $6.76 (dd, J_1(apparent) = 5.7, J_2(apparent) = 3.5, 2H, C_6H_4), 4.90$ $(d, J = 5.6, 2H, MeC_6H_4CHMe_2), 4.70 (d, J = 5.7, 2H, MeC_6H_4 CHMe_2$), 2.40 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.92 (s, 3H, $MeC_{6}H_{4}CHMe_{2}$, 1.07 (d, $J = 6.9, 6H, MeC_{6}H_{4}CHMe_{2}$), 0.89 (d, $J_{\rm HP} = 10.3, 9H, PMe_3$; ¹³C{¹H} NMR (C₆D₆) δ 165.8 (*ipso*-C₆H₄), 116.3 (C₆H₄), 114.0 (C₆H₄), 78.2 ($J_{CP} = 5.3$, C3 or C4), 77.5 (J_{CP} = 5.3, C3 or C4), 31.6 (C6), 23.1 (C7), 17.8 (C1), 13.8 (J_{CP} = 32.8, PMe₃) (resonances for C5 and C2 were not observed at room temperature); ${}^{31}P{}^{1}H$ NMR (C₆D₆) δ -23.3. Satisfactory microanalytical data were not obtained after several attempts.

Reaction of 6 with 1,2-(H₂N)₂C₆H₄. An NMR tube was charged with 6 (4.4 mg, 0.010 mmol), Cp₂Fe (1.4 mg, 0.0075 mmol, 0.7 equiv), and $C_6 D_6$ (0.7 mL). Two one pulse ¹H NMR spectra were acquired. The ring bound methyl resonances of the *p*-cymene were integrated vs the Cp resonances of the internal standard, and the values from the two spectra were averaged. Under an atmosphere of N₂, 1,2-(H₂N)₂C₆H₄ (1.4 mg, 0.013 mmol, 1.3 equiv) was added at 25 °C. The solution was subjected to a freeze-pump-thaw cycle. The ¹H NMR spectrum at this time showed a new compound 9. The solution was heated at 45 °C for 19 h, giving CymOs[(NH)₂C₆H₄] (10),¹¹ and ¹H NMR spectra were obtained as described above. In this manner the yield was determined to be 98%. ¹H NMR data for 9 (C₆D₆): δ 7.31 (m, 2H, C₆H₄), 6.85 (m, 2H, C₆H₄), 5.01 (d, J = 5.3, 2H, MeC₆H₄-CHMe₂), 4.76 (d, J = 5.3, 2H, MeC₆H₄CHMe₂), 2.32 (sept, J =6.9, 1H, MeC₆H₄CHMe₂), 1.76 (s, 3H, MeC₆H₄CHMe₂), 1.05 (d, $J = 6.9, 6H, MeC_6H_4CHMe_2$).

Generation of (1,2-Diamidobenzene)osmium/Catechol Complex 11. A C₆D₆ (0.5 mL) solution containing 5.6 mg of 10 (0.013 mmol) and 4.0 mg of catechol (0.036 mmol) was prepared. The resulting solution indicated the presence of starting materials plus the new hydrogen-bonded complex. ¹H NMR data for 11 (C₆D₆): δ 7.26 (m, 2H, C₆H₄), 6.25 (m, 2H, C₆H₄), 5.21 (d, J = 5.6, 2H, MeC₆H₄CHMe₂), 4.99 (d, J = 5.6, 2H, MeC₆H₄CHMe₂), 2.26 (sept, J = 6.5, 1H, MeC₆H₄CHMe₂), 1.49 (s, 3H, MeC₆H₄CHMe₂), 0.91 (d, J = 6.5, 6H, MeC₆H₄CHMe₂).

Generation of the Osmium Catecholate/p-Toluidine Complex 12. A C₆D₆ (0.5 mL) solution containing 3.0 mg of 6 (0.0047 mmol) and 1.0 mg of p-toluidine (0.0092 mmol) was prepared and subjected to NMR analysis, which demonstrated the presence of the adduct 12, and analyzed by ¹H NMR spectrometry. After analysis, the solvent was lyophilized under vacuum and the reaction mixture was redissolved in C₆D₆. The spectrum of this sample remained unchanged, except that excess p-toluidine had been removed. ¹H NMR data for 12 (C₆D₆): δ 7.64 (m, 2H, C₆H₄), 6.90 (m, 2H, C₆H₄), 6.84 (d, J = 6.5, 2H, NH₂C₆H₄Me), 6.34 (d, J = 6.5, 2H, NH₂C₆H₄Me), 5.64 (d, J = 4.4, 2H, MeC₆H₄CHMe₂), 5.40 (d, J = 4.4, 2H, MeC₆H₄CHMe₂), 2.19 (sept, J = 5.5, 1H, MeC₆H₄CHMe₂), 2.10 (s, 3H, NH₂C₆H₄Me), 1.83 (s, 3H, MeC₆H₄-CHMe₂), 1.09 (d, J = 5.5, 6H, MeC₆H₄CHMe₂).

CymOs(S-t-Bu)₂ (13). A solution of 2 (34 mg, 0.084 mmol) in toluene (5 mL) was degassed using a freeze-pump-thaw cycle and HS-t-Bu (0.18 mmol) was condensed onto the solution at -196 °C. The solid was warmed to room temperature and stirred for 40 min. Solvent was removed in vacuo, the residual solid was extracted with pentane (3 mL), and the solution was filtered. The solvent was removed from the filtrate under reduced pressure leaving purple solid 13 (40 mg, 0.080 mmol, 95%): ¹H NMR $(C_6D_6) \delta 5.62 (d, J = 5.9, 2H, MeC_6H_4CHMe_2), 5.55 (d, J = 5.5, d)$ 2H, $MeC_6H_4CHMe_2$), 2.19 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.83 (s, 3H, $MeC_6H_4CHMe_2$), 1.71 (s, 18H, $C(CH_3)_3$), 1.13 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ${}^{13}C{}^{1}H$ NMR (C₆D₆) δ 89.7 (C5), 79.9 (C2), 75.7 (C3 or C4), 73.7 (C3 or C4), 50.6 (C(CH₃)₈), 34.3 (C(CH₃)₃), 32.7 (C6), 24.1 (C7), 21.3 (C1); EIMS parent ion envelope m/e (obs I, calc I) 500 (25.4, 31.2), 501 (41.3, 43.3), 502 $(73.0, 70.9), 503 (14.3, 17.6), 504 ([M]^+, 100, 100), 505 (14.3, 21.4);$ IR (KBr) 2963 (s), 2928 (s), 2911 (s), 1445 (m), 1355 (m), 1149 (s), 867 (m) cm⁻¹. Anal. Calcd for $C_{18}H_{32}OsS_2$: C, 43.00; H, 6.42. Found: C, 43.32; H, 6.38.

Generation of 13 in Solution from 3. A solution of 3 (6 mg, 0.01 mmol) in C_6D_6 (0.7 mL) was degassed using one freezepump-thaw cycle and t-BuSH (0.033 mmol) was added by vacuum transfer at -196 °C. The color changed immediately from deep red to violet. An ¹H NMR spectrum of this solution showed resonances for complex 13 in 92% yield (verified by comparison with a sample from the preparative scale reaction carried out above) and HO-t-Bu in 100% yield.

 $CymOs(S-2,6-Me_2C_6H_3)_2$ (14). A solution of 2 (26 mg, 0.066 mmol) in toluene (5 mL) was treated with HS-2,6-Me_2C_6H_3 (18 mg, 0.13 mmol) in toluene (2 mL). The solution immediately

became purple, and it was stirred for 15 min before the solvent was removed in vacuo. The solid residue was washed with 15 mL of pentane, extracted into Et₂O (15 mL), and the solution was filtered through Celite. The solvent was removed from the filtrate leaving purple solid 14 (33 mg, 0.055 mmol, 83%): ¹H NMR (C_6D_6) δ 7.12 (d, $J = 6.7, 4H, m - C_6H_3$), 6.98 (t, J = 7.7, 2H, $p-C_6H_3$), 5.05 (d, J = 5.1, 2H, MeC₆H₄CHMe₂), 4.78 (d, J = 5.6, 2H, $MeC_6H_4CHMe_2$), 2.56 (s, 12H, $Me_2C_6H_3$), 2.13 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.64 (s, 3H, $MeC_6H_4CHMe_2$), 1.09 (d, J =6.9, 6H, $MeC_6H_4CHMe_2$; ¹³C{¹H} NMR (C₆D₆) δ 139.7 (quat Xyl), 127.9 (m-Xyl), 126.1 (p-Xyl), 90.2 (C5), 80.2 (C2), 76.2 (C3 or C4), 73.6 (C3 or C4), 32.7 (C6), 23.5 (C7 or Me₂C₆H₃), 22.7 (C7 or $Me_2C_6H_3$), 20.0 (C1) (one of the quaternary carbon signals for the Xyl ligand was not observed at room temperature); IR (KBr) 3082 (w), 3051 (w), 2960 (s), 2937 (m), 2918 (m), 1581 (m), 1456 (s), 1433 (m), 1377 (w), 1047 (m), 1032 (m), 860 (m), 795 (w), 771 (s) cm⁻¹. Anal. Calcd for C₂₆H₃₂OsS₂: C, 52.15; H, 5.39. Found: C, 52.33; H, 5.43.

 $CymOs(S-2,4,6-Me_3C_6H_2)_2$ (15). This purple solid was prepared in 94% yield using HS-2,4,6-Me₃C₆H₂ (23 mg, 0.15 mmol) and 2 (27.4 mg, 0.069 mmol) by a method similar to that used to prepare 14. ¹H NMR (C_6D_6) δ 6.95 (s, 4H, m- C_6H_2), 5.09 (br s, 2H, $MeC_6H_4CHMe_2$), 4.83 (br d, $J = 5.1, 2H, MeC_6H_4CHMe_2$), 2.55 (br s, 12H, o-Me₃C₆H₂), 2.23 (br s, 6H, p-Me₃C₆H₂), 2.17 $(sept, J = 6.8, 1H, MeC_6H_4CHMe_2), 1.69 (s, 3H, MeC_6H_4CHMe_2),$ 1.13 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ¹³C{¹H} NMR (C₆D₆, 34 °C) δ 135.0 (p-C₆H₂), 139.4 (quat-C₆H₂), 128.8 (m-C₆H₂), 90.2 (C5), 80.2 (C2), 76.3 (C3 or C4), 73.6 (C3 or C4), 32.8 (C6), 23.6 (C7), 22.6 (o-Me₃C₆H₂), 20.9 (p-Me₃C₆H₂), 20.1 (C1) (one of the quaternary carbon signals for the Xyl ligand was not observed at room temperature); IR (KBr) 3064 (w), 3010 (w), 2960 (s), 2947 (s), 2918 (s), 2871 (m), 1599 (m), 1458 (s), 1431 (s), 1375 (w), 1057 (m), 1030 (m), 862 (m), 850 (m), 793 (m) cm⁻¹. High resolution electron impact mass spectrum (HREIMS): calcd for $C_{28}H_{36}^{192}OsS_2(M^+)$, 628.187332; found, 628.187400. Anal. Calcd for C₂₈H₃₆OsS₂: C, 53.65; H, 5.79. Found: C, 53.50; H, 5.83.

Thiolate Crossover Reactions. Complexes 14 (5.4 mg, 0.0090 mmol) and 15 (4.6 mg, 0.0073 mmol) were mixed in C_6D_6 (0.7 mL). The ¹³C¹H NMR and DEPT135 spectra at 40 °C are consistent with a statistical mixture (ca. 1:2:1) of 14, CymOs- $(S-2,6-Me_2C_6H_3)(S-2,4,6-Me_3C_6H_2)$, and 15. Assignments can be made from the DEPT135 spectrum: DEPT135 NMR (C_6D_6) δ 128.8 $(m-Me_2C_6H_3 \text{ or } m-Me_3C_6H_2)$, 127.8 $(m-Me_2C_6H_3 \text{ or }$ m-Me₃C₆H₂), 126.0 (p-Me₂C₆H₃), 76.2 (C3 or C4), 73.5 (C3 or C4), 32.7 (C6), 23.5 (C7), 22.6 (o-Me₂C₆H₃ or o-Me₈C₆H₂), 22.5 $(o-Me_2C_6H_3 \text{ or } o-Me_3C_6H_2), 20.9 (p-Me_3C_6H_2), 20.0 (C1).$ CymOs-(S-2,6-Me₂C₆H₃)(S-t-Bu) was observed in the ¹H NMR spectrum when 13 and 15 were mixed in C_6D_6 : ¹H NMR (C_6D_6) δ 7.15 (m, 2H, m-Me₂C₆H₃), 7.02 (t, J = 7.4, 1H, p-Me₂C₆H₃), 5.23 (d, J =5.5, 2H, $MeC_6H_4CHMe_2$), 5.10 (d, J = 5.7, 2H, $MeC_6H_4CHMe_2$), 2.60 (s, 6H, $Me_2C_6H_3$), 2.12 (sept, $J = 6.8, 1H, MeC_6H_4CHMe_2$), 1.73 (s, 3H, $MeC_6H_4CHMe_2$), 1.63 (s, 9H, CMe_3), 1.09 (d, J = 6.9, 6H, $MeC_6H_4CHMe_2$).

[CymOs(S-p-tol)₂]₂ (16). A stirred toluene solution (7 mL) of 2 (30 mg, 0.075 mmol) was treated with HS-p-tol (20 mg, 0.16 mmol) in toluene (3 mL). The color changed from yellow to deep red over 15 min. The solvent was evaporated *in vacuo* after 30 min. The green solid residue was washed with pentane, and extracted into toluene. This solution was filtered and the solvent was removed from the filtrate under reduced pressure, leaving 31 mg of product (0.027 mmol, 72%): ¹H NMR (C₆D₆) δ 8.41 (d, $J = 8.0, 4H, C_6H_4$ Me), 7.51 (d, $J = 8.0, 4H, C_6H_4$ Me), 6.97 (d, $J = 8.1, 4H, C_6H_4$ Me), 6.88 (d, $J = 7.9, 4H, C_6H_4$ Me), 5.05 (d, $J = 5.4, 4H, MeC_6H_4$ CHMe₂), 4.99 (d, $J = 5.6, 4H, MeC_6H_4$ CHMe₂), 2.28 (sept, $J = 6.9, 2H, MeC_6H_4$ CHMe₂), 2.15 (s, 6H, C₆H₄Me), 2.11 (s, 6H, C₆H₄Me), 1.91 (s, 6H, MeC_6H_4CHMe₂), 0.92 (d, $J = 6.9, 12H, MeC_6H_4$ CHMe₂). The instability of 16 has prevented further characterization.

CymOs(NH-t-Bu)[CH(CO₂Me)₂] (17). A stirred toluene solution (4 mL) of 2 (66.7 mg, 0.169 mmol) was treated with 1 equiv of $H_2C(CO_2Me)_2$ (22.3 mg, 0.169 mmol) in toluene (4 mL). The solvent was evaporated *in vacuo* after the solution was stirred

for 47 h, leaving a dark red solid. The solid residue was extracted into pentane (10 mL) and filtered through Celite. The filtrate was concentrated to half volume and cooled to -40 °C. After 12 h a red solid had precipitated, and the solution was decanted, yielding 75.5 mg of product (0.143 mmol, 85%): ¹H NMR (C₆D₆) δ 13.20 (br s, 1H, NH), 5.47 (d, $J = 5.8, 2H, MeC_6H_4CHMe_2$), 5.44 $(d, J = 5.7, 2H, MeC_6H_4CHMe_2), 4.83 (s, 1H, CH(CO_2Me)_2), 3.38$ $(s, 6H, CH(CO_2Me)_2), 2.17 (sept, J = 6.9, MeC_6H_4CHMe_2), 1.92$ $(s, 3H, MeC_6H_4CHMe_2), 1.23 (s, 9H, CMe_3), 1.07 (d, J = 6.9, 6H)$ $MeC_6H_4CHMe_2$; ¹³C{¹H} NMR (C₆D₆) δ 174.4 (CH(CO₂Me)₂), 89.8 (C5), 77.6 (C2), 76.2 (C3 or C4), 73.6 (C3 or C4), 65.8 (CMe₃), 50.0 (CH(CO₂Me)₂), 36.7 ($J_{CH} = 138$, ${}^{1}J_{C-Os}$ (from the ${}^{1}H^{-13}C$ HMQC spectrum (Figure 3) = 56.6, $CH(CO_2Me)_2$), 32.5 (C6), 31.7 (CMe₃), 24.2 (C7), 21.4 (C1); ¹⁸⁷Os NMR (toluene- d_8) $\delta_{Os} =$ $-1155 (^2J_{OsH} = 10.6 \text{ Hz})$ from the $^1H_{-187}Os \text{ HMQC}$ spectrum; IR (C_6H_6) 3261 (w), 2965 (m), 2945 (m), 2873 (w), 1731 (s), 1687 (m), 1432 (m), 1360 (m), 1252 (m), 1192 (m), 1112 (s), 1064 (m), 792 (m) cm⁻¹. Anal. Calcd for $C_{19}H_{31}NO_4Os$: C, 43.25; H, 5.92; N, 2.65. Found: C, 42.93; H, 5.85; N, 2.61.

CymOs(ND-t-Bu)[CD(CO₂Me)₂] (17-d₂). The compound was prepared in 80% yield using LiNDPh by a method similar to that described above for the preparation of 17. The ¹H NMR data were identical with those of 17, except that no resonances were observed at δ 13.20 and 4.83. IR (C₆H₆): 2966 (m), 2945 (m), 2868 (w), 2425 (w), 1729 (s), 1687 (m), 1434 (m), 1363 (m), 1272 (s), 1188 (m), 1068 (s), 857 (m), 794 (m) cm⁻¹.

Reaction of 17 with H_2N(2,6-Me_2C_6H_3). A C₆D₆ solution (0.7 mL) of 17 (5.0 mg, 0.0095 mmol) was added to $H_2N(2,6-Me_2C_6H_3)$ (3.0 mg, 0.025 mmol). A ¹H NMR spectrum of the solution after 30 min showed >66% starting material, but also minor resonances (33%) consistent with CymOs[NH(2,6-Me_2C_6H_3)][CH(CO_2Me)_2]. The reaction did not progress further after 14 h. An additional 6 mg of amine was added to the solution, and the ¹H NMR spectrum at this time showed some CymOsN-(2,6-Me_2C_6H_3) (25), the sole organometallic product observed after 4 days. *tert*-Butylamine and H₂C(CO₂Me)₂ were present also. The solvent was lyophilized from the solution, and the residue was extracted into pentane and filtered through Celite. The solvent was removed from the filtrate under reduced pressure, leaving 3.5 mg (0.0079 mmol, 83%) of 25.¹⁴

CymOs[CH(COMe)₂][(OC(Me))₂CH] (18). A stirred toluene solution (4 mL) of 2 (45.4 mg, 0.115 mmol) was treated with $H_2C(COMe)_2$ (24.7 mg, 0.247 mmol) in toluene (1 mL). The solution was stirred for 17 h, and the solvent was removed in vacuo. The solid residue was washed with pentane (1 mL) and extracted into Et₂O. The Et₂O solution was filtered through Celite, and the solvent was removed from the filtrate under reduced pressure, leaving 45 mg (0.085 mmol, 74%) of a yellow solid. A small amount of the solid was readily crystallized from pentane in 70% yield: ¹H NMR (C₆D₆) δ 5.39 (d, J = 5.5, 2H, $MeC_6H_4CHMe_2$), 5.26 (d, J = 5.4, 2H, $MeC_6H_4CHMe_2$), 5.12 (s, 1H, O,O-bound (OC(Me))₂CH), 4.61 (s, 1H, C-bound CH(COMe)₂), 2.38 (sept, J = 6.9, 1H, MeC₆H₄CHMe₂), 2.02 (s, 6H, C-bound $CH(COMe)_2$, 1.69 (s, 6H, 0,0-bound ($OC(Me))_2$ CH), 1.67 (s, 3H, $MeC_{6}H_{4}CHMe_{2}$), 1.02 (d, $J = 6.9, 6H, MeC_{6}H_{4}CHMe_{2}$); ¹³C-{¹H} NMR (C₆D₆) δ 201.8 (C-bound CH(COMe)₂), 185.1 (O,Obound $(OC(Me))_2)CH$, 101.3 $(J_{CH} = 159, O,O-bound (OC-$ (Me))₂CH), 91.1 (C5), 82.3 (C2), 76.5 (C3 or C4), 73.1 (C3 or C4), 57.7 $(J_{CH} = 134, \text{C-bound } CH(COMe)_2)$, 31.0 (C-bound CH-(COMe)₂), 30.3 (C6), 27.3 (O,O-bound (OC(Me))₂CH), 22.5 (C7), 16.2 (C1); $^{187}\mathrm{Os}$ NMR (toluene- $d_8)$ δ_Os = –628 ($^2J_\mathrm{OsH}$ = 7.9 Hz) from the ¹H-¹⁸⁷Os HMQC spectrum; IR (KBr) 3065 (m), 2966 (m), 2943 (m), 2924 (m), 2878 (w), 1678 (s), 1570 (s), 1528 (s), 1398 (m), 1378 (m), 1277 (m), 1183 (m), 1167 (m), 1037 (m), 881 (m), 656 (m) cm⁻¹. Anal. Calcd for $C_{20}H_{28}O_4Os$: C, 45.96; H, 5.40. Found: C, 45.89; H, 5.51.

CymOs[(OC(Me))₂**CH]Cl (19).** A suspension of 1 (24 mg, 0.030 mmol) and K₂CO₃ (20.4 mg, 0.148 mmol) in acetone (2 mL) was stirred while $H_2C(COMe)_2$ (33 mg, 0.33 mmol) in acetone (1 mL) was added dropwise. The solution was stirred for 12 h, and the solvent was removed *in vacuo*. The yellow solid residue was extracted into Et₂O and filtered through Celite. The solvent

was removed from the filtrate under reduced pressure leaving 28 mg (0.060 mmol, 100%) of a yellow solid. Crystallization from Et₂O gave 19 in 75% yield: ¹H NMR (C₆D₆) δ 5.53 (d, J = 5.4, 2H, MeC₆H₄CHMe₂), 5.21 (d, J = 5.3, 2H, MeC₆H₄CHMe₂), 5.14 (s, 1H, (OC(Me))₂CH), 2.58 (sept, J = 6.9, MeC₆H₄CHMe₂), 1.93 (s, 3H, MeC₆H₄CHMe₂), 1.76 (s, 6H, (OC(Me))₂CH), 1.11 (d, J = 6.9, 6H, MeC₆H₄CHMe₂); ¹³C{¹H} NMR (C₆D₆) δ 186.0 ((OC(Me))₂CH), 100.7 ($J_{CH} = 160$, (OC(Me))₂CH), 89.1 (C5), 87.7 (C2), 73.8 (C3 or C4), 69.2 (C3 or C4), 31.6 (C6), 27.1 ((OC(Me))₂CH), 22.7 (C7), 17.9 (C1); IR (KBr) 3083 (w), 3060 (w), 3048 (m), 2961 (m), 2923 (m), 2870 (w), 1577 (s), 1561 (s), 1542 (m), 1432 (m), 1379 (s), 1276 (m), 1025 (m), 778 (m), 603 (m) cm⁻¹. Anal. Calcd for C₁₅H₂₁ClO₂Os: C, 39.25; H, 4.61. Found: C, 38.90; H, 4.43.

Reaction of 19 with LiNH-t**-Bu.** A stirred solution of 19 (5 mg, 0.01 mmol) in THF (3 mL) was treated with a THF solution (2 mL) of LiNH-t-Bu (5 mg, 0.06 mmol). The solvent was removed *in vacuo* after 20 min, and the solid residue was extracted into pentane and filtered through Celite. The solvent was removed from the filtrate under reduced pressure, leaving 3.5 mg of 2 (0.0090 mmol, 90%).

CymOs[(OC(Ph))₂CH]Cl (20). To a stirred suspension of 1 (201 mg, 0.254 mmol) and K₂CO₃ (24.5 mg, 1.77 mmol) in acetone (10 mL) was added dropwise H₂C(COPh)₂ (130 mg, 0.580 mmol) in acetone (5 mL). The solution was stirred for 12 h, and the solvent was then removed in vacuo. The red solid residue was washed with pentane, extracted into THF, and filtered through Celite. The filtrate was concentrated to 1 mL and then cooled to -40 °C. A red precipitate was collected from this solution (170 mg, 0.292 mmol, 57%): ¹H NMR (C₆D₆) δ 7.92 (s, J = 7.6, 4H, Ph), 7.18-7.13 (m, 6H, Ph), 6.65 (s, 1H, (OC(Ph))₂CH), 5.60 (d, J = 5.4, 2H, MeC₆H₄CHMe₂), 5.22 (d, J = 5.4, 2H, MeC₆H₄- $CHMe_2$), 2.67 (sept, J = 7.0, 1H, $MeC_6H_4CHMe_2$), 1.95 (s, 3H, $MeC_{6}H_{4}CHMe_{2}$, 1.18 (d, $J = 6.9, 6H, MeC_{6}H_{4}CHMe_{2}$); ¹³C{¹H} NMR $(C_6D_6) \delta 181.2 ((OC(Ph))_2CH), 139.7 (ipso-Ph), 131.1 (Ph),$ $128.5 (Ph), 127.5 (Ph), 95.8 (J_{CH} = 158, (OC(Ph))_2 CH), 89.0 (C5),$ 88.2 (C2), 74.8 (C3 or C4), 69.6 (C3 or C4), 31.7 (C6), 22.8 (C7), 17.9 (C1); IR (KBr) 3084 (w), 3062 (w), 2967 (m), 2926 (m), 2876 (w), 1591 (m), 1541 (s), 1523 (s), 1482 (s), 1455 (m), 1396 (m), 1378 (s), 1314 (m), 1233 (m), 1024 (w), 747 (m), 715 (m), 688 (m) cm⁻¹. Anal. Calcd for C₂₅H₂₅ClO₂Os: C, 51.49; H, 4.32. Found: C, 51.30; H, 4.38.

CymOs[(OC(Me))₂CH](O₂CMe) (21). A stirred solution of 19 (20 mg, 0.044 mmol) in acetone (3 mL) was treated with AgO₂-CMe (7.7 mg, 0.046 mmol). The solvent was removed in vacuo after 17 h of stirring. The solid residue was washed with pentane (1 mL), extracted into toluene, and filtered through Celite. The solvent was removed from the filtrate under reduced pressure, leaving 20 mg (0.041 mmol, 94%) of a yellow solid: 1H NMR $(C_6D_6) \delta 5.97 (d, J = 5.6, 2H, MeC_6H_4CHMe_2), 5.61 (d, J = 5.6, 2H, MeC_6H_4CHMe_2)$ 2H, MeC₆ H_4 CHMe₂), 5.08 (s, J_{CH} (¹³C satellites) = 159, 1H, (OC- $(Me)_{2}CH$, 2.60 (sept, $J = 6.9, 1H, MeC_{6}H_{4}CHMe_{2}$), 2.23 (s, 3H, O₂CMe), 1.92 (s, 3H, MeC₆H₄CHMe₂), 1.73 (s, 6H, (OC(Me))₂-CH), 1.15 (d, $J = 6.9, 6H, MeC_6H_4CHMe_2$); ¹³C{¹H} NMR (C₆D₆) δ 185.6 ((OC(Me))₂CH), 176.5 (O₂CMe), 99.7 ((OC(Me))₂CH), 87.8 (C5), 86.1 (C2), 72.9 (C3 or C4), 68.7 (C3 or C4), 31.7 (C6), $26.9((OC(Me))_2CH), 23.7(O_2CMe), 22.7(C7), 17.1(C1); IR(KBr)$ 3041 (w), 2974 (m), 2960 (m), 2873 (w), 1626 (s), 1579 (s), 1522 (s), 1429 (m), 1373 (s), 1363 (s), 1315 (s), 1277 (m), 1016 (m), 673 (m) cm⁻¹. Anal. Calcd for $C_{17}H_{24}O_4O_8$: C, 42.31; H, 5.01. Found: C, 42.23; H, 5.07.

CymOs[CH(CO₂Me)₂][(OC(Me))₂CH] (22). Treatment of 17 (15 mg, 0.29 mmol) with $H_2C(COMe)_2$ (6.6 mg, 0.066 mmol) in C_6D_6 (0.7 mL) resulted in an immediate color change to yellow. A ¹H NMR spectrum obtained after 10 min showed a new compound and H_2N -t-Bu. The solvent was lyophilized and the solid residue was extracted into pentane and filtered through Celite. The solvent was removed from the filtrate under reduced pressure, leaving 14 mg (0.026 mmol, 90%) of a bright yellow solid: ¹H NMR (C_6D_6) δ 5.46 (d, J = 5.7, 2H, MeC₆H₄CHMe₂), 5.44 (d, J = 5.2, 2H, MeC₆H₄CHMe₂), 5.10 (s, 1H, (OC(Me))₂CH), 4.17 (s, 1H, CH(CO₂Me)₂), 3.39 (s, 6H, CH(CO₂Me)₂), 2.51 (sept,

 $J = 6.9, 1H, MeC_6H_4CHMe_2), 1.79 (s, 3H, MeC_6H_4CHMe_2), 1.69 (s, 6H, (OC(Me))_2CH), 1.09 (d, J = 6.9, 6H, MeC_6H_4CHMe_2); 1^3C{^1H} NMR (C_6D_6) \delta 185.6 ((OC(Me))_2CH), 174.7 (CH(CO_2-Me)_2), 100.9 (J_{CH} = 159, (OC(Me))_2CH), 90.7 (C5), 81.8 (C2), 77.1 (C3 or C4), 73.4 (C3 or C4), 49.9 (CH(CO_2Me)_2), 31.1 (J_{CH} = 138, CH(CO_2Me)_2), 30.5 (C6), 26.9 ((OC(Me))_2CH), 22.3 (C7), 16.4 (C1); IR (KBr) 3062 (w), 2964 (m), 2945 (m), 2924 (m), 2875 (w), 1720 (s), 1572 (s), 1527 (m), 1435 (m), 1394 (m), 1182 (m), 1120 (m), 1068 (m), 800 (m) cm^{-1}. HREIMS: calcd for C_{20}H_{28}O_6^{192}Os (M^+), 556.1501; found, 556.1511.$

CymOs[CH(CO₂Me)₂][(OC(Ph))₂CH] (23). Treatment of 17 (8.4 mg, 0.21 mmol) with $H_2C(COPh)_2$ (5.0 mg, 0.022 mmol) in C₆D₆ (0.7 mL) resulted in an immediate color change to bright red. A ¹H NMR spectrum obtained after 5 min showed a new compound and H_2N -t-Bu. The solvent was lyophilized, and the solid residue was washed with pentane (1 mL), extracted into Et₂O, and filtered through Celite. The solvent was removed from the filtrate under reduced pressure leaving 8.2 mg (0.012 mmol, 58%) of a red solid: ¹H NMR (C₆D₆) δ 7.90 (s, J = 6.9, 4H, Ph), 7.22-7.16 (m, 6H, Ph), 6.63 (s, 1H, (OC(Ph))₂(CH), 5.56 (d, J = 5.5, 2H, $MeC_6H_4CHMe_2$), 5.46 (d, J = 5.5, 2H, $MeC_6H_4CHMe_2$), 4.47 (s, 1H, $CH(CO_2Me)_2$), 3.36 (s, 6H, $CH(CO_2Me)_2$), 2.59 (sept, J = 6.9, 1H, $MeC_6H_4CHMe_2$), 1.90 (s, 3H, $MeC_6H_4CHMe_2$), 1.14 (d, J = 6.9, 6H, $MeC_6H_4CHMe_2$); ¹³C{¹H} NMR (C_6D_6) δ 180.2 ((OC(Ph))₂CH), 174.9 (CH(CO₂Me)₂), 139.7 (*ipso*-Ph), 131.0 (Ph), 128.4 (Ph), 127.3 (Ph), 113.3 ($J_{CH} = 158$, (OC(Ph))₂CH), 95.8 (C5), 91.8 (C2), 78.3 (C3 or C4), 73.9 (C3 or C4), 50.0 (CH-($CO_2Me)_2$), 31.7 ($J_{CH} = 138$, $CH(CO_2Me)_2$), 30.3 (C6), 22.4 (C7), 16.8 (C1); IR (KBr) 3064 (w), 2958 (m), 2941 (m), 2920 (m), 2850 (w), 1720 (s), 1591 (m), 1539 (s), 1524 (s), 1485 (m), 1452 (m), 1432 (m), 1390 (m), 1196 (m), 1115 (m), 1059 (m) cm⁻¹. HREIMS: calcd for $C_{30}H_{32}O_6^{192}O_8$ (M⁺), 680.1814; found, 680.1812.

Acknowledgment. We are grateful for support of this work from the National Institutes of Health (Grant No. GM25459) and to Prof. Helmut Werner and Degussa AG for arranging a loan of $OsCl_3 \cdot 3H_2O$.

OM9305677