Manganese Carbonyl Bromide-Catalyzed Alcoholysis of the Monohydrosilane HSiMe₂Ph

Brian T. Gregg and Alan R. Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received April 20, 1993*

Summary: The dimeric manganese carbonyl bromide $[Mn(CO)_4Br]_2$ is an effective catalyst for the alcoholysis of dimethylphenylsilane in benzene at room temperature. Preparative scale procedures using a 1200:1200:1 mixture of alcohol, $HSiMe_2Ph$, and $[Mn(CO)_4Br]_2$ (0.084 mol %) afforded samples of analytically pure alkoxysilanes in good yields. tert-Butyl alcohol, for example, gave (CH₃)₃CO- $SiMe_2Ph$ in 82% yield after a 35-min reaction time, and allyl and propargyl alcohols quantitatively transformed to their alkoxysilane derivatives, with no evidence of competing hydrosilation of the carbon-carbon multiple bonds. Competitive reactions involving 1:1:1 mixtures of 2-butanol-acetone-HSiMe₂Ph and [Mn(CO)₄Br]₂ as catalyst exhibited chemoselective alcoholysis of dimethylphenylsilane. ¹H NMR spectral monitoring of catalyzed reactions between methanol or 2-butanol and HSiMe₂Ph was used in screening other manganese carbonyl complexes as potential HSiMe₂Ph alcoholysis catalysts. Their reaction times varied as follows: $[Mn(CO)_4Br]_2 > Mn(CO)_5$ - $Br \gg Mn(CO)_5CH_3 \approx Mn(CO)_5C(O)Ph > Mn(PPh_3)(CO)_4$ $Br > Mn(PPh_3)(CO)_4C(O)CH_3 \gg Mn(CO)_5(SiMe_2Ph) \gg$ $Mn_2(CO)_{10} \approx Rh(PPh_3)_3Cl$ (no reaction). Solvent-dependent turnover frequencies were determined for the [Mn-(CO)₄Br]₂-catalyzed dehydrocoupling of 2-butanol and HSiMe₂Ph for 0.289 M solutions of 2-butanol and HSiMe₂-Ph with 1.4 mol % precatalyst $[Mn(CO)_4Br]_2$: $N_t = 2183$ (THF), 2728 (C_6H_6), and 5457 h⁻¹ (CH_2Cl_2). In a second procedure, a preparative-scale reaction in CH_2Cl_2 containing only 0.084 mol % precatalyst but 3.12 M for each reactant afforded a much higher turnover frequency of 11 217 h⁻¹.

Introduction

A useful organotransition metal catalyst for alcoholysis of hydrosilanes to alkoxysilanes¹ should satisfy several criteria. The catalyst should be sufficiently active to dehydrogenatively couple even tertiary alcohols with the less reactive trialkylsilanes under mild, nonacidic and nonbasic conditions. This catalytic alcohol O-silation activity should be selective in the presence of competing functional groups such as carbon-carbon multiple bonds and carbonyl groups.² Further selectivity toward structurally different hydroxylic groups on the same molecule also would be desirable. Finally, a useful hydrosilane alcoholysis catalyst should be easily accessible and moderate in cost.

Of the relatively few transition metal complexes that are established silane alcoholysis catalysts, most are not active with trialkylsilanes.¹ Wilkinson's catalyst, Rh-(PPh₃)₃Cl, only dehydrocondenses Et₃SiH and alcohols

(b) Corey, J. In Advances In Silicon Chemistry; Larson, G.; Ed.; JAI Press, Inc.: Greenwich, CT, 1991; Vol. 1, p 327. (2) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, in refluxing benzene,^{3,4} and Cp₂TiCl₂/n-BuLi⁵ only effectively transforms di- and trihydrosilanes to alkoxysilanes. The more reactive catalysts $Co_2(CO)_{8,6}$ [IrCl(C_8H_{14})₂]₂,⁷ cis-PtCl₂(PhCH=CH₂)₂,⁸ and [IrH₂(THF)₂(PPh₃)₃]SbF₆.⁹ all competitively catalyze alkene hydrosilation or hydrogenation (H_2 is a byproduct of alcohol O-silation). Crabtree's catalyst, [IrH₂(THF)₂(PPH₃)₃]SbF₆, may be the most reactive, but Ru(CO)₂(PMe₃)₂Cl₂¹⁰ and Rh₂(O₂- $CC_3F_7)_4^{11}$ selectively promote silane alcoholysis in the presence of alkene functionalities. We now report that the readily available manganese carbonyl bromides Mn- $(CO)_5Br$ and $[Mn(CO)_4Br]_2^{12}$ are extremely reactive and potentially selective catalysts for alcoholysis of hydrosilanes.

Results and Discussion

The readily available dimeric manganese carbonyl bromide [Mn(CO)₄Br]₂^{12b} effectively catalyzes the alcoholysis of dimethylphenylsilane in benzene at room temperature. Treatment of the alcohols listed in Table 1 with HSiMe₂Ph and [Mn(CO)₄Br]₂ in a 1200:1200:1 ratio afforded their alkoxysilanes in generally high isolated yields. After a 10-20-s induction period, these reactions rapidly evolved gas (presumably H₂) and, in the cases of allylic, propargylic, methyl, and ethyl alcohols, also became noticeably exothermic.

Subsequent studies involving ¹H NMR spectral monitoring of these reactions has established that they were complete when gas evolution ceased.

We used as alternative reaction conditions for 2,2dimethyl-1,3-propanediol a 2:1 ratio of HSiMe₂Ph to diol in methylene chloride as the solvent (due to solubility

Organomet. Chem. 1980, 192, 325.
 Caseri, W.; Pregosin, P. S. Organometallics 1988, 7, 1373.
 Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1989, 111, 2527.
 Ochmichen, U.; Singer, H. J. Organomet. Chem. 1983, 243, 199.
 Doyle, M. P.; High, K. G.; Bagheri, V.; Pieters, R. J.; Lewis, P. J.;

Abstract published in Advance ACS Abstracts, February 1, 1994. (1) (a) Lukevics, E.; Dzintara, M. J. Organomet. Chem. 1985, 295, 265.

[,] Rappoport, Z., Eds.; Wiley Interscience: New York, 1989; Part 2, Chapter 25.

⁽³⁾ Ojima, I.; Kogure, T.; Nihonyanagi, M.; Kono, H.; Inaba, S.; Nagai, Y. Chem. Lett. 1973, 501.

^{(4) (}a) Corriu, R. J. P.; Moreau, J. J. E. J. Organomet. Chem. 1976, 114, (b) Corriu, R. J. P.; Moreau, J. J. E. J. Organomet. Chem. 1976, 120, 337. (c) Corriu, R. J. P.; Moreau, J. J. E. J. Organomet. Chem. 1977, 127, 7. (d) Corriu, R. J. P.; Guérin, C.; Moreau, J. J. E. Top. Stereochem. 1984, 15, 43.

<sup>15, 43.
(5)</sup> Bedard, T. C.; Corey, J. Y. J. Organomet. Chem. 1992, 428, 315.
(6) (a) Chalk, A. J. J. Chem. Soc., Chem. Commun. 1970, 847. (b)
Harrod, J. F.; Chalk, A. J.; In Organic Syntheses via Metal Carbonyls;
Wender, I., Pino, P., Eda.; Wiley: New York, 1977; Vol. 2, p673. (c) Hilal,
H. S. Microchem. J. 1986, 33, 392.
(7) Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J.
H. J. Organomet. Chem. 1980, 192, 329.

Pearson, M. M. J. Org. Chem. 1990, 55, 6082. (12) (a) Quick, M. H.; Angelici, R. J. Inorg. Synth. 1979, 19, 160. (b) Bamford, C. H.; Burley, J. W.; Coldbeck, M. J. Chem. Soc., Dalton Trans. 1972. 1846.

Alconolysis of HSIMe2Ph				
starting alcohol	time (min) ^{a,b}	silyl ether product	NMR yield ^c (%)	isolated yield ^a (%)
CH ₁ OH	15	CH ₁ OSiMe ₂ Ph	95+	93
CH ₃ CH ₂ OH ^d	20	CH ₃ CH ₂ OSiMe ₂ Ph		92
CH ₃ CH ₂ CH(CH ₃)OH	25	CH ₃ CH ₂ CH(CH ₃)OSiMe ₂ Ph	95+	82ª
(CH ₃) ₃ COH	35	(CH ₃) ₃ OSiMe ₂ Ph	95+	82e
CH2-CHCH2OH	10	CH2=CHCH2OSiMe2Ph	95+	88
CH=CCH2OH	10	CH=CCH ₂ OSiMe ₂ Ph		92
сн₃о-€сн₂он	45	CH ₃ O-CH ₂ OSiMe ₂ Ph	95+	64
сн₃о Он	95	CH ₃ O-OSiMe ₂ Ph		36
BrCH ₂ CH ₂ OH	30	BrCH ₂ CH ₂ OSiMe ₂ Ph		88
C C CH	25	COSiMe₂Ph		89
	180	PhMe ₂ SIO OSIMe ₂ Ph	95+	78¢J

 Table 1. Manganese Carbonyl Bromide-Catalyzed

 Alcoholysis of HSiMe₂Ph

^a Preparative scale: alcohol (31.2 mmol), HSiMe₂Ph (4.252 g, 31.2 mmol), and $[Mn(CO)_4Br]_2$ (13 mg, 0.026 mmol, 0.084 mol %) in 10 mL of C₆H₆. Product was isolated by distillation unless otherwise noted. ^b Cessation of gas evolution for preparative-scale reaction. ^c Reaction conditions: alcohol (1.00 mmol), HSiMe₂Ph (136 mg, 1.00 mmol), PhOMe (0.300 mmol, internal standard), and 5 mg (1.0 mol%) of $[Mn(CO)_4Br]_2$ in 600 mg of C₆D₆. Only alkoxysilanes, ROSiMe₂Ph, were detected by ¹H and ¹³C NMR spectroscopy. ^d NMR-scale reaction with HSiEt₃ (116 mg, 1.00 mmol) as noted in footnote *a* quantitatively afforded EtOSiEt₃, also within 20 min. ^e Product was isolated by column chromatography. ^f Preparative scale: alcohol (15.6 mmol), HSiMe₂Ph (4.252 g, 31.2 mmol), and $[Mn(CO)_4Br]_2$ (13 mg, 0.026 mmol, 0.084 mol %) in 10 mL of CH₂Cl₂.

Table 2. NN	IR Spectral and	Characterization	Data for the	e Alkoxysilanes	RO-SiMe-Ph
-------------	------------------------	------------------	--------------	-----------------	------------

				microanal. (%): found (cald)	
complex	¹ H NMR (C_6D_6) (δ)	$^{13}C{^{1}H} NMR (C_6D_6) (\delta)$	(°Č)	С	Н
HC=CCH ₂ OSiMe ₂ Ph	4.06 (d, $J = 2.4$, CH_2), 2.04 (t, $J = 2.4$, CH), 0.32 (s, SiCH ₃) ^a	137.4 (<i>ipso</i> -Ph), ^b 82.4 (HC=C), 73.5 (HC=C), 51.3 (CH ₂), -1.5 (SiCH ₃)	180	69.37 (69.42)	7.38 (7.41)
H _A H _C OSiMe ₂ Ph	5.84 (ddt, 1H, H_c), 5.28 (ddt, 1H, $J_{ac} = 17.3, H_a$), 5.00 (ddt, 1H, $J_{bc} = 10.5, H_b$), 4.00 (ddd, 2H, CH_2), 0.31 (s, Si CH_3) ^a	138.2 (CH ₂ =-CCH ₂), 137.6 (<i>ipso</i> -Ph), ^b 114.0 (CH ₂ =-CCH ₂), 63.9 (CH ₂ =-CCH ₂), -1.6 (SiCH ₃)	1 9 7	68.86 (68.69)	8.50 (8.38)
EtCH(CH ₃)OSiMe ₂ Ph	3.63 (qt, 1H, CH), 1.36 (m, 2H, CH ₂), 1.03 (d, $J = 6.1$, CH ₃ CH ₂), 0.80 (t, $J = 7.3$, CHCH ₃), 0.31 (s, SiCH ₃) ^a	139.0 (<i>ipso</i> -Ph), ^b 70.3 (CH), 32.6 (CH ₂), 23.4 (OCHCH ₃), 10.2 (CH ₂ CH ₃), -0.8 (SiCH ₃)		69.02 (69.17)	9.76 (9.67)
$(CH_3)_3COSiMe_2Ph$	7.64 (m, 2H, Ph), 7.23 (m, 3H, Ph), 1.17 (s, (CH ₃) ₃ C), 0.37 (s, SiCH ₃)	140.7 (<i>ipso</i> -Ph), ^b 72.7 ($C(CH_3)_3$), 32.2 ($C(CH_3)_3$), 1.6 (Si CH_3)		69.11 (69.17)	9.67 (9.67)
$BrCH_2CH_2OSiMe_2Ph$	3.54 (t, $J = 6.1$, CH_2O), 3.01 (t, $J = 6.4$, CH_2Br), 0.25 (s, $SiCH_3$) ^a	137.6 (<i>ipso</i> -Ph), ^b 63.4 (OCH ₂), 33.4 (CH ₂ Br), -1.8 (SiCH ₃)		46.75 (46.43)	5.83 (5.83)
CH ₃ O-CH ₂ OSIMe ₂ Ph	7.59 (m, 2H, Ph), 7.22 (m, 5H, Ph + C_6H_4), 6.77 (m, 2H, $CH_3OC_6H_4$), 4.58 (s, CH_2O), 3.29 (s, CH_3O), 0.32 (s, $SiCH_3$)	159.4 (CH_3O - <i>ipso</i> -Ph), 149.1 (CH_3O - <i>p</i> -C ₆ H ₄), 138.2 (Si- <i>ipso</i> -Ph), ^b 133.9 (CH_3O - o -C ₆ H ₄), 113.9 (CH_3O - <i>m</i> -C ₆ H ₄), 64.9 (CH_2O), 54.7 (CH_3O), -1.5 (SiCH ₃)	115	70.29 (70.54)	7.36 (7.40)
CH ₃ O-CSiMe ₂ Ph	7.60 (m, 2H, Ph), 7.21 (m, 3H, Ph), 6.80 (m, 2H, C ₆ H ₄), 6.60 (m, 2H, C ₆ H ₄), 3.27 (s, CH ₃ O), 0.40 (s, SiCH ₃)	154.9 ($\dot{CH}_{3}O$ - <i>ipso</i> -Ph), 149.2 ($CH_{3}O$ - <i>p</i> - $C_{6}H_{4}$), 137.7 (\dot{Si} - <i>ipso</i> -Ph), ^b 133.8 ($CH_{3}O$ - o - $C_{6}H_{4}$), 114.9 ($CH_{3}O$ - <i>m</i> - $C_{6}H_{4}$), 55.0 ($CH_{3}O$), -1.6 ($\dot{Si}CH_{3}$)	894		
$H_{0} \sim H_{0} \sim OSiMe_{2}Ph$ $H_{2} \sim C_{0} \sim C^{2}H_{2}$	7.60 (m, 2H, Ph), 7.21 (m, 3H, Ph), 3.61 (m, 4H, OCH ₂), 3.34 (d, $J =$ 7.29, CH ₂), 2.22 (m, 1H, CH), 1.57 (m, 1H, H_c), 1.27 (m, 1H, H_d), 0.28 (s, SiCH ₃)	137.7 (<i>ipso</i> -Ph), ^b 70.6 (C ₂), 67.6 (C ₃), 64.9 (CH ₂), 41.9 (CH), 28.8 (C ₄), -1.8 (SiCH ₃)	135	65.89 (66.05)	8.51 (8.53)
PhMe ₂ SIO OSiMe ₂ Ph Me Me	7.60 (m, 2H, Ph), 7.21 (m, 3H, Ph), 3.44 (s, CH ₂), 0.89 (s, CH ₃), 0.35 (s, SiCH ₃)	137.7 (<i>ipso</i> -Ph), ⁶ 68.5 (CH ₂ O), 38.0 (CMe ₂), 21.6 (CH ₃), -1.7 (SiCH ₃)	1 28 ¢		

^a Phenyl absorptions for SiMe₂Ph at 7.52 (2 H), 7.20 (3 H). ^b Other phenyl ring carbons absorb at 133.5–133.8, 130.0–130.3, and 128.3–128.7. ^c Distilled at 380 mmHg.

reasons for the preparative-scale reactions). Although the initial burst of gas evolution subsided within 25 min, a full 3 h was required before all gas evolution ceased. Under these conditions, the diol transformed to its bis(silyl ether) (Table 1).

Somewhat more of the precatalyst $[Mn(CO)_4Br]_2$, typically 1.0 mol %, was used in C_6D_6 solutions for studies involving ¹H and ¹³C NMR spectral monitoring of the reactions that are listed in Table 1. All reactions studied quantitatively provided alkoxysilane products, with the presence of diagnostic SiMe NMR absorptions (Table 2) making it particularly straightforward to rule out other products. In particular, we detected no hydrosilation of the carbon-carbon double bond² of allyl alcohol even in the presence of 2 equiv of $HSiMe_2Ph$. This result is not surprising in as much as both styrene and cyclopentene remained inert under similar conditions involving HSiMe₂- $Ph/[Mn(CO)_4Br]_2$.

A number of other manganese carbonyl complexes were screened as potential HSiMe₂Ph alcoholysis catalysts with methanol (Table 3) and 2-butanol (Table 4). Monomeric Mn(CO)5Br exhibited diminished activity with respect to $[Mn(CO)_4Br]_2$ (Tables 3 and 4), although it was more reactive than any of the other complexes surveyed. A qualitative ordering of precatalyst activity is as follows:

$$\begin{split} [\mathrm{Mn}(\mathrm{CO})_4\mathrm{Br}]_2 &> \mathrm{Mn}(\mathrm{CO})_5\mathrm{Br} \gg \mathrm{Mn}(\mathrm{CO})_5\mathrm{CH}_3 \approx \\ \mathrm{Mn}(\mathrm{CO})_5\mathrm{C}(\mathrm{O})\mathrm{Ph} &> \mathrm{Mn}(\mathrm{PPh}_3)(\mathrm{CO})_4\mathrm{Br} > \\ \mathrm{Mn}(\mathrm{PPh}_3)(\mathrm{CO})_4\mathrm{C}(\mathrm{O})\mathrm{CH}_3 \gg \mathrm{Mn}(\mathrm{CO})_5(\mathrm{Si}\mathrm{Me}_2\mathrm{Ph}) \gg \\ \mathrm{Mn}_2(\mathrm{CO})_{10} \approx \mathrm{Rh}(\mathrm{PPh}_3)_3\mathrm{Cl} \text{ (no reaction)} \end{split}$$

The low to nonreactivity of the manganese silvl and $Mn_2(CO)_{10}$ is consistent with their inability to catalyze either SiH/SiD exchange between $HSiMe_2Et$ and $DSiMe_2$ -Ph¹³ or hydrosilation of aldehydes, ketones, or organometallic acyl complexes.¹⁴ The two manganese bromide and the benzoyl complexes, for example, efficiently catalyze both SiH/SiD exchange and hydrosilation of a carbon-oxygen double bond.

Hilal and co-workers¹⁵ had reported that $Mn_2(CO)_{10}$ (1.25 mol %) slowly catalyzed alcoholysis of HSi(OEt)₃ and (in one experimental run) HSiEt₃ in toluene at 30 °C. The rates of these reactions decrease in the order n-hexane > toluene \gg tetrahydrofuran (THF). These reactions may be photochemically induced. Barton et al.¹⁶ recently reported that both rhenium and manganese dimers M2- $(CO)_{10}$ require laboratory lighting in order to efficiently catalyze alcoholysis of phenylsilane. Reaction times for the $Re_2(CO)_{10}$ -catalyzed hydrosilane alcoholysis decreased in the order *n*-pentane > $CH_2Cl_2 > C_6H_6$.

An intriguing outcome of screening prospective manganese catalysts was that the acetyl complex Mn(PPh₃)- $(CO)_4C(O)CH_3$ only functioned as a very sluggish silane alcoholysis catalyst even with methanol. This acetyl complex, however, is a particularly active hydrosilation catalyst toward aldehydes, ketones, and organometallic acyl complexes.¹⁴ It thus appeared possible that manganese-catalyzed hydrosilane alcoholysis and ketone hydrosilation could occur chemoselectively. We therefore compared Mn(PPh₃)(CO)₄C(O)CH₃ and [Mn(CO)₄Br]₂ as catalysts for the reactions of HSiMe₂Ph and 1:1 mixtures of acetone and 2-butanol.

In competition reactions, mixtures containing 1.0 mmol of acetone and 2-butanol in 600 mg C_6D_6 were treated with just 1 equiv of HSiMe₂Ph and either [Mn(CO)₄Br]₂ or $Mn(PPh_3)(CO)_4C(O)CH_3$ (0.084 mol %) as the catalyst. The manganese bromide catalyst proved to be extremely active; gas evolution ceased within 9 min. Results of subsequent ¹H and ¹³C NMR spectral monitoring moreover were consistent with chemoselective silane alcoholysis: all of the hydrosilane had converted to the alkoxysilane CH₃-CH(OSiMe₂Ph)CH₂CH₃, and no acetone hydrosilation was evident. Very few other catalysts that we are aware of

chemoselectively dehydrocouple a hydroxyl group and hydrosilane in the presence of a ketone.9-11

Interestingly, similar competition reactions but using $Mn(PPh_3)(CO)_4C(O)CH_3$ as the catalyst underwent no transformation over 4 h. The presence of the alcohol inhibited the otherwise facile hydrosilation of acetone.

Turnover frequencies were determined for the [Mn-(CO)₄Br]₂-catalyzed dehydrocoupling of 2-butanol and HSiMe₂Ph under two sets of conditions. First, initial velocities for the rate of H₂ evolution were measured for 0.289 M solutions of 2-butanol and HSiMe₂Ph with 1.4 mol % precatalyst $[Mn(CO)_4Br]_2$. These initial velocities were converted to turnover numbers that varied with the reaction solvent: $N_t = 2183$ (THF), 2728 (C₆H₆), and 5457 h^{-1} (CH₂Cl₂). In a second procedure, a preparative-scale reaction in CH₂Cl₂ containing only 0.084 mol % precatalyst but 3.12 M for each reactant afforded a much higher turnover frequency of 11 217 h^{-1} .

Values for these turnover frequencies identify a moderately active catalyst system that can be compared with Ru(CO)₂(PMe₃)₂Cl₂¹⁰ and [IrH₂(THF)₂(PPh₃)₃]SbFe.⁹ The ruthenium complex catalyzes alcoholysis of triethylsilane at 2500 (MeOH) to 70 (sec-BuOH) turnovers h^{-1} / mol of catalyst in THF, whereas Crabtree's iridium precatalyst engenders turnover frequencies of 53 000-110 000 h^{-1} (same alcohols and silane in CH₂Cl₂). Recently reported Ni(II) thiosemicarbazone systems slowly catalyze methanolysis of triethylsilane, $N_t \leq 45 \,\mathrm{h}^{-1} \,(\mathrm{DMSO-C_6H_6})^{.17}$

The O-silation of 2-butanol/HSiMe₂Ph with the manganese bromide precatalysts was investigated in the presence of potential inhibitors. The presence of 1 atm of carbon monoxide during alcohol O-silation, while allowing for the venting of the hydrogen, approximately doubled both the induction and reaction times for the $[Mn(CO)_4Br]_2$ precatalyst. With $Mn(CO)_5Br$ as the catalyst, CO extended both times by a factor of 3 (Table 5). Pyridine (1 and 2 equiv with $[Mn(CO)_4Br]_2$ and Mn-(CO)₅Br, respectively) immediately terminated catalysis. Less drastic inhibition was achieved by using 2.6-lutidine. which approximately doubled the induction and reaction times.

The manganese carbonyl bromide-catalyzed alcoholysis of HSiMe₂Ph exhibits a reactivity pattern that resembles SiH/SiD exchange between HSiMe₂Et and DSiMe₂Ph.¹³ These isotope exchange reactions also are catalyzed by $Mn(CO)_5Br$ or $Mn(CO)_5C(O)Ph$ but not by $Mn_2(CO)_{10}$ or $Mn(CO)_5(SiMe_2Ph)$. Modest CO and complete pyridine inhibition also characterize the SiH/SiD exchange. Results of a kinetics study on these reactions (using $Mn(CO)_5C$ - $(O)C_6H_4CH_3$ as the precatalyst) were consistent with a pathway that cycles between coordinatively unsaturated $Mn(CO)_4(SiR_3)$ as the active catalysts and the intermediates $Mn(CO)_4H(SiR_3)_2$ (Scheme 1).

A similar pathway could apply to the manganesecatalyzed silane alcoholysis. Bridge cleavage of [Mn-(CO)₄Br]₂ and CO dissociation from Mn(CO)₅Br¹⁸ would afford the same active catalyst $Mn(CO)_4(SiMe_2Ph)$ via the illustrated hydrosilane oxidative addition¹⁹ and HBr reductive elimination sequence.²⁰ Addition of another 1 equiv of HSiMe₂Ph followed by alcoholysis of a manganese

⁽¹³⁾ Gregg, B. T.; Cutler, A. R. Organometallics 1993, 12, 2006.
(14) (a) Hanna, P. K.; Gregg, B. T.; Cutler, A. R. Organometallics 1991, 10, 31. (b) Hanna, P. K.; Gregg, B. T.; Tarazano, D. L.; Pinkes, J. R.; Cutler, A. R. In Homogeneous Transition Metal Catalyzed Reactions; Advances in Chemistry Series No. 230; Moser, W. R., Slocum, D. W., Eds.; American Chemical Society: Washington, DC, 1992; p 491. (15) Hilal, H. S.; Khalaf, S.; Al Nuri, M.; Karmi, M. J. Mol. Catal.

^{1986. 35. 137.}

⁽¹⁶⁾ Barton, D. H. R.; Kelley, M. J. Tetrahedron Lett. 1992, 33, 5041.

⁽¹⁷⁾ Barber, D. E.; Lu, Z.; Richardson, T.; Crabtree, R. H. Inorg. Chem. 1992. 31. 4709.

^{(18) (}a) Davy, R. D.; Hall, M. B. Inorg. Chem. 1989, 28, 3524. (b) Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; Brooks/Cole: Monterey, CA, 1985; p 115. (c) Atwood, J. D.; Brown, T. L. J. Am. Chem. Soc. 1975, 97, 3380; 1976, 98, 3155, 3160.

silyl group on Mn(CO)₄H(SiMe₂Ph)₂, as established for stable $Mn(CO)_5(SiR_3)^{22}$ and $CpMn(CO)_2(\eta^2-H-SiR_3)^{4d,23}$ complexes, then provides the alkoxysilane and H₂. Analogous heterolytic cleavage of a metal-silyl bond^{19,24} has been proposed previously^{1,4a,d,11,15} as the key step in other metal complex-catalyzed silane alcoholysis reactions.

If this working hypothesis for the silane alcoholysis mechanism applies, then the amount of manganese carbonyl bromide precatalyst that converts to active catalyst must be extremely low. IR spectral monitoring of experimental runs containing $2 \mod \% [Mn(CO)_4Br]_2$ or Mn(CO)₅Br and 3.33 M in HSiMe₂Ph, with or without methanol coreactant present, indicated that the precatalyst was unaltered. With Mn(CO)₅Br catalysis, for example, the absorptivity for the intense $\nu(CO)$ at 2049 cm⁻¹ did not perceptibly change.

Another plausible pathway, also illustrated above, centers on the unsaturated Mn(CO)₄Br as the active alcohol O-silation catalyst. This Mn(CO)₄Br active catalyst would transform HSiMe₂Ph to its alkoxysilane product through alcoholysis of a subsequent Mn(CO)₄HBr-(SiMe₂Ph) intermediate. Alternatively, this intermediate could eliminate BrSiMe₂Ph, which would undergo alcoholysis to give the same alkoxysilane product. The released HBr then would add to the manganese center, releasing H_2 , to regenerate the active catalyst. Although these latter two pathways account for the manganese carbonyl bromide-catalyzed alcoholysis of HSiMe₂Ph, they do not explain the moderate catalytic activity of related manganese carbonyl complexes, viz., Mn(CO)₅CH₃ and Mn- $(CO)_5C(O)Ph$ (Table 3).

Within the limited set of alcohols considered in this study, the manganese carbonyl bromides Mn(CO)5Br and $[Mn(CO)_4Br]_2$ are useful catalysts for alcoholysis of

(20) Alternatively, manganese η^2 -(Si-H) intermediates^{19,21} could supplant oxidative addition-reductive elimination sequences9 in the transforming of Mn(CO)₄Br to Mn(CO)₄SiMe₂Ph.

(23) Colomer, E.; Corriu, R. J. P.; Vioux, A. Inorg. Chem. 1979, 18, 695. (24) (a) Haszeldine, R. N.; Parish, R. V.; Riley, B. F. J. Chem. Soc.,

Dalton. Trans. 1980, 705. (b) Brookhart, M.; Chandler, W. A.; Pfister, A. C.; Santini, C. C.; White, P. S. Organometallics 1992, 11, 1263.

hydrosilanes: (1) These catalysts dehydrogenatively couple even tertiary alcohols with the less reactive trialkylsilanes under mild conditions. (2) Catalytic alcohol O-silation evidently occurs in the presence of competing alkene and carbonyl groups. (3) The manganese carbonyl bromide precatalysts certainly are easily accessible and moderate in cost. Our fourth criterion for a useful hydrosilane alcoholysis catalyst, discerning structurally different hydroxylic groups on the same molecule, was not addressed in this study. Future studies will attempt to extend the synthetic scope and selectivity and to probe the mechanistic facets of these manganese carbonyl-catalyzed hydrosilane alcoholysis reactions.

Experimental Section

General Methods. ¹H and ¹³C NMR spectral data were obtained in C₆D₆ with Varian Unity-500 and Model XL-200 spectrometers; solution infrared spectral data (IR) were acquired on a Perkin-Elmer FT spectrophotometer, Model No. 1600. Silanes, alcohols, $Mn_2(CO)_{10}$, and C_6D_6 were used as received, and benzene was distilled under nitrogen from sodium benzophenone ketyl. The manganese carbonyl precatalysts Mn-(CO)5Br,^{12a} [Mn(CO)4Br]2,^{12b} Mn(CO)5(SiMe2Ph),^{14a} Mn(PPh3)-(CO)4Br,18c,25 Mn(CO)5CH3,26 and Mn(CO)5C(O)Ph,28a,27 Mn-(PPh₃)(CO)₄C(O)CH₃,²⁸ and Rh(PPh₃)₃Cl²⁹ were prepared by literature procedures and judged pure by IR and ¹H NMR spectroscopy. Mn(CO)₆Br was sublimed; all organometallic reagents were stored under nitrogen, but catalytic silane alcoholysis reactions were performed without benefit of inert atmosphere. Combustion microanalyses were done by Quantitative Technologies, Bound Brook, NJ.

Catalytic HSiMe₂Ph Alcoholysis. (i) General Preparative-Scale Procedure. The manganese carbonyl bromide [Mn-(CO)₄Br]₂ (13 mg, 0.0263 mmol) was added to a benzene solution (10 mL) containing the alcohol (31.2 mmol) and HSiMe₂Ph (4.252 g, 31.2 mmol). The 50-mL reaction flask was open to the atmosphere. After a 20-30-s induction period, gas evolution from the pale yellow solutions was pronounced; reactions involving allyl, propargyl, ethyl, and methyl alcohols also were noticeably exothermic. Once the reactions ceased evolving gas, generally within 10-45 min, they were distilled or chromatographed on flash-grade silica gel (fluorescent indicator) with 1:1 methylene chloride-hexane. Isolated alkoxysilanes (Table 1) were spectroscopically (1H, 13C NMR) and analytically pure (Table 2). NMR spectral data for CH₃OSiMe₂Ph, CH₃CH₂OSiMe₂Ph, and CH₃CH₂OSiEt₃ agree with that recently reported.⁸ No attempt was made to recover or otherwise inactivate the catalyst.

(ii) NMR Spectral Monitoring. C₆D₆ solutions (600 mg) containing the alcohol (1.00 mmol), HSiMe₂Ph (136 mg, 1.00 mmol), C₆H₅OMe as the internal standard (3 mg, 0.03 mmol), and [Mn(CO)₄Br]₂ (5 mg, 0.010 mmol) were prepared in a vial and transferred to septum-stoppered NMR tubes. A syringe needle was used between NMR spectral scans to vent the build up of pressure. Cessation of gas evolution closely corresponded to the observed consumption of starting reagents; thus, the same relative ordering of reactivity of alcohols (Table 1) was noted. These reactions were monitored by ¹H NMR spectroscopy using

^{(19) (}a) Tilley, T. D. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley Interscience: New York, 1989; Part 2, Chapter 24. (b) Tilley, T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1992; Chapter 10.

⁽²¹⁾ Schubert, U. Adv. Organomet. Chem. 1990, 30, 151.
(22) (a) Gladysz, J. A.; Tam, W.; Williams, G. M.; Johnson, D. L.; Parker, D. W. Inorg. Chem. 1979, 18, 1163. (b) Gladysz, J. A. Acc. Chem. Res. 1984, 17, 326. (c) Cerveau, G.; Colomer, E.; Corriu, R. J. P. J. Organomet. Chem. 1982, 222, 222 Organomet. Chem. 1982, 236, 33.

⁽²⁵⁾ Angelici, R. J.; Basolo, F. J. Am. Chem. Soc. 1962, 84, 2495; Inorg. Chem. 1963, 2, 728

^{(26) (}a) Closson, R. D.; Kozikowski, J.; Coffield, T. H. J. Org. Chem. (a) (a) Choseni, R. B., Rozzkowski, S., Contenti, T. H. C. O', Chem.
(b) King, R. B. Organometallic Syntheses, Part I, Vol 1, Academic Press: New York, 1965; Part I, Vol 1, p 147. (c) Mckinney, R. J.; Crawford, S. S. Inorg. Synth. 1989, 26, 155. (27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
(27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
(27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
(27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
(27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
(27) (a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.

Chem. 1990, 383, 201.

 ^{(28) (}a) Mawby, R. J.; Basolo, F.; Pearson, R. G. J. Am. Chem. Soc.
 1964, 86, 5043. (b) Kraihanzel, C. S.; Maples, P. K. Inorg. Chem. 1968,
 7, 1806. (c) Noack, K.; Ruch, M.; Calderazzo, F. Inorg. Chem. 1968, 7, 345

⁽²⁹⁾ Osborn, J. A.; Wilkinson, G. Inorg. Synth. 1990, 28, 77.

Table 3. Manganese Carbonyl Catalyst Screening for O-Silation of Methanol with HSiMe₂Ph

precatalyst ^a	time (h)	extent of reacn ^b (%)
Mn(CO) ₅ CH ₃	0.50	30
$Mn(CO)_5C(O)C_6H_5$	0.50	30
Mn(PPh ₃)(CO) ₄ C(O)CH ₃	2.5	25
Mn(CO) ₅ Br	0.25	100
[Mn(CO) ₄ Br] ₂	0.10	100

^{*a*} Reaction conditions: Mn precatalyst (0.011 mmol, 1.9 mol %), CH₃OH (19 mg, 0.577 mmol), and HSiMe₂Ph (79 mg, 0.577 mmol) in 600 mg of C₆D₆. ^{*b*} Reaction was monitored by ¹H NMR spectroscopy; only starting materials and/or CH₃OSiMe₂Ph were detected.

 Table 4.
 Homogeneous Catalyst Screening for O-Silation of 2-Butanol with HSiMe₂Ph

precatalyst ^a	time (h)	extent of reacn ^b (%)
Mn ₂ (CO) ₁₀	5.0	0
Mn(PPh ₃)(CO) ₄ Br	1.5	90+
Mn(CO) ₅ SiMe ₂ Ph	7.0	100
Mn(CO) ₅ Br	0.4	100
$[Mn(CO)_4Br]_2$	0.16	100
Rh(PPh ₃) ₃ Cl	2.0	0

^a Reaction conditions: precatalyst (0.011 mmol, 1.9 mol %), CH₃CH(OH)CH₂CH₃ (43 mg, 0.577 mmol), and HSiMe₂Ph (79 mg, 0.577 mmol) in 600 mg of C₆D₆. ^b Reaction was monitored by ¹H NMR spectroscopy; only starting materials and/or CH₃CH(OSiMe₂Ph)CH₂CH₃ were detected.

delay times and other spectrometer settings that afforded a 5.0% precision for integrations of the SiH and SiMe absorptions (δ 4.58 and 0.32, respectively, for HSiMe₂Ph). Between 94 and 99% of the starting hydrosilane was accounted for as alkoxysilane product.

Results also are reported for screening a variety of manganese carbonyl precatalysts (0.011 mmol, 1.9 mol %) for reactions between HSiMe₂Ph and methanol or 2-butanol under conditions that are reported in Tables 3 and 4, respectively.

(iii) CO Inhibition. Four 4-mL vials were charged with benzene solutions (2 mL) containing 2-butanol (43 mg, 0.579 mmol) and HSiMe₂Ph (79 mg, 0.579 mmol). Two of these solutions had been purged with carbon monoxide for 5 min before $Mn(CO)_5Br$ (2 mg, 0.0073 mmol) and $[Mn(CO)_4Br]_2$ (3 mg, 0.0061

Table 5. Induction and Reaction Times for Manganese Bromide-Catalyzed O-Silation of 2-Butanol with HSiMe₂Ph

<u> </u>	control reacns ^b		1 atm of CO ^c	
catalyst ^a	induction time ^d (s)	completion time ^d (min)	induction time ^d (s)	completion time ^d (min)
MnBr(CO)5	40	25	120	>40
$[Mn(CO)_4Br]_2$	20	<5	35	<10

^{*a*} 1.1 mol % manganese bromide; CH₃CH(OH)CH₂CH₃ and HSi-Me₂Ph, 0.579 mmol in 2 mL of C₆H₆. ^{*b*} Set up under open atmosphere. ^{*c*} 1 atm of CO maintained; H₂ partial pressure vented. ^{*d*} Onset and cessation of gas evolution, respectively.

mmol) were added, and the vials were capped with serum stoppers. Two syringe needles inserted through the septa maintained a gentle CO flow above the surface of these solutions and retained a net 1 atm with the aid of an oil bubbler. The remaining two vials, open to the air, were treated with the manganese bromide precatalysts. Induction and reaction times (as judged by cessation of gas evolution) are recorded in Table 5.

(iv) Determination of Turnover Numbers. The procedure of Luo and Crabtree⁹ was used to measure the H₂ evolution from the catalyzed alcoholysis of HSiMe₂Ph as a function of time and to calculate the initial velocity and turnover number. A benzene solution (2 mL) containing 2-butanol (43 mg, 0.579 mmol) and HSiMe₂Ph (79 mg, 0.579 mmol) was treated with [Mn(CO)_Br]₂ (4 mg, 0.0081 mmol), and the volume of water displaced by the presumed H₂ was monitored. An initial rate of 11.05 M/h was calculated using the equation $v_i = P_{H_2}/[RTV_{soln}][dV_{H_2}/dt]$ and $dV_{\rm H_2}/dt = 0.15$ mL/s, thus affording a turnover number, $N_t =$ v_i [catalyst], of 2728 ± 203 h⁻¹ (2 σ for three replicate runs). This procedure was repeated using THF and CH₂Cl₂ as solvents: initial velocities of 8.84 and 22.1 M/h, respectively, and N_t values of 2183 and 5457 h⁻¹ were obtained. A final preparative-scale reaction (Table 1) was carried out in 10 mL of CH₂Cl₂: initial rate = 29.5 M/h and N_t = 11 217 h⁻¹.

Acknowledgment. We gratefully acknowledge receiving generous financial support from the Department of Energy, Office of Basic Energy Science.

OM9302498