An Unusual Reaction in the Course of Fischer Carbene Synthesis: Preparation and Structure of Vinylidenemolybdenum Complexes

Junes Ipaktschi,*⁺t Burkhard G. Müller,⁺ and Robert Glaum^t

Institute of Organic Chemistry and Institute of Inorganic and Analytical Chemistry, Justus-Liebig- University, Heinrich-Buff -Ring 58, 0-35392 Giessen, Federal Republic of Germany

Received July 15, 199P

Summary: The reaction of $[(\eta^5-C_5H_5)(CO)_2(NO)Mo](1)$ *with (phenylethyny1)lithium and subsequently with methyl trifluoromethanesulfonate led in 43% yield to* $\{(\eta^5-\tilde{C}_5H_5)(CO)(NO)Mo[=C=C(CH_3)(Ph)]\}$ *(3a) as a 2:1* \hat{m} *ixture of rotamers* ($\Delta G^* = 20.5$ (± 0.3) *kcal/mol*). The *anionic intermediate [((s6-C6H6)(CO)(NO)(RICC)Mo/Li* **(7)** *is trapped by thereaction withHCloraceticanhydride which yields vinylidene complexes* $({\eta^5} - C_5H_5)(CO)(NO)$ - $Mo[=C=C(CH₃)(Ph)]$ (5) and $\{(\pi^5-C_6H_6)(CO)(NO)$ -*Mo[=C=C(COCHg)(Ph)]] (6) respectively. The X-ray analysis of* $\{(\eta^5 \text{-} C_5 H_5)(CO)(NO)Mo[=C=C(CH_3)(Ph)\}$ *is reported.*

Introduction

The applications of Fischer-type metal carbene complexes in synthetic organic chemistry are manifold.' Not only the reactivity due to the metal-carbene functionality but **also** that of adjacent substituents' has shown possibilities of usefulness in a number of reactions. *An* area in need of further exploration is the use of chiral-at-metal carbene complexes in stereospecific synthesis.2 In the course of an attempt to prepare the chiral carbene complexes **4** from molybdenum complex **1** by the general Fischer methodology for the preparation of alkoxycarbene complexes, $¹$ we have discovered an interesting pathway</sup> for the synthesis of vinylidenemetal complexes. In this communication we describe the synthesis of **3a, 3b, 5a,** and **6a** and the X-ray diffraction analysis of **3a.**

Results and Discussion

The reaction of acetylide **2a** with the molybdenum complexes **1** in THF at **-30** "C led to a deep green solution. Treatment of this solution with trimethyloxonium tetrafluoroborate or preferentially with methyl trifluoromethanesulfonate afforded, after chromatography (silica gel; pentane:ether **3:l)** and crystallization from pentane, vinylidene complex **3a** in **43%** yield as an orange, airstable crystalline product.3 At room temperature, two rotamers are recognized in the product mixture with the

ratio **2:l.** This is evident from the 'H NMR spectrum, which shows two signals for the CH₃ group at δ 2.01 and **2.09 (2:1),** and from the I3C NMR spectrum, with two distinct signals for C_{α} at δ 366.6 and 366.3, two CO signals at δ 217.1 and 217.7, and two C_{β} resonances at δ 134.3 and **134.7. 3a** shows a temperature-dependent 'H NMR spectrum, and a $\Delta G^* = 20.5 \, (\pm 0.3) \, \text{kcal/mol}$ was measured for the hindered rotation by dynamic NMR experiments. This amount of energy is considerably higher than those reported for comparable vinylidenemanganese complexes $[(\eta^5\text{-}\text{MeC}_5\text{H}_4)\text{Mn}(\text{CO})(\text{PPh}_3)(=C=\text{CRR'})]$ (R = CH₃, R' $=$ H, 9.9 kcal/mol, R = CH₃, R' = C₂H₅, 10.8 kcal/mol)⁴ and is similar to the ΔG^* value for vinylidenerhenium compounds such as $[(\eta^5-C_5H_5)Re^+(NO)(PPh_3)$ - $(=-C=-CHR)$ (R = C_6H_5 , 21.5 \pm 0.6 kcal/mol).⁵ It is not possible to rigorously establish whether isomerization occurs via $Mo=C_{\alpha}$ or $C_{\alpha}=C_{\beta}$ bond rotation. However, since the alkene $C=C$ rotation normally requires much higher temperatures, we assume that $Mo=C_{\alpha}$ bond rotation is occurring. It is interesting to note that the Fischer carbene complex **4a** could not be detected in this experiment.⁶

t **Institute of Organic Chemistry.**

^{*o*} Abstract published in Advance ACS Abstracts, February 1, 1994. (1) For reviews see: (a) Rubezhov, A. Z. *Russ. Chem. Rev.* 1991, *60*, (b) Wulff, W. D. In Advances in Metal-Organic Chemistry;
89–105. (b) Wulff, W. D. In Advances in Metal-Organic Chemistry;
Liebeskind, L. S., Ed.; JAI **TransitionMetal Carbene Complezes; Verlag Chemie: Deerfield Beach, FL, 1984. (d) Ddtz, K. H. Angew. Chem.,** *Int.* **Ed. Engl. 1984,23,687- 608.**

^{(2) (}a) Lugan, N.; Kelley, C.; Terry, M. R.; Geoffroy, G. L. *J.* **Am. Chem. SOC. 1990,112,3220-3221. (b) Brookhart, M.; Buck, R. C.** *J.* **Am. Chem. SOC. 1989,111,669-667. (c) Stereochemistry** *of* **Organometallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier: New York, 1989; Vol. 3, pp 141-223.**

⁽³⁾ A neutral vinylidenemolybdenum complex is prepared by the reaction of $\{Mo(=CCH_2'Pr)[(P(OMe_3)]_2(\eta^5-C_6H_6)\}$ with [4-FC₆H₆N₂]-
[BFd]; see: Baker, P. K.; Barker, G. K.; Gill, D. S.; Green, M.; Orpen, A. **G.; Williams, D.; Welch, A. J.** *J.* **Chem. SOC., Dalton** *Trans.* **1989,1321- 1331.**

⁽⁴⁾ Kelley, C.; Lugan, N.; Terry, M. R.; Geoffroy, G. L.; Haggerty, B.

S.; Rhemngold, A. L. *J.* **Am. Chem. SOC. 1992,114,6735-6749. (5) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouee, C. E.; Gladysz, J. A.** *J.* **Am.** *Chem.* **SOC. 1988,110,6096-6109.**

and angles are listed. The bond distances and angles are comparable to other molybdenum vinylidene complexes like $\{(\eta^5 - C_5H_5)$ Mo- $(C=CHPh)Br[P(OCH)₃]₂$.⁷ Also the Mo-C(1) bond length of $1.937(4)$ Å is rather close to the Mo-vinylidene bond length in the former complex for which 1.917(5) **A** is reported.

The formations of vinylidene complexes by alkylation or protonation of alkynyl transition metal compounds $(L_nMC=CR)$ or by a 1,2-hydrogen shift of n^2 -alkyne complexes $L_nM(HC=CR)$ are well recognized processes.^{8,9} Considering the mild reaction conditions, an explanation for a low-energy pathway for dissociation of CO by the reaction of 18-electron complex **1** with acetylide **2a** is not obvious. We suggest that the reaction of **2a** with **1** proceeds **via** an associative or a single electron transfer (SET) induced dissociative process and produces ultimately after elimination of a CO molecule, the anionic alkynylmolybdenum complex **7 as** an intermediate. This is subsequently alkylated by methyl **trifluoromethanesulfonate** to yield the vinylidene complex **3a.** The associative **as** well **as** the SET path could be facilitated owing to the strong π acceptor effect of the NO ligand of **1.IO**

In analogy to the above transformation, the reaction of **1** with acetylide **2b** gave the vinylidene complex **3b after** alkylation with methyl trifluoromethanesulfonate in **53** *7%* yield. Although complexes **7s** or **7b** could not be isolated in the pure form due to their sensitivity, **7a** is trapped by using diluted HC1 or acetic anhydride **as** the electrophile to give **5a** and **6a** in 41 *7%* and 19% yields, respectively.1 **As** expected, due to the conjugation of the vinylidene CC double bond with the acetylgroup, the vinylidene complex **6a** shows a lower activation energy for the hindered rotation $(\Delta G^* = 18.2 \pm 0.3 \text{ kcal/mol}).$

Transition metal vinylidene complexes, $[L_nM]=$ $C=CRR'Iⁿ⁺$, have attracted considerable interest in the last decade.^{8b,9} Surface bonded vinylidene complexes are postulated **as** intermediates in the Fischer-Tropsch process ("McCandlish mechanism"),¹² and they have been shown to be effective catalysts for acetylene polymerization¹³ or condensation reactions.¹⁴ Further, compounds containing metal-carbene double bonds exhibit unique and diverse reactivity.¹ However, compared to the use of

SOC., Chem. Commun. **1983,873476.** Beevor, R. G.; Green, M.; Orpen, A. G.; **Williams, 1.** D. *J. Chem. Soc., Dalton fiam* **1987,1319-1328.**

(8) (a) Lichtenberger, D. L.; Renshaw, S. K.; Bullock, **R.** M. *J. Am. Chem. SOC.* **1999,115,3276-3285.** (b) Werner, H. *Nachr. Chem. Tech. Lab.* **1992, 40, 436-442.**

Swincer, A. G. Adol. Organomeri. Chem. 1986, 22, 09–126.
(10) (a) Song, J.; Hall, M. B. J. Am. Chem. Soc. 1993, 115, 327–336.
(b) Legzdins, P.; Reina, R.; Shaw, M. J.; Batchelor, R. J.; Einstein, F. W.
B. Organometallics 1 Tulyathan, B.; Rausch, M. D. *Ibid.* 1984, 106, 7000-7006. (d) Eisenberg, R.; Meyer, C. D. *Acc. Chem. Res.* **1975**, 8, 26-34. **(11)** For acylation of manganese acetylide complexes to the corre-

(11) For acylation of manganese acetylfde complexer to **the corre-** sponding vinylidenemanganere complexea **me** ref8 **2a** and **4.**

(12) Hoel, E. L.; *hll,* G. *B.;* Lek, **5.** *Organometallics* **1986,5,68& 687.** Gibson, V. **C.;** Parkin, G.; Bercaw, J. E. *Organometallics* **1991,10, 220-231.**

(13) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. *J. Am. Chem. Soc.* **1385**, *107*, 6739–6740.

(14) Trost, B. M.; Kulawiec, R. J. J. *Am. Chem. SOC.* **1992,114,6679-** *5684.*

Figure 1. ORTEP structure of $\{(\eta^5 - C_5H_5)(CO)(NO)$ Mo- $[=C=C(CH_3)(Ph)]$ **(3a).**

the corresponding metal-carbene complexes, the application of transition metal vinylidene complexes in organic syntheses have only been limited to a few cases such **as** utilization in the preparation of β -lactams.¹⁵ With the choice of the appropriate acetylides it is expected that synthetically useful vinylidene complexes of the group **6** elements can be prepared by this new method.

Our preliminary results show that the corresponding tungsten complexes behave similarly by the reaction with acetylides.¹⁶

Experimental Section

General Considerations. All reactions were carried out under an atmosphere of argon (by Messer-Griesheim, 99.99%) with the use of standard Schlenk techniques. Solvents were purified by standard methods and distilled under argon prior to use. Literature methods were used to prepare $(\eta^5$ -C₅H₅)(CO)₂(NO)-Mo." *All* other compounds were commercially available. NMR spectra were obtained on a Bruker AM **400** and **AC 200** spectrometer. Proton and carbon chemical **shifts** are referred to tetramethyleiane. MS measurements **(70** eV) were performed on a Varian **MAT 311-A.** IR spectra were recorded on a Bruker FT-IR **IFS 85.** Microanalyses were done on a Carlo Erba **1104** elemental analyzer.

 $\{(\eta^5 \text{-} C_5H_5)(CO)(NO)Mo[=C=C(CH_3)(Ph)\}\$ (3a). At -30 ^oC, a solution of 7.5 mmol of (phenylethynyl)lithium in 15 mL of THF was added dropwise to an orange solution of **1 (1.24** g, 5 mmol) in THF (50 mL). The progress of the reaction was monitored by IR. After complete disappearance of 1, at -30 °C a solution of CFsSOsCHs **(0.85** mL, **7.5** mmol, in **4 mL** of **THF)** was added to the deep green reaction mixture, whereby the color changed to brown. After **1** h, the solution was concentrated under vacuum, and the residue was partitioned between ether and saturated aqueous sodium bicarbonate. After usual workup the residue was chromatographed (silica gel; pentane:ether 3:1) to yield **720** mg **(43** % of **3a, as** orange crystale, mp **103-104** "C dec from pentane. Anal. Calcd for C₁₅H₁₃MoNO₂: C, 53.75; H, 3.91; N, 4.18. Found: C, 53.81; H, 3.65; N, 4.18. Two rotamers (ratio **1:2):** 1H NMR (CDCb) **6 7.43-7.14** (m, **5** HI, **5.82** *(8,* **6** H, Cp), **366.3** (two C,), **217.7** and **217.1** (two **135.4** (arom C), **134.7** and **134.3** (two C,), **128.4,126.6, 125.3, 124.9** (arom C), **97.4** and **97.0** (two Cp), **14.8** and **13.0** (two CHa); **IR** (KBr) (cm-9 **2016** $(C=O)$, 1625 (N=O); MS (70 eV) m/e 335 (M⁺, ⁶⁶Mo), 307 (M⁺ **2.09 and 2.01 (two s, 1:2, CH₃); ¹³C NMR (CDCl₃) δ 366.6 and**

⁽⁶⁾ For the preparation of Fischer carbene complexes using 1, see:
Fischer, E. O.; Beck, H. J. Chem. Ber. 1971, 104, 3101-3107.
(7) Beevor, R. G.; Green, M.; Orpen, A. G.; Williams, I. D. J. Chem.

⁽⁹⁾ (a) BNW, M. I. *Chem. Rev.* **1991,81,197-267. (b)** Bruce, M. I.; Swincer, A. G. *Adv. Organomet. Chem.* **1983**, 22, 59-128.

⁽¹⁶⁾ Liebeekind, L. **S.;** Chidambaram, R. *J. Am. Chem. SOC.* **1987,109, 6026-6026.** Barrett, A. 0. M.; Sturgean, M. A. J. *Org. Chem.* **1987,52, 3940-3941.**

⁽¹⁶⁾ Ipaktachi, J.; Demuth, G. Unpublished reauk. **(17) Chin,T.** T.; Hoyano, J. K.; Legzdin8,P.; Malito, J. T. *Inorg. Synth.* **1990,28,196-198.**

^a Clegg, W. Acta Crystallogr. 1981, A37, 22. ^b Sheldrick, G. M. SHELXS-86, Program for the Solution of Crystal Structures, Universität Göttingen, 1986. ^c Sheldrick, G. M. SHELX-76, Program for Crystal Structure Determinations, University of Cambridge, 1976. d Cromer, D. T.; Mann, J. B. Acta Crystallogr. 1968, A24, 321. Cromer, D. T.; Liberman, D. *J. Chem. Phys.* 1970, 53, 1891. $\epsilon F_{\text{corr}} = F_0 (1 - (F_{\text{Ex}} F_0/\text{sin}$ θ)). $\ell w = 2.7985/\sigma^2(F)$.

Table **2.** Selected Bond Distances **(A)** for $\{(\eta^5-C_5H_5)(CO)(NO)M_0\} = C=C(CH_3)(Ph)\}$

$Mo-C(1)$	1.937(4)	$C(4)-C(9)$	1.406 (5)
Mo $-C(10)$	2.375 (4)	$C(5)-C(6)$	1.408 (5)
$Mo-C(11)$	2.357 (5)	$C(6)-C(7)$	1.397 (5)
$Mo-C(12)$	2.366 (4)	$C(7) - C(8)$	1.409(7)
Mo $-C(13)$	2.382(4)	$C(8)-C(9)$	1.418(6)
Mo-C(14)	2.385 (4)	$C(10)-C(11)$	1.427 (7)
Mo–C (15)	2.007 (5)	$C(10)-C(14)$	1.401(7)
Mo $-N(1)$	1.787(4)	$C(11) - C(12)$	1.439 (7)
$C(1) - C(2)$	1.316(5)	$C(12)-C(13)$	1.423(7)
$C(2) - C(9)$	1.488(5)	$C(13)-C(14)$	1.435(7)
$C(2) - C(3)$	1.522(5)	$C(15)-O(2)$	1.134(6)
$C(4) - C(5)$	1.403 (6)	$N(1) - O(1)$	1.198 (6)

- CO), **277** (M+ - CO -NO); high resolution mass spectrum calcd for $C_{15}H_{13}^{100}MoNO₂ (M⁺)$ m/e 339.0021, found m/e 339.0037.

 ${(\eta^5 \text{-} C_5H_5)(CO)(NO)Mo[=C=C(CH_3)(p\text{-}tolyl)]}$ (3b). The preparation of 3b is analogous to that for 3a, instead of (phenylethynyl)lithium (p-tolylethynyl)lithium was used. Yield: 925 mg (53%). Mp: 89-90 °C dec. Anal. Calcd for

Table 3. Selected *Angles* **(deg)** for

$C(1)$ -Mo- $C(10)$	149.9 (2)	$C(14)$ -Mo-C(15)	91.1 (2)
$C(1)$ -Mo-C (11)	116.4 (2)	$C(14)$ -Mo-N (1)	126.3 (2)
$C(1)$ -Mo-C(12)	92.6 (2)	$C(15) - Mo-N(1)$	91.9(2)
$C(1)$ -Mo-C(13)	102.8 (2)	$Mo-C(1)-C(2)$	177.6 (5)
$C(1)$ -Mo-C (14)	136.9 (2)	$C(1)$ -C(2)-C(9)	121.2 (4)
$C(1)$ -Mo-C (15)	87.0 (2)	$C(3)-C(2)-C(9)$	119.9 (4)
$C(1)$ -Mo-N (1)	96.8 (2)	$C(5)-C(4)-C(9)$	120.8 (4)
$C(10)$ -Mo- $C(15)$	116.7 (2)	$C(2)$ -C(9)-C(4)	121.1 (4)
$C(10)$ -Mo-N (1)	100.5 (2)	$C(11)$ -C(10)-C(14)	109.4 (5)
$C(11)$ -Mo-C(15)	149.2 (2)	$C(10)-C(11)-C(12)$	106.5 (5)
$C(11)$ -Mo-N (1)	103.9 (2)	$C(11) - C(12) - C(13)$	108.6 (4)
$C(12)$ -Mo- $C(15)$	131.8 (2)	$C(12) - C(13) - C(14)$	107.3 (5)
$C(12)$ -Mo-N (1)	135.8 (2)	$C(10)-C(14)-C(13)$	108.2 (5)
$C(13)$ -Mo-C(15)	98.4 (2)	$Mo-C(15)-O(2)$	179.4 (5)
$C(13)$ -Mo-N (1)	158.3 (2)	$Mo-N(1)-O(1)$	175.9 (5)

Clal&loNOz: C, **55.03;** H, **4.33;** N, **4.01.** Found: C, **55.42;** H, **4** H), **5.81** (8, **5** H, Cp), **2.33** and **2.31** (two **8,2:1,** CHs), **2.07** and **2.00 (two s, 2:1, CH₃); ¹³C NMR (CDCl₃)** δ **366.9 and 366.6 (two 4.12; N, 4.01. Two rotamers: ¹H NMR (CDCl₃) δ 7.32-7.1 (m,** Cu), **217.9** and **217.3** (two C=O), **136.4** (arom C), **134.7** and **134.3** (two CB), **132.3, 129.2, 125.2, 124.9** (arom C), **97.4** and **97.0** (two Cp), **21.1** (CH3), **14.8** and **13.0** (two CH,); IR (CC4) (cm-9 **2018** (C=O), **1657** (N=O), **1622** (C=C); MS **(70** eV) mle **349** (M+, **"Mo), 321** (M+ - CO), **291** (M+ - CO - NO); high resolution **mass** spectrum calcd for $C_{16}H_{15}^{92}MoNO_2$ (M⁺) m/e 345.0171, found mle **345.0141.**

 $\{(\eta^5 - C_5H_5)(CO)(NO)Mo[=C=C(H)(Ph)]\}$ (5). The procedure was analogous to that for 3a; instead of CFsSOsCHa, **1 mL** of concentrated HC1 diluted with **20** mL of water was added. Yield: **660** mg **(41%).** Mp: **101-102** "C dec. Anal. Calcd for **3.20;** N, **4.35. Two** rotamers: lH NMR (CDCb) **S 7.30-7.11** (m, ClJI11MoN02: C, **52.35;** H, **3.45;** N, **4.36.** Found: C, **52.73;** H, 5 H), 6.95 and 6.90 (two s, 2:3, C_{β} -H), 5.85 and 5.83 (two s, 3:2, Cp); ¹³C NMR (CDCl₃) δ 366.7 and 366.5 (two C_a), 217.3 and **215.9** (two C+), **133.4, 128.7** (arom C), **129.1** and **128.6** (two CB), **126.7,126.0,125.8** (arom C), **97.4** and **97.3** (two Cp); **IR** (KBr) (cm-1) **2028** (C=O), **1646** (N-O); MS **(70** eV) mle **321** (M+, "Mo), **293** (M+ - CO), **263** (M+ - CO - NO).

 $\{(\eta^5 - C_5H_5)(CO)(NO)Mo[=C=CC(COCH_3)(Ph)]\}$ (6). The procedure was analogous to that for **5;** instead of diluted HC1, 1 mL of acetic anhydride was added at -70 °C. After warming to room temperature in **12** h, the solution was concentrated under vacuum and the brown residue was suspended in lOOmL of ether. After filtration this solution was concentrated under vacuum and chromatographed (silica gel; pentane:ether 10:1 and 1:1) to yield **335** mg **(19%)** of **6;** mp **94-95** "C dec. Anal. Calcd for **3.30;** N, **3.88. Two** rotamers: lH NMR (CDCb) **S 7.41-7.19** (m, CiaHlsMoNOs: C, **52.91;** H, **3.61;** N, **3.86.** Found: C, **53.43;** H, 5 H), **5.88** and **5.74** (two **8,32,** Cp), **2.48** and **2.41** (two **8,3:2,** CHa); ¹³C NMR (CDCl₃) δ 375.4 and 374.0 (two C_α), 215.2 and 213.9 (two Cd), **194.7** (C=O), **144.9,131.9,** and **130.9** (two Cp), **128.9, 128.1,127.2,98.1,** and **97.6** (two Cp), **30.4** and **30.3** (two CHa); **IR** (CC4) *i* (cm-1) **2030** (C=O), **1674** (N-O); MS **(70** eV) mle **363** (M+, @'JMo), **335** (M+ - CO), **305** (M+ - CO - NO); high resolution mass spectrum calcd for $C_{16}H_{13}{}^{92}MoNO_3 (M^+) m/e 358.9964$, found mle **358.9979.**

Acknowledgment. This work was supported **by** the Fonds der Chemischen Industrie, Frankfurt.

Supplementary Material Available: Tables of atomic coordinates and bond lengths and angles for 3a **(2** pages). Ordering information is given on any current masthead page.

OM9304826