Reduction Chemistry of Organometallic Molybdenum, Tungsten, and Ruthenium Bromo Complexes of the Bulky, Perarylated Cyclopentadienyl Ligand η^5 -C₅Ph₄hqMe₂: **Evidence for the Intermediacy of Metal-Centered Radicals and Nucleophilic Reactions of Product Metalate Anions with Chlorinated Solvent**

Stephen **B.** Colbran,* Wendy M. Harrison, and Charles Saadeh

Department of Inorganic and Nuclear Chemistry, University of New South Wales, P.O. Box 1, Kensington, Sydney, Australia 2033

Received December 13,1999

Summary: The bromo complexes $(C_5Ph_4hqMe_2)M(CO)_nBr$ $(1, M = M_0, n = 3; 2, M = W, n = 3; 3, M = Ru, n = 2)$ *have been prepared and are reduced via the (C5ph4 hqMez)M(CO),* radicals in a two-electron (ECE) process to the corresponding metalate* $(C_5Ph_4 hq \overline{M}e_2)M$ - $(CO)_n$ ⁻ (4-6) and bromide anions at -1.76 V (M₀), -1.84 *V(W) and -1.92 V(Ru). Reduction of 3with cobaltocene in THF affords the dimer {* $(C_5Ph_4hqMe_2)Ru(CO)_2|_2$ (7) . *Anions land Sand dimer ?show electrochemically quasi* $reversible (C_5Ph_4hqMe_2)M(CO)_n^{\bullet}/(C_5Ph_4hqMe_2)M(CO)_n^{\bullet}$ *couples at -0.54 V (Mo), -0.52 V (W), and -1.30 V (Ru). Anion 4 does not react with 1,2-dichloroethane on the bulk electrolysis time scale (3-10 min); Sreacts slightly, and 6 reacts completely, in accord with the anticipated nucleophilicities of these metalate anions.*

The electrochemistries of the organometallic halides $M(\eta - C_5R_5)_m(CO)_nX$ (X = halogen atom) have received relatively little attention,' whereas the electrochemical reactivities of the organometallic dimers ${M(r-C_5R_5)_{m}}$ - $(CO)_{n₂} (R = H, Me)²$ and organic halides³ have been active areas of research. We wish to report preliminary results from cyclic voltammetric and FTIR spectroelectrochemical studies aimed at determining the redox chemistries of some organo-transition-metal bromo complexes **(1-3)** of the bulky perarylated cyclopentadienyl ligand $C_5Ph_4hqMe_2$,⁴ and of the metalate anions **(4-6)** derived from these bromo complexes. CsPhhqMe2 was chosen **as** the cyclopentadienyl ligand for the following reasons. (i) Perarylated cyclopentadienyl ligands $(C_5Ph_5$ is the most studied⁵) stabilize complexes in unusual oxidation states; e.g., 17 electron C_5Ph_5 metal-centered radicals are very much less reactive (even isolable)⁶ than their C_5H_5 or C_5Me_5 congeners (for which recombination rates have been photo-

nylcyclopentadienyl; $C_5Ph_5 = \eta$ -pentaphenylcyclopentadienyl; THF = tetrahydrofuran.

(5) Schumann, H.; Janiak, C. *Adv. Organomet. Chem.* **1991,33,291.**

chemically estimated to exceed $10^9 M^{-1} s^{-1}$ ⁷). We expected, therefore, to find evidence for stabilized 17-electron metalcentered radicals in the electrochemistry of the C_5 Ph₄hqMe2 complexes. (ii) The hydroquinone dimethyl ether $(hqMe₂)$ pendant renders $C_5Ph_4hqMe₂$ complexes more soluble and tractable than their C_5Ph_5 counterparts,^{8,9} provides a convenient NMR "handle" for characteriza- $\text{tion}, ^{8,9}$ and can be elaborated to provide complexes with electrochemically active hydroquinonyl or quinonyl pendants.⁹ Mo, W, and Ru complexes were studied in order to probe for effects due to the nucleophilicity of the metalate anions (e.g. the nucleophilicities $(k_2$ for reaction with MeI in THF) of the analogous C_5H_5 metalate anions are $(C_5H_5)Mo(CO)_3^{-}$ (67 M⁻¹ s⁻¹) < $(C_5H_5)W(CO)_3^{-}$ (~500 $M^{-1} s^{-1}$) $\ll (C_5 H_5)Ru(CO)_3^-$ (7.5 \times 10⁶ $M^{-1} s^{-1}$)¹⁰).

Complexes **1-5** and **7** were obtained from syntheses analogous to those reported for the corresponding

[•] Abstract published in Advance ACS Abstracts, February 15, 1994.
(1) (a) Weissman, P. M.; Buzzio, D. B.; Wintermute, J. S., Jr.
Microchem. J. 1981, 26, 120. (b) Miholová, D.; Vlcek, A. A. Inorg. Chim.
Acta 1980, 43, 43. (Dessy, R. E.; Weiseman, P. M. J. *Am. Chem. Soc.* **1966,88,5129.** (e) For a general review of the electrochemistry of monomeric organometallic complexes, see: Connelly, **N.** G.; Geiger, W. E. *Adu. Organomet. Chem.* **1984, 23, 1.**

⁽²⁾ Selected leading references: (a) Pugh, J. R.; Meyer, T. J. J. *Am. Chem. SOC.* **1992,114,3784.** (b) Tibet, M.; Parker, V. D. J. *Am. Chem. SOC.* **1989,111,6711. (c)** Dalton, E. F.; Ching, S.; Murray, R. W. *Inorg. Chem.* **1990,30,2642.** (d) Kadiah, **K.** M.; Lacombe, D. A.; Anderson, J. E. Inorg. Chem. 1986, 25, 2246. (e) Lacombe, D. A.; Anderson, J. E.;
Kadish, K. M. Inorg. Chem. 1986, 25, 2074.
(3) Andrieux, C. P.; Differding, E.; Robert, M.; Savéant, J.-M. J. Am.
(3) Andrieux, C. P.; Differding, E.; R

⁽⁶⁾ (a) Hoober, R. J.; Hutton, M. A.; Dillard, M. M.; Caetellani, M. P.; Rheingold, A. L.; Reiger, A. L.; Reiger, P. H.; Richards, T. C.; Geiger, W. E. Organometallics 1993, 12, 116. (b) Fei, M.; Sur, S. K.; Tyler, D. R. Organometallics 1991, 10, 419. (c) Fei, M.; Philbin, C. E.; Weakley, T. J. R.; Tyler, D. R. Organometallics 1990, 9, 1510.

⁽⁷⁾ Scott, **S.** L.; Espenson, J. H.; Zhu, Z. *J. Am. Chem. SOC.* **1993,115, 1789** and references contained therein.

⁽⁸⁾ Saadeh, C.; Colbran, S. B.; Craig, D. C.; Rae, A. D. *Organometallics*

^{1993, 12, 133.&}lt;br>
(9) Colbran, S. B.; Craig, D. C.; Harrison, W. M.; Grimley, A. E. J.
 Organomet. Chem. 1991, 408, C33.

(10) (a) Dessy, R. E.; Pohl, R. L.; King, R. B. J. *Am. Chem. Soc.* 1966, 88, 5121. (b) Pearson, R. **1541.** (c) Lai, **C.-K.;** Feighery, W. G.; Zhen, **Y.;** Atwood, J. D. *Znorg. Chem.* **1989,28, 3929.**

^a Data taken from cyclic voltammograms (0.8-mm-diameter Pt-disk working electrode; scan rate 100 mV s^{-1}) of $\sim 10^{-3}$ M complex in 1,2-dichloroethane with 0.1 M n-Bu₄NPF₆ at 25 °C. Potentials are quoted relative to the ferrocenium/ferrocene couple $(E_{1/2}(Fc^+/Fe) = 0 V)$. ^b Associated anodic peak(s) in reverse positive **scan** (e.g. see Figure 1).

Figure 1. Cyclic voltammogram $(0.8 \text{ mm-diameter Pt-disk}$
working electrode; scan rate 100 mV s^{-1} of $\sim 10^{-3} \text{ M } (C_5 \text{Ph}_4)$ hqMe₂)Mo(CO)₃Br in 1,2-dichloroethane with 0.1 M n-Bu₄- $NPF₆$ at 25 °C.

 $Mo, ^{6b,c, 8,11}W, ^{11}$ or $Ru^{9,12}\eta$ -C₅Ph₅ complex and were fully characterized by elemental analysis and mass, FTIR, 'H NMR, and ¹³C NMR spectroscopies (details are given in the Supplementary Material). The metalate anion **6** was not isolated, but solutions of $6 \ (\nu_{\rm CO}(\text{THF})$: 1885, 1784 cm-l) were prepared by reduction of 3 or **7** with sodium amalgam.

The voltammetric responses of 1-3 were similar to each other and were the same irrespective of whether the solvent was 1,2-dichloroethane or 1,2-dimethoxyethane (both with 0.1 M n -Bu₄NPF₆). Figure 1 shows a typical cyclic voltammogram¹³ (of 1). Each complex showed a broad, electrochemically irreversible reduction process $(|E_{p/2} - E_p| >$ $|\Delta E_{\rm p}({\rm Fc^+/Fc})|$ and an associated anodic process after scan inversion (data are listed in Table 1). The reduction behavior is indicative of a slow, rate-controlling electrontransfer reaction.¹⁴ Chemically irreversible oxidation waves $(|E_{p/2} - E_p| \approx |\Delta E_p(\text{Fc}^+/\text{Fc})|$, but *i*^c/*i*^a = 0) were also observed for each complex at positive potentials (>0.8 V). These oxidation processes lead to complete decomposition of the complexes, evidenced by the complete loss of all *vco* bands from IR spectra of the oxidation product(s), and will not be discussed further here.

Bulk electrolyses of **1-3** at ambient temperature were carried out at the Pt-gauze working electrode of a thin-

(14) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods. Funda-mentals and Applications;* Wiley: New York, **1980,** Chapter **11,** p **429.**

layer, transmission IR spectroelectrochemical cell of conventional design. The electroreductions in 1,2-dichloroethane consumed 2e⁻ per molecule of complex, and the IR spectra recorded during the electrolyses showed that 1 gave 4, 2 gave 5, and 3 gave $(C_5Ph_4hqMe_2)Ru(CO)_2$ - $CH_2CH_2Cl^{15}$ and {(C₅Ph₄hqMe₂)Ru(CO)₂CH₂}₂¹⁵ (Figure 2). 1 was the only product of the reoxidation of fully reduced solutions of 1 (i.e. of **4** and Br ion). Reoxidation of solutions of fully reduced **2** (Le. of **5** and Br ion) produced 2 $(ca. 75\%$ by v_{CO} peak intensity) and $(C_5Ph_4$ $hqMe₂W(CO)₂CH₂CH₂Cl₁¹⁵ plus a single ν_{CO} peak from$ an unknown species (Figure 2d and inset). Careful subtraction of the vco peaks for **2** and **5** from the IR spectra collected during the reduction of **2** also reveals small *vco* peaks for $(C_6Ph_4hqMe_2)W(CO)_2CH_2CH_2Cl.^{15}$ In contrast, chemical reduction of 1-3 with sodium amalgam in 1,2 dimethoxyethane cleanly gave the corresponding metalate anion **(4-6) as** the only product detectable by IR spectroscopy, and chemical reduction of 3 with 1 equiv of cobaltocene in tetrahydrofuran afforded orange-red, microcrystalline 7 in moderately good yield $(~60\%$ after recrystallization).16

Cyclic voltammogramsl3 of metalate anions **4** and **5** and dimer 7 showed electrochemically quasi-reversible (C₅Ph₄ $hqMe₂$)M(CO)_n⁺/(C₅Ph₄hqMe₂)M(CO)_n⁻ couples (Table 1). These observations parallel those recently described for $C_5Ph_5Cr(CO)_3^{-6a}$ and for the dimers $((\eta$ - $C_5R_5)Cr(CO)_3)_2$ $(R = H, CH₃)¹⁷$ and point to 17-electron $(C₅Ph₄hqMe₂)M (CO)_n$ radicals stabilized by the steric bulk of the C₅Ph₄hqMe₂ ligand $(C_5H_5$ and C_5Me_5 analogues of $4-6$ show only irreversible oxidation processes because of rapid recombination of the electrochemically produced 17 electron radicals²). The electrochemical results are indicative for a rapid equilibrium between 7 and (C₅Ph₄ $hqMe_2)Ru(CO)_n^{\bullet.6b,17}$ The $(C_5Ph_4hqMe_2)M(CO)_n^{\bullet}$ $(C_5Ph_4hqMe_2)M(CO)_n$ couples are not completely chemically reversible (see the *ia/ic* values listed in Table 11, and peaks for new electroactive producta are observed after the couples are traversed. The results suggest that the $(C_5Ph_4hqMe_2)M(CO)_n$ [.] radicals undergo further processes within the cyclic voltammetry time scale, and experimenta are underway to fully characterize these.

An ECE mechanism (Scheme 1, eqs $1-3$; $M = (C_5Ph_4$ $hqMe₂$)W(CO)₃, (C₅Ph₄hqMe₂)- $Mo(CO)_{3}$, (C₅Ph₄hqMe₂)- $Ru(CO)₂$) accounts for the cyclic voltammetry of $1-3$.¹⁴ All steps are well precedented. The first step in the reduction (eq 1) produces 19-electron bromo radicals, **(M-**Br) \cdot -.^{1,18-21} The closely related radicals $(C_5H_5)Mo(CO)_3I\cdot$, $(C_5H_5)W(CO)_3I^{\bullet-}$, and $(C_5H_5)Fe(CO)_2X^{\bullet-}$ (X = Cl, I) have been stabilized and spectroscopically characterized at 77

⁽¹¹⁾ (a) Slocum, **D.** W.; Dujai, s.; Matusz, M.; Cmarik, J. L.; Simpson, K. M.; Owen, D. A. In *Metal Containing Polymeric Systems;* Sheata, J. E., Carraher, C. E., Pitman, C. U., Jr., **Ma.;** Plenum: New York, **1985;** p 59. (b) Slocum, D. W.; Dujai, S.; Matusz, M.; Cmarik, J. L.; Simpson, K. M.; Owen, D. A. *Polym. Mater. Sci. Eng.* 1983, 49, 368.
K. M.; Owen, D. A. *Polym. Mater. Sci. Eng.* 1983, 49, 368.
__(12) Connelly, N. G.; Manner

^{283.&}lt;br>(13) A standard three-electrode configuration was used with Ag/AgCl

⁽¹³⁾ A standard three-electrode configuration was used with Ag/AgCl reference, O.&mm Pt-disk working and Pt-wire reference electrodes, and a BAS **lOOB** electrochemical analyzer interfaced with a **486** IBM compatible computer for data analysis and display. *All* potentials are quoted relative to the ferrocenium/ferrocene (Fc+/Fc) couple, which was measured *in situ* **as** an internal calibrant.

⁽¹⁵⁾ Assignmenta baeed on **maw spectral data and** comparisons of the IR spectra of these electroreduction products with the IR spectra reported for C₆H₅ and/or C₈M_{e5} analogues (taken from ref 24 and 25).

⁽¹⁶⁾ For **similar** chemical reductions of Cab **iron** and ruthenium bromo complexes, **see** ref **12 and** Field, L. D.; **Maatere,** A. F.; Gibson, **M.;** Latimer, D. R.; Hambley, T. W.; Buys, I. E. *Inorg. Chem.* 1993, 32, 211.
(17) O'Callaghan, K. A. E.; Brown, S. J.; Page, J. A.; Baird, M. C.;
Richards, T. C.; Geiger, W. E. Organometallics 1991, 10, 3119.

Figure 2. FTIR spectra recorded in 1,2-dichloroethane with 0.4 M n-Bu₄NPF₆ at 25 °C: (a) for electroreduction of $(C_5Ph_4$ hqMe₂)(CO)₃Br, (C₅Ph₄hqMe₂)Mo(CO)₃- being the product; (b) for electroreduction of (C₅Ph₄hqMe₂)Ru(CO)₂Br, (C₅Ph₄hqMe₂)Ru(CO)₂CH₂CH₂Cl (ν _{CO}: 2016 and 1957 cm⁻¹) and {(C₅Ph₄hqMe₂)Ru(CO)₂CH₂CH₂² ν _{CO}: 1999 and 1943 cm⁻¹) being the products; (c) for electroreduction of $(C_5Ph_4hqMe_2)W(CO)_3Br$, the major product being $(C_5Ph_4hqMe_2)W(CO)_3$ ⁻ $(\nu_{CO}$: 1886 and 1775 cm-1); (d) after reoxidation of the fully reduced solution from (c). Inset: difference spectrum, obtained after subtraction of the spectrum of $(C_5Ph_4hqMe_2)W(CO)_3Br$ from spectrum d, showing IR peaks for $(C_5Ph_4hqMe_2)W(CO)_3CH_2CH_2Cl$ *(v_{CO}: 2014* and 1926 cm-l).

Scheme 1
(M-Br)^{\leftarrow} (1) 2 **M-Br** $+ e^- \rightleftharpoons (M-Br)^*$ **c** (1) **2M** $\rightleftharpoons M_2$ **(4) (Br-** (2) **M-** $+$ **M-Br** \rightarrow **M₂** $+$ **Br-** (5) M^* + **e-** \implies M^- (3) M^- + RCl \to $M \cdot R$ + Cl- *(6)*

K.²⁰ Nineteen-electron radicals such as $(M-Br)^{-1}$ are generally labile, and the equilibrium with M' and free bromide ion (eq 2) is anticipated.^{19,21} The equilibrium constants for eq 2 are expected to be small (e.g., the bromide ion (eq 2) is anticipated.^{19,21} The equilibrium
constants for eq 2 are expected to be small (e.g., the at
photochemical estimate of $K_{eq} \ge 65$ for $(C_5H_5)Mo(CO)_3$ ^{*} g(
+ $Br = (C_5H_5)Mo(CO)_3Br^{*-21}$), and the react will be dictated by the other reactions of M' and (M-**Br)*-.** Finally, the M'/M- couple (eq 3) is quite positive of the potential of the first electron transfer (Table l), and thus spontaneous reduction of the 17-electron radical M' will occur, either at the electrode or in a solution electron-transfer reaction with $(M-Br)^{-2c}$ The overall reduction mechanism is very similar to those proposed for the reductions of organometallic dimers ${M(\eta-C_5R_5)_{m}}$ - $(CO)_n$ ₂ (R = H, Me).² Cobaltocene $(E_{1/2})(C₅H₅)₂Co⁺/$ $(C_5H_5)_2C_0$ = -1.34 V) presumably catalyzes the reduction of 3.28 **Our** results are consistent with two mechanisms for the formation of 7: either reduction of 3 to $(C_5Ph_4$ $hqMe₂Ru(CO)₂$ ^{*} (eqs 1 and 2) and then dimerization of the 17-electron radical (eq 4) to **7** or reduction of 3 to **6** (eqs 1-3) followed by attack of strongly nucleophilic **6** on 3 (eq 5).^{10,22}

breaking in organic halides.
(19) (a) Tyler, D. R. Acc. Chem. Res. 1991, 24, 325. (b) Organometallic **(19) (a)Tyler,D. R.Acc.** *Chem.Res.* **1991,24,325. (b)** *Organometallic Radical Processes;* **Trogler, W. C., Ed.; Elsevier: Amsterdam, 1990. (c)** Tyler, D. R. *Prog. Inorg. Chem.* 1988, 36, 125. (d) Baird, M. C. *Chem. Rev.* 1988, 88, 1217. (e) Astruc, D. *Chem. Rev.* 1988, 88, 1189. (20) Symons, M. C. R.; Bratt, S. W.; Wyatt, J. L. J. *Chem. Soc., Dal*-

ton Trans. **1983, 1171.**

(21) Philbin, C. E.; Granatir, C. A.; Tyler, D. **R.** *Znorg. Chem.* **1986,25,** *4806.*

Finally, we turn our attention to the bulk electrolysis results, e.g. Figure 2. Here, 1,2-dichloroethane was deliberately chosen as a reactive solvent. On the longer time scale of the electrolyses (3-10 min), reaction of the electrogenerated metalate anion with this chlorinated solvent occurs (eq 6): totally for $M = (C_5Ph_4hqMe_2)$ - $Ru(CO)₂$, slightly for $M = (C₅Ph₄hqMe₂)W(CO)₃$, and not at all for $M = (C_5Ph_4hqMe_2)Mo(CO)_3^{23}$ This is in very good accord with expectations raised by the anticipated nucleophilicities of the metalate anions (i.e. Mo \leq W \leq Ru;¹⁰ see above). The reactions are precedented: e.g., ${ (C_5H_5)Ru(CO)_2(CH_2)_{n/2} }$? have been prepared from reactions of $X(CH_2)_nX$ with $(C_5H_5)Ru(CO)_2^{-24}$ and $(C_5H_5)Ru(CO)_2$ and 1,2-dichloroethane afford { (C_5H_5) - $Ru(CO)_2CH_2\&2^{.25}$ $(C_5H_5)Ru(CO)_2$ { $CH_2)_nX$ } $(n = 3-5; X = Cl, Br, I)$ and

Acknowledgment. C.S. and W.M.H. acknowledge Australian Postgraduate Research Awards, and we thank Prof. Brynn Hibbert, UNSW, for access to the BAS lOOB electrochemical analyzer.

Supplementary Material Available: Text giving analytical and spectroscopic data for compounds **1-5** and **7** (3 pages). Ordering information is given on any current masthead page.

OM930841X

⁽¹⁸⁾ Nota, however, that our results do not strictly determine between (18) Note, however, that our results do not strictly determine between
 sequential electron transfer and metal-halogen bond breaking, and the

concerted process: M-Br + *e-* - M ⁺ + Br. See ref 3 for detailed

discussi **discussions of concerted versus sequential electron transfer and bond**

⁽²²⁾ Lai, C. K.; Corraine, S.; Atwood, J. D. *Organometallics* **1992,11, 582.**

⁽²³⁾ Radical chain mechanisms18 for the formation of the alkyl derivatives can be discounted—we observe that dimer 7 is in equilibrium with $(C_6Ph_4h_4Me_2)Ru(CO)_2$ in a variety of solvents, including 1,2**dichloroethane, and that no reaction** with **solvent occurs within the time scale of the electrolyses. See also ref 6b.**

⁽²⁴⁾ Friederich, H. B.; Finch, P. K.; Gafoor, M. A.; Moss, J. R. Inorg. Chim. Acta 1993, 206, 225. For a recent review of halogenoalkyl complexes (including the C_5H_5 and C_5Me_5 analogues of those reported here), see

Friederich, H. B.; Moss, J. R. Adv. Organomet. Chem. 1991, 33, 235.
(25) Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, **105, 1679.**