Reduction Chemistry of Organometallic Molybdenum, Tungsten, and Ruthenium Bromo Complexes of the Bulky. Perarylated Cyclopentadienyl Ligand η^5 -C₅Ph₄hqMe₂: **Evidence for the Intermediacy of Metal-Centered Radicals** and Nucleophilic Reactions of Product Metalate Anions with Chlorinated Solvent

Stephen B. Colbran,* Wendy M. Harrison, and Charles Saadeh

Department of Inorganic and Nuclear Chemistry, University of New South Wales, P.O. Box 1, Kensington, Sydney, Australia 2033

Received December 13, 1993[®]

Summary: The bromo complexes $(C_5Ph_4hqMe_2)M(CO)_nBr$ (1, M = Mo, n = 3; 2, M = W, n = 3; 3, M = Ru, n = 2)have been prepared and are reduced via the $(C_5Ph_4$ $hqMe_2$) $M(CO)_n$ radicals in a two-electron (ECE) process to the corresponding metalate $(C_5Ph_4hqMe_2)M$ - $(CO)_{n}^{-}$ (4-6) and bromide anions at -1.76 V (Mo), -1.84 V(W) and -1.92 V(Ru). Reduction of 3 with cobaltocene in THF affords the dimer $\{(C_5Ph_4hqMe_2)Ru(CO)_2\}_2$ (7). Anions 4 and 5 and dimer 7 show electrochemically guasireversible $(C_5Ph_4hqMe_2)M(CO)_n^{\bullet}/(C_5Ph_4hqMe_2)M(CO)_n^{-}$ couples at -0.54 V (Mo), -0.52 V (W), and -1.30 V (Ru). Anion 4 does not react with 1,2-dichloroethane on the bulk electrolysis time scale (3–10 min); 5 reacts slightly, and 6 reacts completely, in accord with the anticipated nucleophilicities of these metalate anions.

The electrochemistries of the organometallic halides $M(\eta - C_5 R_5)_m(CO)_n X$ (X = halogen atom) have received relatively little attention,¹ whereas the electrochemical reactivities of the organometallic dimers $\{M(n-C_5R_5)_m (CO)_{n}$ $(R = H, Me)^{2}$ and organic halides³ have been active areas of research. We wish to report preliminary results from cyclic voltammetric and FTIR spectroelectrochemical studies aimed at determining the redox chemistries of some organo-transition-metal bromo complexes (1-3) of the bulky perarylated cyclopentadienyl ligand C5Ph4hqMe2,4 and of the metalate anions (4-6) derived from these bromo complexes. C₅Ph₄hqMe₂ was chosen as the cyclopentadienyl ligand for the following reasons. (i) Perarylated cyclopentadienyl ligands (C₅Ph₅ is the most studied⁵) stabilize complexes in unusual oxidation states; e.g., 17electron C5Ph5 metal-centered radicals are very much less reactive (even isolable)⁶ than their C_5H_5 or C_5Me_5 congeners (for which recombination rates have been photo-

(2) Selected leading references: (a) Pugh, J. R.; Meyer, T. J. J. Am. Chem. Soc. 1992, 114, 3784. (b) Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1989, 111, 6711. (c) Dalton, E. F.; Ching, S.; Murray, R. W. Inorg. Soc. 1989, 111, 6711. (c) Dalton, E. F.; Ching, S.; Murray, R. W. Inorg. Chem. 1990, 30, 2642. (d) Kadish, K. M.; Lacombe, D. A.; Anderson, J. E. Inorg. Chem. 1986, 25, 2246. (e) Lacombe, D. A.; Anderson, J. E.; Kadish, K. M. Inorg. Chem. 1986, 25, 2074. (3) Andrieux, C. P.; Differding, E.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 1993, 115, 6592 and references contained therein. (4) Abbreviations: C₅Ph₄hqMe₂ = η -(2,5-dimethoxyphenyl)tetraphe-values/particle/par

nylcyclopentadienyl; $C_5Ph_5 = \eta$ -pentaphenylcyclopentadienyl; THF = tetrahydrofuran

(5) Schumann, H.; Janiak, C. Adv. Organomet. Chem. 1991, 33, 291.

chemically estimated to exceed $10^9 M^{-1} s^{-17}$). We expected, therefore, to find evidence for stabilized 17-electron metalcentered radicals in the electrochemistry of the C₅Ph₄hqMe₂ complexes. (ii) The hydroquinone dimethyl ether $(hqMe_2)$ pendant renders $C_5Ph_4hqMe_2$ complexes more soluble and tractable than their C₅Ph₅ counterparts,^{8,9} provides a convenient NMR "handle" for characterization,^{8,9} and can be elaborated to provide complexes with electrochemically active hydroquinonyl or quinonyl pendants.⁹ Mo, W, and Ru complexes were studied in order to probe for effects due to the nucleophilicity of the metalate anions (e.g. the nucleophilicities $(k_2$ for reaction with MeI in THF) of the analogous C_5H_5 metalate anions are $(C_5H_5)M_0(CO)_3^-$ (67 M⁻¹s⁻¹) < $(C_5H_5)W(CO)_3^-$ (~500) $M^{-1} s^{-1}$ \ll $(C_5 H_5) Ru(CO)_3^- (7.5 \times 10^6 M^{-1} s^{-1})^{10}).$

Complexes 1-5 and 7 were obtained from syntheses analogous to those reported for the corresponding

Abstract published in Advance ACS Abstracts, February 15, 1994.
 (1) (a) Weissman, P. M.; Buzzio, D. B.; Wintermute, J. S., Jr.
 Microchem. J. 1981, 26, 120. (b) Miholová, D.; Vlcek, A. A. Inorg. Chim.
 Acta 1980, 43, 43. (c) Gubin, S. P. Pure Appl. Chem. 1970, 23, 463. (d) Dessy, R. E.; Weissman, P. M. J. Am. Chem. Soc. 1966, 88, 5129. (e) For a general review of the electrochemistry of monomeric organometallic complexes, see: Connelly, N. G.; Geiger, W. E. Adv. Organomet. Chem. 1984, 23, 1.

^{(6) (}a) Hoober, R. J.; Hutton, M. A.; Dillard, M. M.; Castellani, M. P.; Rheingold, A. L.; Reiger, A. L.; Reiger, P. H.; Richards, T. C.; Geiger, W. E. Organometallics 1993, 12, 116. (b) Fei, M.; Sur, S. K.; Tyler, D. R. Organometallics 1991, 10, 419. (c) Fei, M.; Philbin, C. E.; Weakley, T. J. R.; Tyler, D. R. Organometallics 1990, 9, 1510.

⁽⁷⁾ Scott, S. L.; Espenson, J. H.; Zhu, Z. J. Am. Chem. Soc. 1993, 115, 1789 and references contained therein.

⁽⁸⁾ Saadeh, C.; Colbran, S. B.; Craig, D. C.; Rae, A. D. Organometallics

^{88, 5121. (}b) Pearson, R. G.; Figmore, P. E. J. Am. Chem. Soc. 1980, 102, 1541. (c) Lai, C.-K.; Feighery, W. G.; Zhen, Y.; Atwood, J. D. Inorg. Chem. 1989, 28, 3929.

Table 1. Electrochemical Data*								
	$\mathbf{MBr} + 2\mathbf{e}^- \rightarrow \mathbf{M}^- + \mathbf{Br}^-$				M ⁻ ⇐ M• + e ⁻			
Μ	$\overline{E_{p}, V}$	$ E_{\rm p}-E_{\rm p/2} ,{\rm mV}$	$ \Delta E_{\rm p}({\rm Fc^+/Fc}) , {\rm mV}$	$E_{p}^{\text{anodic}, b}$ V	$\overline{E_{1/2}}, \mathbf{V}$	i ^c /i ^a	$ \Delta E_{\rm p} ,{\rm mV}$	$ \Delta E_{\rm p}({\rm Fc^+/Fc}) , {\rm mV}$
(C ₅ Ph ₄ hqMe ₂)Mo(CO) ₃	-1.70	120	65	-0.46	0.54	0.8	110	80
$(C_5Ph_4hqMe_2)W(CO)_3$	-1.84	130	70	-0.50	0.52	0.8	90	60
$(C_5Ph_4hqMe_2)Ru(CO)_2$	-1.92	110	65	-1.04 (0.28)	-1.30	1.1	120	85

^a Data taken from cyclic voltammograms (0.8-mm-diameter Pt-disk working electrode; scan rate 100 mV s⁻¹) of ~10⁻³ M complex in 1,2-dichloroethane with 0.1 M n-Bu₄NPF₆ at 25 °C. Potentials are quoted relative to the ferrocenium/ferrocene couple $(E_{1/2}(Fc^+/Fc) = 0 V)$. ^b Associated anodic peak(s) in reverse positive scan (e.g. see Figure 1).

Figure 1. Cyclic voltammogram (0.8-mm-diameter Pt-disk working electrode; scan rate 100 mV s⁻¹) of $\sim 10^{-3}$ M (C₅Ph₄hqMe₂)Mo(CO)₃Br in 1,2-dichloroethane with 0.1 M n-Bu₄- NPF_6 at 25 °C.

Mo,^{6b,c,8,11} W,¹¹ or Ru^{9,12} η -C₅Ph₅ complex and were fully characterized by elemental analysis and mass, FTIR, ¹H NMR, and ¹³C NMR spectroscopies (details are given in the Supplementary Material). The metalate anion 6 was not isolated, but solutions of 6 ($\nu_{CO}(THF)$: 1885, 1784 cm^{-1}) were prepared by reduction of 3 or 7 with sodium amalgam.

The voltammetric responses of 1-3 were similar to each other and were the same irrespective of whether the solvent was 1,2-dichloroethane or 1,2-dimethoxyethane (both with $0.1 \,\mathrm{M}\,n$ -Bu₄NPF₆). Figure 1 shows a typical cyclic voltammogram¹³ (of 1). Each complex showed a broad, electrochemically irreversible reduction process $(|E_{p/2} - E_p| >$ $|\Delta E_{\rm p}({\rm Fc^+/Fc})|$) and an associated anodic process after scan inversion (data are listed in Table 1). The reduction behavior is indicative of a slow, rate-controlling electrontransfer reaction.¹⁴ Chemically irreversible oxidation waves $|E_{p/2} - E_p| \approx |\Delta E_p(Fc^+/Fc)|$, but $i^c/i^a = 0$ were also observed for each complex at positive potentials (>0.8 V). These oxidation processes lead to complete decomposition of the complexes, evidenced by the complete loss of all $\nu_{\rm CO}$ bands from IR spectra of the oxidation product(s), and will not be discussed further here.

Bulk electrolyses of 1-3 at ambient temperature were carried out at the Pt-gauze working electrode of a thin-

(14) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Funda-mentals and Applications; Wiley: New York, 1980; Chapter 11, p 429.

layer, transmission IR spectroelectrochemical cell of conventional design. The electroreductions in 1,2-dichloroethane consumed 2e⁻ per molecule of complex, and the IR spectra recorded during the electrolyses showed that 1 gave 4, 2 gave 5, and 3 gave $(C_5Ph_4hqMe_2)Ru(CO)_2$ - $CH_2CH_2Cl^{15}$ and $\{(C_5Ph_4hqMe_2)Ru(CO)_2CH_2\}_2^{15}$ (Figure 2). 1 was the only product of the reoxidation of fully reduced solutions of 1 (i.e. of 4 and Br-ion). Reoxidation of solutions of fully reduced 2 (i.e. of 5 and Br- ion) produced 2 (ca. 75% by ν_{CO} peak intensity) and (C₅Ph₄ $hqMe_2$)W(CO)₂CH₂CH₂Cl,¹⁵ plus a single ν_{CO} peak from an unknown species (Figure 2d and inset). Careful subtraction of the $\nu_{\rm CO}$ peaks for 2 and 5 from the IR spectra collected during the reduction of 2 also reveals small ν_{CO} peaks for $(C_5Ph_4hqMe_2)W(CO)_2CH_2CH_2Cl^{.15}$ In contrast, chemical reduction of 1-3 with sodium amalgam in 1,2dimethoxyethane cleanly gave the corresponding metalate anion (4-6) as the only product detectable by IR spectroscopy, and chemical reduction of 3 with 1 equiv of cobaltocene in tetrahydrofuran afforded orange-red, microcrystalline 7 in moderately good yield ($\sim 60\%$ after recrystallization).16

Cyclic voltammograms¹³ of metalate anions 4 and 5 and dimer 7 showed electrochemically quasi-reversible (C5Ph4 $hqMe_2)M(CO)_n^{\bullet}/(C_5Ph_4hqMe_2)M(CO)_n^{-}$ couples (Table 1). These observations parallel those recently described for $C_5Ph_5Cr(CO)_3^{-6a}$ and for the dimers $\{(\eta - C_5R_5)Cr(CO)_3\}_2$ $(R = H, CH_3)^{17}$ and point to 17-electron $(C_5Ph_4hqMe_2)M$ - $(CO)_n^{\bullet}$ radicals stabilized by the steric bulk of the $C_5Ph_4^{\bullet}$ hqMe₂ ligand (C_5H_5 and C_5Me_5 analogues of 4-6 show only irreversible oxidation processes because of rapid recombination of the electrochemically produced 17electron radicals²). The electrochemical results are indicative for a rapid equilibrium between 7 and (C5Ph4 $hqMe_2$)Ru(CO)_n^{•.6b,17} The (C₅Ph₄hqMe₂)M(CO)_n[•]/ $(C_5Ph_4hqMe_2)M(CO)_n^-$ couples are not completely chemically reversible (see the i^{a}/i^{c} values listed in Table 1), and peaks for new electroactive products are observed after the couples are traversed. The results suggest that the $(C_5Ph_4hqMe_2)M(CO)_n$ radicals undergo further processes within the cyclic voltammetry time scale, and experiments are underway to fully characterize these.

An ECE mechanism (Scheme 1, eqs 1-3; $M = (C_5 Ph_4$ $hqMe_2$)W(CO)₃, (C₅Ph₄hqMe₂)Mo(CO)₃, (C₅Ph₄hqMe₂)- $Ru(CO)_2$) accounts for the cyclic voltammetry of 1-3.¹⁴ All steps are well precedented. The first step in the reduction (eq 1) produces 19-electron bromo radicals, (M-Br)*-.1,18-21 The closely related radicals $(C_5H_5)M_0(CO)_3I^{\bullet-}$, $(C_5H_5)W(CO)_3I^{\bullet-}$, and $(C_5H_5)Fe(CO)_2X^{\bullet-}(X = Cl, I)$ have been stabilized and spectroscopically characterized at 77

^{(11) (}a) Slocum, D. W.; Dujai, S.; Matusz, M.; Cmarik, J. L.; Simpson, K. M.; Owen, D. A. In Metal Containing Polymeric Systems; Sheats, J. K. M., Owen, D. A. In Metal Containing Totymeric Systems, Jona 20, 57
 p. 59. (b) Slocum, D. W.; Dujai, S.; Matusz, M.; Cmarik, J. L.; Simpson, K. M.; Owen, D. A. Polym. Mater. Sci. Eng. 1983, 49, 368. (12) Connelly, N. G.; Manners, I. J. Chem. Soc., Dalton Trans. 1989, 600

^{283.}

⁽¹³⁾ A standard three-electrode configuration was used with Ag/AgCl reference, 0.8-mm Pt-disk working and Pt-wire reference electrodes, and a BAS 100B electrochemical analyzer interfaced with a 486 IBM compatible computer for data analysis and display. All potentials are quoted relative to the ferrocenium/ferrocene (Fc+/Fc) couple, which was measured in situ as an internal calibrant.

⁽¹⁵⁾ Assignments based on mass spectral data and comparisons of the IR spectra of these electroreduction products with the IR spectra reported for C_5H_5 and/or C_5M_6 analogues (taken from ref 24 and 25).

⁽¹⁶⁾ For similar chemical reductions of C₅Ph₅ iron and ruthenium bromo complexes, see ref 12 and: Field, L. D.; Masters, A. F.; Gibson, M.; Latimer, D. R.; Hambley, T. W.; Buys, I. E. Inorg. Chem. 1998, 32, 211. (17) O'Callaghan, K. A. E.; Brown, S. J.; Page, J. A.; Baird, M. C.; Richards, T. C.; Geiger, W. E. Organometallics 1991, 10, 3119.

Figure 2. FTIR spectra recorded in 1,2-dichloroethane with 0.4 M n-Bu₄NPF₆ at 25 °C: (a) for electroreduction of (C₅Ph₄hq Me_2)(CO)₃Br, ($C_5Ph_4hqMe_2$)Mo(CO)₃⁻ being the product; (b) for electroreduction of ($C_5Ph_4hqMe_2$)Ru(CO)₂Br, (C_6Ph_4 hqMe₂)Ru(CO)₂CH₂CH₂Cl (ν_{CO} : 2016 and 1957 cm⁻¹) and {(C₅Ph₄hqMe₂)Ru(CO)₂CH₂CH₂]₂ (ν_{CO} : 1999 and 1943 cm⁻¹) being the products; (c) for electroreduction of $(C_5Ph_4hqMe_2)W(CO)_3Br$, the major product being $(C_5Ph_4hqMe_2)W(CO)_3^-$ (ν_{CO} : 1886 and 1775 cm⁻¹); (d) after reoxidation of the fully reduced solution from (c). Inset: difference spectrum, obtained after subtraction of the spectrum of $(C_5Ph_4hqMe_2)W(CO)_3Br$ from spectrum d, showing IR peaks for $(C_5Ph_4hqMe_2)W(CO)_3CH_2CH_2CI$ (ν_{CO} : 2014 and 1926 cm⁻¹).

Scheme 1

M-B (M-Br)*- (1) $2 M^{\circ}$ M_2 (4) Br (2) + M-Br \rightarrow M₂ + Br-(M-Br) M-(5) (3) M^- + RCl \rightarrow $M \cdot R$ + Cl-M M-(6)

K.²⁰ Nineteen-electron radicals such as (M-Br)⁻⁻ are generally labile, and the equilibrium with M. and free bromide ion (eq 2) is anticipated.^{19,21} The equilibrium constants for eq 2 are expected to be small (e.g., the photochemical estimate of $K_{eq} \ge 65$ for $(C_5H_5)M_0(CO)_3^{\bullet} + Br = (C_5H_5)M_0(CO)_3Br^{\bullet-21}$, and the reaction direction will be dictated by the other reactions of M[•] and (M-Br)⁻⁻. Finally, the M^{-}/M^{-} couple (eq 3) is quite positive of the potential of the first electron transfer (Table 1), and thus spontaneous reduction of the 17-electron radical M. will occur, either at the electrode or in a solution electron-transfer reaction with (M-Br)*-.2c The overall reduction mechanism is very similar to those proposed for the reductions of organometallic dimers $\{M(\eta-C_5R_5)_m (CO)_n$ (R = H, Me).² Cobaltocene $(E_{1/2}((C_5H_5)_2Co^+/$ $(C_5H_5)_2C_0$ = -1.34 V) presumably catalyzes the reduction of 3.^{2a} Our results are consistent with two mechanisms for the formation of 7: either reduction of 3 to $(C_5Ph_4$ $hqMe_2$)Ru(CO)₂• (eqs 1 and 2) and then dimerization of the 17-electron radical (eq 4) to 7 or reduction of 3 to 6 (eqs 1-3) followed by attack of strongly nucleophilic 6 on 3 (eq 5).^{10,22}

(19) (a) Tyler, D. R. Acc. Chem. Res. 1991, 24, 325. (b) Organometallic Radical Processes; Trogler, W. C., Ed.; Elsevier: Amsterdam, 1990. (c) [10] Tyler, D. R. Prog. Inorg. Chem. 1988, 36, 125. (d) Baird, M. C. Chem.
 [20] Symons, M. C. R.; Bratt, S. W.; Wyatt, J. L. J. Chem. Soc., Dal-

ton Trans. 1983, 1171

(21) Philbin, C. E.; Granatir, C. A.; Tyler, D. R. Inorg. Chem. 1986, 25, 4806

Finally, we turn our attention to the bulk electrolysis results, e.g. Figure 2. Here, 1,2-dichloroethane was deliberately chosen as a reactive solvent. On the longer time scale of the electrolyses (3-10 min), reaction of the electrogenerated metalate anion with this chlorinated solvent occurs (eq 6): totally for $M = (C_5Ph_4hqMe_2)$ - $Ru(CO)_2$, slightly for $M = (C_5Ph_4hqMe_2)W(CO)_3$, and not at all for $M = (C_5Ph_4hqMe_2)Mo(CO)_3^{23}$ This is in very good accord with expectations raised by the anticipated nucleophilicities of the metalate anions (i.e. $Mo < W \ll$ Ru;¹⁰ see above). The reactions are precedented: e.g., $(C_5H_5)Ru(CO)_2\{(CH_2)_nX\}$ (n = 3-5; X = Cl, Br, I) and $\{(C_5H_5)Ru(CO)_2(CH_2)_{n/2}\}_2$ have been prepared from reactions of $X(CH_2)_n X$ with $(C_5H_5)Ru(CO)_2^{-,24}$ and $(C_5H_5)Ru(CO)_2^-$ and 1,2-dichloroethane afford { (C_5H_5) -Ru(CO)₂CH₂}₂.²⁵

Acknowledgment. C.S. and W.M.H. acknowledge Australian Postgraduate Research Awards, and we thank Prof. Brynn Hibbert, UNSW, for access to the BAS 100B electrochemical analyzer.

Supplementary Material Available: Text giving analytical and spectroscopic data for compounds 1-5 and 7 (3 pages). Ordering information is given on any current masthead page.

OM930841X

⁽¹⁸⁾ Note, however, that our results do not strictly determine between sequential electron transfer and metal-halogen bond breaking, and the concerted process: $M-Br + e^- \rightarrow M^* + Br$. See ref 3 for detailed discussions of concerted versus sequential electron transfer and bond breaking in organic halides.

⁽²²⁾ Lai, C. K.; Corraine, S.; Atwood, J. D. Organometallics 1992, 11, 582

⁽²³⁾ Radical chain mechanisms¹⁹ for the formation of the alkyl derivatives can be discounted—we observe that dimer 7 is in equilibrium with $(C_5Ph_4hqMe_2)Ru(CO)_2^{\circ}$ in a variety of solvents, including 1,2dichloroethane, and that no reaction with solvent occurs within the time scale of the electrolyses. See also ref 6b.

⁽²⁴⁾ Friederich, H. B.; Finch, P. K.; Gafoor, M. A.; Moss, J. R. Inorg. Chim. Acta 1993, 206, 225. For a recent review of halogenoalkyl complexes (including the C_5H_5 and C_5Me_5 analogues of those reported here), see:

Friederich, H. B.; Moss, J. R. Adv. Organomet. Chem. 1991, 33, 235. (25) Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 1679.