Transition-Metal-Catalyzed Silylene Expulsion from, and/or Rearrangement of, Oligosilanes

Keith H. Pannell,* Mari-Carmen Brun, Hemant Sharma, Karen Jones, and Sneh Sharma

Department of Chemistry, University of Texas at *El* Paso, *El* Paso, Texas 79968-0513

Received January *19,* 1994"

Summary: Photochemical treatment of $HSiMe₂SiMe₂R$ $(R = Me)$ with a catalytic amount of $(\eta^5 - C_5H_5)Fe(CO)_2$ -SiMe₃, (1) led to the high-yield formation of Me₂Si, trapped efficiently with HSi(SiMe₃)₃. The use of $(\eta^{5} C_5H_5$)Fe(CO)(PPh₃)SiMe₃ (2) as catalyst in a thermal reaction does not produce silylene but causes isomerization of the disilane $(R = Ph)$. Photochemical treatment of HSiMe₂SiMe₂SiMe₂SiMe₃ with a catalytic amount of *I* initially produced HSi(SiMe3)a with further transformation to $HSiMe₂Si(SiMe₃)₃$ via silylene insertion. However, thermal catalysis using *2* yielded only HSi- $(SiMe₃)₃$. Both thermal and photochemical catalytic processes proceed via equilibrating Fe silyl silylene intermediates.

The photochemical transformation of disilyl and trisilyl derivatives of $(\eta^5$ -C₅H₅)Fe(CO)₂ (Fp), resulting in the elimination of SiR_2 , is well-established (eq 1).¹⁻³ In contrast, linear and cyclic oligosilyl groups containing four **or** more Si atoms result predominantly in high-yield isomerization reactions to form tris(sily1)silane derivatives (eq 2).

$$
FpSiMe2SiMe3 \xrightarrow{h\nu} FpSiMe3 + SiMe2 \qquad (1)
$$

$$
FpSiMe2SiMe2SiMe2SiMe3 $\xrightarrow{h\nu}$ FpSi(SiMe₃)₃ (2)
$$

These reactions proceed via equilibrating silyl silylene complexes, i.e., $(\eta^5$ -C₅H₅)Fe(CO)(=SiMe₂)Si_nMe_{2n+1}, formed by α -elimination subsequent to initial CO expulsion. In the case of the disilane $(n = 1)$ the silvlene is readily eliminated, whereas for the tetrasilane, and higher homologs, a series of 1,3-silyl and -methyl migrations proceed down a thermodynamic chain, resulting in the photostable tris(sily1)silane product. The desirability of performing such transformations of oligosilanes in a catalytic manner is self-evident. Randolph and Wrighton have reported that silyl exchange is readily effected upon photochemical irradiation of $Fp*Sime_3$ and Et_3SiH , a reaction that proceeds via initial CO loss, oxidative addition of Et3SiH to the resulting 16-electron intermediate, reductive elimination of MesSiH, and recoordination of CO (eq 3).^{2,4}

$$
Fp*SiMe3 + HSiEt3 \stackrel{hv}{\rightarrow} Fp*SiEt3 + Me3SiH
$$
 (3)

We report that a combination of the above reactions may be used to perform the silylene generation from disilanes (eq 1) and oligosilane isomerization (eq 2) in a catalytic manner using the intermediate $(\eta^5$ -C₅H₅)Fe(CO)-SiMe3 generated photochemically from FpSiMes (1) **or** thermally from $(\eta^5$ -C₅H₅)Fe(CO)(PPh₃)SiMe₃ (2).⁵ In a typical silylene generation reaction photochemical treatment of HSiMezSiMes in the presence of *5* % 1 in a sealed Pyrex NMR tube led to the total transformation of the disilane to $HSiMe₃$ and $SiMe₂$. The silylene was trapped by either 2,3-dimethylbutadiene (27% yield) or HSi-

(SiMes), **(78%**) (eq **4).6a** The catalytic cycle is detailed in HSiMe2SiMe, + HSi(SiMe,), - *hu* HSiMe,Si(SiMe,), + HSiMe, **(4)**

Scheme 1 (cycle **A),** and the results are closely related to the pioneering studies by the Kumada group involving silylene generation from $HSiMe₂SiMe₃$ catalyzed by platinum and nickel complexes.⁷

Similar photochemical treatment of mixtures of HSiMez-SiMe₃ with either of the trapping agents used above, in Pyrex tubes but without 1, failed to produce any chemistry.

(5) King, R. **B.;** Pannell, K. H. Inorg. *Chem.* **1968, 7,1510.**

⁰ Abstract published in Advance ACS Abstracts, March **15, 1994.** (1) (a) Pannell, K. H.; Rice, J. J. Organomet. Chem. 1974, 78, C35. (b)
Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. P.
Organometallics 1986, 5, 1056. (c) Pannell, K. H.; Rozell, J. M.; Hernandez

Rozell, J. M. Organometallics 1989, 8, 550. (e) Jones, K.; Pannell, K. H.
J. Am. Chem. Soc. 1993, 115, 11 336. (f) Hernandez, C.; Sharma, H. K.; Pannell, K. H. J. Organomet. Chem. 1993, 462, 259.
(2) (a) Tobita, H.; Ueno,

J. J.; **Boag,** N. M.; Green, M. *J.* Am. Chem. *SOC.* **1991,113, 2011.**

⁽⁴⁾ Randolph, C. L.; Wrighton, M. S. J. Am. Chem. SOC. **1986,** *108,* **3366.**

^{(6) (}a) A 5-mm Pyrex NMR tube was charged with **0.1 g (0.76** mol) of HSiMezSiMea, 0.1 **g (0.40** mmol) of HSi(SiMe& and **5** mol % of **1** in **1.5** mL of dry benzene and sealed under vacuum. Photolysis using **a** Hanovia **450-W** lamp at a distance of **10** cm was monitored by Wi NMR spectroscopy. After 10 h the HSiMe₂SiMe₃ had been consumed and resonances associated with the insertion product HSiMe₂Si(SiMe₃)₃ were resonances associated with the insertion product $HSiMe₂Si(SiMe₃)$ _s were observed $(-9.15, -33.0,$ and -136.4 ppm) together with a minor amount of $HSiMe₂SiMe₂Si(SiMe₃)$ $(-9.17, -15.7, -39.9, -132.2$ ppm). passed through a small column **(1 X ²**cm) of silica gel and the resulting solutionevaporatedto dryness. The solid white residue was recrystallized structure to yield pure HSiMe₂Si(SiMe₃)₃ (0.096 g, 78%), whose
spectroscopic and physical properties were identical with those reported.⁸ spectroscopic and physical properties were identical with those reported.⁸
(b) In a manner identical with that above 0.2 g (0.81 mmol) of HSiMe₂-
SiMe₂SiMe₂SiMe₃ was irradiated for 13 h with ²⁹Si NMR monitoring The disappearance of the starting material was noted along with the appearance of HSi(SiMe₃)₃ and also HSiMe₂Si(SiMe₃)₃. Resonances indicating the formation of small amounts of other silane species were also apparent. Upon completion of the reaction GC/MS analysis showed the presence of HSiMe₂Si(SiMe₃)₃ (67%), HSi(SiMe₃)₃ (6%), HSiMe₂-SiMe₂Si(SiMe₃)₃ (6%), and small amounts of HSi₃Me₇, ferrocene, and FpSi(SiMe3)~. Chromatography of the mixture via a silica gel column **(2** r pSi(SiMe₃)₃. Chromatography or the mixture via a sinca gel column (2
 \times 10 cm) yielded a white solid that was 87% and 13%, respectively,

HSiMe₂Si(SiMe₃)₃ and HSiMe₂SiMe₂Si(SiMe₃)₃ (0.14 g). (c) A 5 SiMe(SiMe₃)₂. Workup as described above resulted in the isolation of 0.097 **g** (88%) of HSi(SiMe₃)₃.

⁽⁷⁾ (a) Yamamoto, **K.;** Okinoshima, H.; Kumada, M. J. Organomet. *Chem.* **1971,27, C31.** (b) Yamamoto, **K.;** Okinoshima, H.; Kumada, M. J. Am. *Chem.* SOC. **1972,94, 9263.** (8) Derouiche, **Y.;** Lickiss, P. D. *J.* Organomet. *Chem.* **1991,407,41.**

Scheme **1.** Catalytic Process for Silylene Generation: Photochemical with Catalyst 1 (Cycle *A;* **R** = Me) and Thermal Isomerization with Catalyst 2 (Cycle B ; $R = Ph$)

The Turner group has shown that the CO substitution of the silylene from $(\eta^5$ -C₅H₅)Fe(CO)(=SiMe₂)SiMe₃ to form $FpSiMe₃$ is a photochemical event.³ Since the thermal process does not cause silylene expulsion, thermal treatment of HSiMezSiMes and **2** in the presence of either 2,3-dimethylbutadiene or $HSi(SiMe₃)₃$ resulted in no chemical transformations. To prove that thermally generated equilibrating silyl silylene complexes occurred in the case of disilanes, we treated both isomers PhSiMez-SiMezH (3) and HPhMeSiSiMe3 **(4)** independently to the same thermal conditions described in the presence of catalyst **2.** Both reactions resulted in the formation of a mixture of 3 and **4** in the ratio **6535,** respectively, proving the thermal formation of equilibrating iron silyl silylene complexes (Scheme 1, cycle B).

To effect the isomerization of HSiMe₂SiMe₂-SiMea, irradiation with FpSiMea *(5* %) **was** performed and led to rapid formation of HSi(SiMe₃)₃, and the catalytic scheme is shown in Scheme **2.6b** However, further transformation to the dimethylsilylene insertion reaction product $HSiMe₂Si(SiMe₃)₃$ was observed and it is apparent that some silylene expulsion occurred from the linear $(\eta^5$ -**CsH~)Fe(CO)SiMezSiMe2SiMezSiMe3** intermediates, a result that we had not previously observed when following the high-yield reaction described in eq **2** via 29Si NMR.

To retard the silylene elimination and subsequent formation of $\text{HSiMe}_2\text{Si}(\text{SiMe}_3)_3$, we used the thermal route with catalyst 2. Treatment of a toluene solution of HSiMe₂-SiMezSiMezSiMea with **2** *(5%)* in a sealed NMR tube at 120 "C resulted in the quantitative formation of HSi- $(SiMe₃)₃$ as the only observed product after 24 h $(88\%$ isolated yield).&

Overall we have demonstrated that the chemistry of the Fp-oligosilane systems can be utilized to perform **(a)** catalytic silylene generation from disilanes (photochemically with catalyst **l),** (b) isomerization of disilanes (thermally with catalyst **2),** and (c) isomerization of linear oligosilanes using either method, but preferably the thermal route using **2 as** catalyst. It is noteworthy that Blinka and West have shown that cyclosilanes may be

isomerized by AlCl₃ only if 1% FeCl₃ is present;⁹ however, we have also performed the photochemical isomerization of HSiMe₂SiMe₂SiMe₂SiMe₃ using either $Fe(CO)₅$ or $W(CO)₆$ as catalyst and the thermal isomerization using $(\eta^5$ -C₅H₅)Ru(PPh₃)₂CH₃ as catalyst. The photochemical reactions proceed smoothly, however, **aa** with the photochemical catalysts using 1, subsequent to isomerization, some silylene insertion occurred. Using the Ru catalyst,

⁽⁹⁾ **Blinka, T. A.; West, R.** *Organometallics* **1986,6, 128.**

a mixture of (Me3Si)sSiH and (Me3Si)zMeSiSiMezH (55: Acknowledgment. Support of this research by the 45) was formed. These results suggest that a variety of metal complexes may be used as the catalytic species in **the chemistry described, including preferential isomer formation, and we are actively pursuing this concept. OM9400412**

Foundation, Houston, TX, is gratefully acknowledged.