

Subscriber access provided by American Chemical Society

Synthesis and characterization of rhenium metallocarboxylates

Dorothy H. Gibson, Jayesh M. Mehta, Ming Ye, John F. Richardson, and Mark S. Mashuta Organometallics, **1994**, 13 (4), 1070-1072• DOI: 10.1021/om00016a008 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on March 8, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00016a008>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Synthesis and Characterization of Rhenium Metallocar box ylates

Dorothy H. Gibson,' Jayesh M. Mehta, Ming Ye, John F. Richardson, and Mark S. Mashuta

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

Received December 16, 199P

Summary: Reactions of a new metallocarboxylic acid, $Cp*Re(CO)(NO)COOH$ (2), with Ph₃SnCl and $Re(CO)₄$ *(PPh3)(F-BF3) have provided the corresponding C02 bridged complexes Cp*Re(CO)(NO)(CO2)SnPhs (3) and Cp*Re(CO)(NO)(C02)Re(C0)3(PPh3)* **(4,** *which have been structurally characterized. Complexes 3 and 4 exhibit* different types of $\mu_2 - \eta^3$ bonding of the bridging CO_2 ligand *which can be correlated with the IR and 13C NMRspectral properties of the compounds.*

There is much current interest in finding ways to activate carbon dioxide and to use it as a building block for organic synthesis.¹ The possibility that bifunctional systems,² having a basic center to bind the carboxyl carbon and an acidic one to bind one or both oxygens, might be effective in activating $CO₂$ has prompted interest in the synthesis and characterization of such compounds.³

In bimetallic complexes there is the possibility for different coordination modes of a bridging $CO₂$ ligand. In addition to the simple μ_2 - η^2 type involving coordination of the carboxyl carbon to one center and coordination of a single oxygen to the second center, we^{3t} previously suggested, on the basis of spectral data, that there are two distinct types of $\mu_2 \rightarrow \eta^3$ complexes. Particularly with transition-metal bimetallic complexes, structural data are sparse. We now report the structural characterizations of two μ_2 - η^3 complexes derived from the same metallocarboxylic acid, $Cp*Re(CO)(NO)COOH (Cp* = $\eta^5-C_5Me_5$;$ **2),** and comparisons of their spectral properties which support our previous suggestion.

Treatment of $\text{Cp*Re(CO)}_2(\text{NO})^+\text{BF}_4$ ⁻ (1)⁴ with 1 equiv of aqueous KOH afforded the acid **2 as** an orange powder, which has been characterized by spectral data and elemental analysis.⁵ Reaction of 2 with Ph₃SnCl in the presence of $Na₂CO₃$ (eq 1) afforded a product whose

properties were in agreement with ita formulation **as** the μ_2 - n^3 -CO₂-bridged complex Cp*Re(CO)(NO)(CO₂)SnPh₃ (3). Compound 3 has been characterized by X-ray crystallography,⁷ which confirms the μ_2 - η^3 binding of the C02 ligand (see Figure 1). **As** with other tin derivatives of metallocarboxylates,^{3k,p,w} binding of the carboxyl oxygens to carbon and to the tin atom is unsymmetrical.

Reaction of 2 with 1 equiv of $Re(CO)_4(PPh_3)(F-BF_3)^8$ in the presence of Na2C03 (eq **2)** afforded orange crystals of a product whose properties⁹ again indicated μ_2 - η^3 coordination of the bridging $CO₂$ ligand. Differences in the DRIFTS data for the ν_{OCO} absorptions, 1429 and 1174

(5) To0.550g(l.llmmol)of **lin5mLofwaterwasaddedO.063g(1.11** mmol) of KOH. The reaction mixture was stirred for **0.5** h, and an orange precipitate was collected by filtration. The precipitate was waehed with 3 mL of water and vacuum-dried to give 0.450 g (95% yield) of Cp*Re-
(CO)(NO)COOH, mp 129–131 °C dec. Anal. Calcd for C₁₂H₁₈NO₄Re:
C, 33.96; H, 3.80. Found: C, 33.86; H, 3.80. IR (Nujol): 1950 (s), 1690
(s), 1550 (s

(6) To a mixture of 2 (0.200 g, 0.470 mmol) and Na₂CO₃ (0.055 g, 0.470 mmol) in CH2Clp (ca. **10 mL) was** added Ph&nCl(0.180 g, **0.470** mmol) dissolved in **5** mL of CH2Cl2. This mixture was then stirred for 3 h, filtered, and concentrated to dryness under vacuum, leaving an oil. The residue was extracted with 2×5 mL of ether. The ether extracts were residue was extracted with 2×5 mL of ether. The ether extracts were combined and evaporated to dryness, leaving the crude product as an orange solid (0.234 g, 64% yield). The solid was recrystallized from CH₂-
Cl₂ **201.13** (a), **206.94** *(8).*

(7) Crystal data for $3: C_{30}H_{30}NO_4$ ReSn, $M_r = 773.47$, monoclinic, $P2_1/$ a, $a = 19.644(8)$ Å, $b = 11.819(9)$ Å, $c = 12.171(8)$ Å, $\beta = 100.16(5)$ °, $V = 2781(3)$ Å³, $Z = 4$, $D_c = 1.85$ g/cm³. Data were collected on an Enraf-Nonius CAD4 diffractometer using the ω -2 θ scan technique to a maximum $2\theta = 54^\circ$. The structure was refined using full-matrix least squares to final agreement factors $R(F) = 0.053$ and $R_w(F) = 0.068$ for 5339 observed reflections $(I > 3\sigma(I))$ and 335 parameters. All computations were reflections $(I > 3\sigma(I))$ and 335 parameters. All computations were performed using the Texsan package (Molecular Structure Corp.). **(8)** Schweiger, M.; Beck, W. *2.* Anog. Allg. Chem. **1991,595,203.**

e Abstract published in Advance ACS Abstracts, March **15, 1994. (1)** (a) Ayers, W. M. Catalytic Activation *of* Carbon Dioxide; ACS Symposium Series **363;** American Chemical Society: Washington, DC, **1988.** (b) Behr, A. **In** Aspects *of* Homogenous Catalysis; Ugo, R., Ed.; D. Reidel: Dordrecht, The Netherlands, **1988;** Vol. **6,** p **59.** (c) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (d) Behr, A. *Angew.*
Chem., *Int. Ed. Engl.* 1988, 27, 661. (e) Behr, A. Carbon Dioxide
Activation by Metal Complexes; VCH: Weinheim, Federal Republic of

Germany, 1988. (f) Walther, D. Coord. Chem. Rev. 1987, 79, 135.
 (2) (a) Fachinetti, G.; Floriani, C.; Zanazzi, P. F. J. Am. Chem. Soc.
1978, 100, 7405. (b) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P.

F. J. Am. Chem. Soc. 1982, 104, 5082.

(3) (a) Grice, N.; Kao, S. C.; Pettit, R. J. Am. Chem. Soc. 1979, 101,
1627. (b) Maher, J. M.; Lee, G. R.; Cooper, N. J. J. Am. Chem. Soc. 1982, **104, 6797.** (c) Audett, J. D.; Collins, T. J.; Santarsiero, B. D.; Spies, G. H. *J.* Am. Chem. **SOC. 1982,104,7352.** (d) Forschner, T.; Menard, K.; Cutler, A. *J.* Chem. *SOC.,* Chem. Commun. **1984, 121.** (e) Lee, G. R.; Cooper, N. J. Organometallics **1985,4,794. (f)** Barrientos-Penna, C. F.; Gilchrist, A. B.; Klahn-Oliva, H.; Hanlan, A. J. L.; Sutton, D. Organo-
metallics 1985, 4, 478. (g) Tso, C. T.; Cutler, A. R. J. Am. Chem. Soc.
1986, 108, 6069. (h) Giuseppetti, M. E.; Cutler, A. R. Organoretallics
1987, 6 D.; Geoffroy, G. L.; Rheingold, A. L. Organometallics **1990,9, 2333.** *(0)* Field, J. S.; Haines, R. J.; Sundermeyer, J.; Woolam, S. F. J. Chem. Soc., Chem. Commun. 1990, 985. (p) Gibson, D. H.; Richardson, J. F.; Ong, T.-S. Acta Crystallogr. 1991, C47, 259. (q) Torreson, I.; Michelin, R. A.; Mars 10, 623. (r) Vites, J. C.; Steffey, B. D.; Giuseppetti-Dery, M. E.; Cutler,
A. R. Organometallics 1991, 10, 2827. (s) Gibson, D. H.; Ong, T.-S.; Ye,
M. Organometallics 1991, 10, 1811. (t) Gibson, D. H.; Ye, M.; Richardson, Fujita, E.; Creutz, C. *Inorg. Chem.* 1992, 31, 4712. *(v)* Field, J. S.; Haines, R. 3.; Sundermeyer, J.; Woolam, S. F. *J.* Chem. SOC., Dalton Trans. **1993, 2735.** (w) Gibson, D. H.; Richardson, J. F.; Mbadike, 0. P. Acta Crystallogr. **1993, B49, 784.**

⁽⁴⁾ Patton, A. **T.;** Strouse, C. **E.;** Knobler, C. B.; Gladysz, J. A. J. Am. Chem. **SOC. 1983,105,5804.**

Figure **1.** ORTEP drawing of 3 with thermal ellipsoids shown at the 50% probability level. Selected bond distances **(A)** and bond angles (deg) are **as** follows: Re-C(l), 2.100(9); C(1)-O(1), 1.322(9); C(1)-O(2), 1.24(1); O(1)-Sn, 2.092(3); O(2)-Sn, 2.399(1); O(1)-C(1)-0(2), 114.6(7); Re-C(l)-O(l), 119.4(6); Re-C(1)-O(2), 126.0(6); O(1)-Sn-O(2), 56.79(5).

 cm^{-1} in the tin complex 3 and 1437 and 1282 cm^{-1} in the homobimetallic compound **4, as** well as differences in the chemical shift positions of the carboxyl carbons in the two compounds (a singlet at 201.13 ppm in 3 and a doublet at 219.17 ppm in **4)** suggested different bonding modes for the CO₂ ligand in these compounds as noted before for iron metallocarboxylates.^{3t} Thus, an unsymmetrical structure (previously described as type B^{3t}) was suggested for 3, whereas a symmetrical (type A) structure (as shown in eq 2) was suggested for compound **4.** An X-ray structure determination of **4IO** and comparisons of the bonding characteristics of the $CO₂$ ligand in this compound with those in 3 confirmed the differences in structural types (see Figure 2).

It is interesting to note that a μ_2 - η^2 complex is not observed as a precursor to 4. With the μ_2 - η^2 complex CpFe- $(CO)(PPh_3)(CO_2)Re(CO)_4(PPh_3)$, thermolysis at 85 °C for several hours was required to accomplish the $\mu_2 - \eta^2$ to $\mu_2 - \eta^3$

Figure **2.** ORTEP drawing of **4** with thermal ellipsoids shown at the 50% probability level. Selected bond distances (A) and bond angles (deg) are **as** follows: Re(1)-C(l), 2.089(6); C(1)-O(1), $1.296(6)$; C(1)-O(2), 1.289(8); O(1)-Re(2), 2.165(4); $O(2)$ -Re(2), 2.175(3); $O(1)$ -C(1)-O(2), 113.2(5); $Re(1)-C(1)-O(1), 122.0(4); Re(1)-C(1)-O(2), 124.8(3);$ $O(1)$ -Re(2)- $O(2)$, 59.6(1).

conversion.3t In the present case, facile conversion to the μ_2 - η^3 complex is apparently greatly enhanced by the strongly electron-donating Cp* ligand.

The differences between 3 and **4** parallel differences in structural parameters and 13C chemical shifts reported by Geoffroy for cationic complexes which are closely related to 3 and 4. Thus, the $\mu_2-\eta^3$ complex $Cp*Re(CO)(NO)$ -(C02)WCp2+BFd- **3n** shows highly symmetrical bonding of the bridging $CO₂$ and a short Re-carboxyl carbon bond $(2.04(4)$ $\rm{\AA})$ together with a very low field carbon resonance position for the carboxyl carbon (243.1 ppm). However, another μ_2 - η^3 complex, $\mathrm{Cp*Re}(\mathrm{CO})(\mathrm{NO})(\mathrm{CO}_2)$ - $\mathrm{Ti}(\mathrm{tmtaa})^+\mathrm{BF_4}$ -, $^{11}\mathrm{s}$ hows an unsymmetrically bonded CO $_2$ ligand and considerably longer Re-carboxyl carbon bond (2.081(9) **A)** together with a much higher field carboxyl carbon 13C shift (226.2 ppm). The Re-carboxyl bond length in the μ_2 - η^3 complex CpRe(NO)(PPh₃)(CO₂)SnPh₃ is 2.058(9) **A,** and the carboxyl carbon appears at **6** 207.6; this system is unsymmetrical with differing C-0 and 0-Sn bond lengths.^{3k} Angelici¹² reported the characterization of a dioxycarbene complex of rhenium several years ago; is a suppositive grady emiatical by
tron-donating Cp* ligand.

ences between 3 and 4 parallel difference

rameters and 13C chemical shifts reporter

cationic complexes which are closely rel

Thus, the μ_2 - η ³ compl

 $\text{Re}(\text{CO})_4\text{Br}(\text{C}-\text{OCH}_2\text{CH}_2\text{O})$ shows a rhenium-carbene carbon length of 2.135(13) *8,* and signal at **6** 224.31 for the carbene carbon. Although rhenium-alkylidene carbon bonds are shorter,13 all rhenium oxycarbenes also show Re-carbene carbon bond lengths in excess of 2.0 **A** (e.g., $MnRe(CO)₉=C(OCH₃)(CH₃)$ at 2.094(7) Å).¹⁴

Within the series of four compounds having the fragment $Cp*Re(CO)(NO)(CO₂)$ there are relationships of Recarboxyl carbon bond length, 0-C-0 bond angle, carboxyl oxygen-metal bond length, and carbon chemical shift

⁽⁹⁾ In a glovebox, under nitrogen, 2 (0.200 g, 0.470 mmol) and Na₂CO₃ **(0.025** g, **0.240** mmol) were slurried in **10** mL of CH2Clz and maintained at 0 "C. Re(CO),(PPha)(F-BFa) **(0.305** g, **0.470** mol) was dissolved in **5** mL of CH2C12, chilled **to0** "C, and then added to the mixture containing **2.** The resulting mixture was stirred at 0 "C for **30** min and then warmed removed under vacuum, leaving a yellow-orange powder $(0.320 \text{ g}, 71 \text{\%})$ yield). Recrystallization of the crude product from ether afforded orange
crystals, mp 208–210 °C dec. Anal. Calcd for C₃₃H₃₀NO₇PRe₂: C, 41.50; H, **3.16.** Found C, **41.61;** H, **3.20. IR** (CHzC12): **2020 (a), 1980 (a), 1920** (s), 1900 (s), 1710 (m) cm⁻¹. DRIFTS $\nu_{\rm OCO}$ (KCl): 1437 (m), 1282 (s) cm⁻¹.
¹H NMR (CD₂Cl₂, 25 °C): ô 2.08 (s), 7.46 (m). ¹³C NMR (CD₂Cl₂, 25 °C): *b* **10.44 (a), 104.80 (a), 128.82** (d, *Jpc* (d, *Jpc* δ 10.44 (s), 104.80 (s), 128.82 (d, $J_{PC} = 9.8$ Hz), 130.86 (s), 131.55 (d, $J_{PC} = 43.8$ Hz), 134.68 (d, $J_{PC} = 11.2$ Hz), 193.19 (d, $J_{PC} = 76.3$ Hz), 197.23 (d, $J_{PC} = 7.2$ Hz), 197.67 (d, $J_{PC} = 7.3$ Hz), 206.37 (s)

without Na₂CO₃ gave only cation 1.

(10) Crystal data for 4: C₃₈H₃₀NO₇PRe₂, 955.98, triclinic, *P*1, *a* = 101.117(3) Å, *b* = 16.892(4) Å, *b* = 10.121(3) Å, *a* = 104.67(2)°, β = 101.16(2)°, γ = 97.86(were collected on an Enraf-Nonius CAD4 diffractometer using the ω -2*0* scan technique to a maximum $2\theta = 50^\circ$. The structure was refined using full-matrix least squares to final agreement factors $R(F) = 0.025$ and $R_w(F) = 0.027$ for 4252 observed reflections $(I > 3\sigma(I))$ and 398 parameters. All computations were performed using the MoIEN package (Enraf-Nonius).

⁽¹¹⁾ Housemekerides, C. E.; Ramage, D. L.; Kretz, C. M.; Shontz, J. T.; Pilato, R. S.; Geoffroy, G. L.; Rheingold, A. L.; Haggerty, B. S. Inorg. *Chem.* **1992,31, 4453.**

⁽¹²⁾ Miessler, **G.** L.; Kim, S.; Jacobson, R. A.; Angelici, R. J. **Znog.** *Chem.* **1987,26, 1690.**

⁽¹³⁾ **(a) Re=C** in Cp*Re(NO)[P(OPh)₃](=CH₂)⁺ is 1.898(18) A. See: Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. *J. Am. Chem.*
Soc. **1983**, *105*, 5804. *(b)* Re=C in CpRe(NO)(PPh₃)(=CHPh)+ is **1.949(6)** A. See: Kiel, **W.** A,; Lin, G. Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. **1982,'104, 4865.** '

Chem. SOC. **1975, 97,3053. (14)** Casey, C. P.; Cyr, C. R.; Anderson, R. L.; Marten, D. F. J. *Am.*

which define each type. Thus, the symmetrical Re-W complex has the shortest Re-C bond length, the smallest $O-C-O$ angle $(106(3)°)$, and the lowest field carbon shift, while the unsymmetrical Re-Sn complex 3 has the longest Re-carboxy carbon bond length, the largest 0-C-0 bond angle (see Figure 1), and the highest δ value for the carboxyl carbon. However, the greatest structural differences between the two types are with the carboxyl oxygen-metal bond lengths; these differ by approximately 0.3 **A** in compound 3 and just 0.01 **A** in **4.** Differences between the related, but cationic, complexes prepared by Geoffroy can be described in the same way. On the basis of rhenium-carboxy carbon bond lengths, all four compounds should be cast as "carbene" complexes; yet the unsymmetrically bonded compounds, such **as** 3, do constitute one class and the symmetrically bonded ones, such as **4,** constitute another. All of the bimetallic COz-bridged compounds which have been structurally characterized to the present time can be fitted into one of these two types. Although spectral data place the μ_2 - η^3 complexes prepared by Cutler^{3g,r} (and involving early transition metals bonded to the carboxyl oxygen atoms) in the unsymmetrical class, there are not yet any structural data on these compounds. The simple type B structure suggested earlier^{3t} does not adequately describe compounds of the unsymmetrical type; the delocalized system shown for 3 is offered as an improvement. The dioxycarbene structure (previously type A) is retained for the symmetrical types such **as 4.** There are not yet any physical data to support charge separation within compounds of this type; *vco* values appear to be normal.

From these comparisons and our previous work on CO_{2} bridged iron-tin^{3p,s,w} and iron-rhenium complexes, 3t it is apparent that structural differences in the complexes can be correlated with differences in their ν_{OCO} bands in DRIFTS spectra **as** well **as** in the 13C chemical shifts of the bridging carboxyl carbons. It was noted previously for IR spectra of carboxylato complexes that the difference in ν_{asym} and $\nu_{\text{sym}} (\Delta \nu)$ is helpful in distinguishing unidentate and bidentate coordination modes, since $\Delta \nu$ for the unidentate complexes is much larger.¹⁵ The μ_2 - π ²-CO₂bridged iron-rhenium complexes prepared by us previously^{3t} showed $\Delta \nu$ approximately equal to 353 cm⁻¹. Our symmetrical μ_2 - η^3 complexes^{3t} showed much smaller $\Delta \nu$ values of about 188 cm⁻¹, whereas the unsymmetrical compounds showed intermediate *Av* values between **2073k** and 258 cm^{-1} .³⁸ With the present compounds, 3 has $\Delta \nu =$ 255 cm^{-1} and 4 shows a smaller $\Delta \nu$ (155 cm⁻¹), as expected.

Acknowledgment. Support of this work by the United States Department of Energy, Division of Chemical Sciences (Office of Basic Energy Sciences), Office of Energy Research, is gratefully acknowledged. The X-ray equipment was purchased with assistance from the National Science Foundation (Grant No. CHE-9016978). Support of the Molecular Structure Laboratory through the NSF/ KY EPSCoR program (Grant No. EHR-9108764) is also gratefully acknowledged.

Supplementary Material Available: Tables of data collection and refinement parameters, anisotropic thermal parameters, atomic positional parameters, bond distances, bond angles, and torsional angles for 3 and 4 (34 pages). Ordering information is given on any current masthead page.

OM930854A

^{(15) (}a) Deacon, G. B.; Phillip~, R. J. *Coord. Chem. Rev.* **1980,33,227. (b) Deacon, G. B.; Huber, F.; Phillips, R. J.** *Znorg. Chim.* **Acta 1985,104, 41.**