

Subscriber access provided by American Chemical Society

Synthesis and Chemical Properties of the 17-Electron Compounds (.eta.5-C5Ph4Ar)Fe(CO)2 (Ar = Phenyl, p-Tolyl)

Inga Kuksis, and Michael C. Baird

Organometallics, **1994**, 13 (5), 1551-1553• DOI: 10.1021/om00017a005 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00017a005 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Inga Kuksis and Michael C. Baird*

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6

Received February 1, 1994®

Summary: Treatment of $(\eta^5-C_5Ph_5)Fe(CO)_2H$ and $(\eta^5-C_5Ph_5)Fe(CO)_2H$ $C_5Ph_4(p-tolyl))Fe(CO)_2H$ with the trityl radical, Ph_3C^{\bullet} , results in hydride hydrogen atom abstraction and formation of the corresponding 17-electron pentaarylcyclopentadienyl compounds $(\eta^5 - C_5 Ph_4 Ar)Fe(CO)_2$ (Ar = Ph, p-tolyl). The dicarbonyl radicals exist in solution in facile equilibrium with the corresponding 18-electron dimers $[(\eta^5 - C_5 Ph_4 Ar)Fe(CO)_2]_2$ and were characterized by their IR spectra, which resemble the spectra of the analogous compounds $(\eta^5-C_5H_5)Fe(CO)_2$ and $(\eta^5-C_5 Me_5)Fe(CO)_2$, and by their reactivities with organic halides and ¹³CO, which are characteristic of 17-electron, metal-centered radicals.

There is currently considerable interest in the synthesis and characterization of 17-electron organotransition-metal compounds (metal-centered radicals).¹ Such species are often very reactive, taking part in a variety of redox, atom abstraction, and coupling reactions. However, they may often be stabilized with respect to dimerization to the 18electron, metal-metal-bonded analogues by substitution of small ligands by more sterically demanding ligands (e.g. CO by tertiary phosphines,² η^5 -C₅H₅ by η^5 -C₅Me₅^{2h} and $\eta^5 - C_5 Ph_5^3$).

The 17-electron species $CpFe(CO)_2$ and $Cp*Fe(CO)_2$ (Cp = η^5 -C₅H₅, Cp* = η^5 -C₅Me₅) have previously been formed by photolysis of the corresponding iron-iron-bonded dimers under various conditions and have been characterized by IR spectroscopy.⁴ The carbonyl stretching frequencies of CpFe(CO)₂ occur at \sim 2000 and \sim 1938 cm⁻¹,

depending on the medium and the temperature, and those of $Cp*Fe(CO)_2$ at 1984 and 1915 cm⁻¹ (cyclohexane at 25 °C).

The iron-centered radicals are exceedingly reactive species, dimerizing at near-diffusion-controlled rates4b,d,5a and readily abstracting halogen atoms from organic halides,⁵ i.e.

$$2CpFe(CO)_2 \rightarrow [CpFe(CO)_2]_2$$
(1)

$$CpFe(CO)_2 + RX \rightarrow CpFe(CO)_2X + R^{\bullet}$$
(2)

As a result, no stabilized derivatives of the type $(\eta^5 - C_5 R_5)$ -Fe(CO)L (R = H, alkyl, aryl; L = CO, tertiary phosphine) have as yet been reported.

As part of the development of new methodologies for the synthesis of novel 17-electron species, we⁶ and others⁷ have recently demonstrated the utility of persistent triarylmethyl radicals Ar₃C[•] to abstract hydrogen atoms from 18-electron transition-metal hydride complexes MHL_n and form the corresponding 17-electron compounds ML_n (eq 3). In the absence of suitable radical traps, the

$$MHL_n + Ar_3C^{\bullet} \to ML_n + Ar_3CH$$
(3)

species ML_n may couple and the organometallic products obtained are often the 18-electron diamagnetic dimers $[ML_n]_2$. On the other hand, in those cases where radical coupling is not feasible, the chemistry of eq 3 provides a convenient thermal route to new 17-electron compounds. Since a number of sterically hindered iron hydrides of the type $(\eta^5 - C_5 R_5)$ Fe(CO)LH are available, it seemed possible that the corresponding iron-centered radicals $(\eta^5-C_5R_5)$ -Fe(CO)L might also be synthesized via abstraction of the hydridic hydrogen atom; we describe below a series of experiments in which hydrides of the type Cp'Fe(CO)LH are reacted with Ph_3C^{\bullet} .

As expected, ^{4b,d,5a} treatment of CpFe(CO)₂H with excess Ph₃C[•] resulted in immediate formation of the deep red dimer $[CpFe(CO)_2]_2$. An attempt to stabilize a substituted monomeric species by treating CpFe(CO)(PPh₃)H with Ph₃C[•] also resulted in iron-iron bond formation via radical coupling, as the deep green Cp₂Fe₂(CO)₃(PPh₃) was formed (identified by IR and ¹H NMR spectroscopic comparisons with samples prepared as described previously⁸). The latter result resembles earlier observations with the

Abstract published in Advance ACS Abstracts, April 1, 1994.

<sup>Abstract published in Advance ACS Abstracts, April 1, 1994.
(1) (a) Trogler, W. C., Ed. Organometallic Radical Processes; Elsevier: Amsterdam, 1990. (b) Baird, M. C. Chem. Rev. 1988, 88, 1217.
(2) (a) McCullen, S. B.; Brown, T. L. J. Am. Chem. Soc. 1982, 104, 7496. (b) Kidd, D. R.; Cheng, C. P.; Brown, T. L. J. Am. Chem. Soc. 1978, 100, 4103. (c) Walker, H. W.; Rattinger, G. B.; Belford, R. L.; Brown, T. L. Organometallics 1983, 2, 775. (d) Herrick, R. S.; Herrinton, T. R.; Walker, H. W.; Brown, T. L. Organometallics 1985, 4, 42. (e) Hanckel, J. M.; Lee, K.-W.; Rushman, P.; Brown, T. L. Inorg. Chem. 1986, 25, 1852.</sup> (f) Cooley, N. A.; Watson, K. A.; Fortier, S.; Baird, M. C. Organometallics 1986, 5, 2563. (g) Cooley, N. A.; MacConnachie, P. T. F.; Baird, M. C. Polyhedron 1988, 7, 1965. (h) Watkins, W. C.; Jaeger, T.; Kidd, C. E.; Fortier, S.; Baird, M. C.; Kiss, G.; Roper, G. C.; Hoff, C. D. J. Am. Chem. Soc. 1992, 114, 907.

<sup>Soc. 1992, 114, 907.
(3) (a) Broadley, K.; Lane, G. A.; Connelly, N. G.; Geiger, W. E. J. Am.</sup> Chem. Soc. 1983, 105, 2486. (b) Connelly, N. G.; Geiger, W. E.; Lane, G. A.; Raven, S. J.; Rieger, P. H. J. Am. Chem. Soc. 1986, 108, 6219. (c) Connelly, N. G.; Raven, S. J. J. Chem. Soc., Dalton Trans. 1986, 1613.
(d) Connelly, N. G.; Raven, S. J.; Geiger, W. E. J. Chem. Soc., Dalton Trans. 1987, 467. (e) Lane, G. A.; Geiger, W. E. J. Chem. Soc., Dalton Chem. Soc. 1987, 109, 402. (f) DeGray, J. A.; Geiger, W. E.; Lane, G. A.; Rieger, P. H. Inorg. Chem. 1991, 30, 4100. (g) Fei, M.; Sur, S. K.; Tyler, D. R. Organometallics 1991, 10, 419. (h) Hoobler, R. J.; Hutton, M. A.; Dillard, M. M.; Castellani, M. P.; Rheingold, A. L.; Rieger, 116.

<sup>P. H.; Richards, T. C.; Geiger, W. E. Organometallics 1993, 12, 116.
(4) (a) Moore, B. D.; Simpson, M. B.; Poliakoff, M.; Turner, J. J.</sup> Chem. Soc., Chem. Commun. 1984, 972. (b) Moore, B. D.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 1819. (c) Bloyce, P. E.; Campen, A. K.; Hooker, R. H.; Rest, A. J.; Thomas, N. R.; Bitterwolf, T. E.; Shade, J. E. J. Chem. Soc., Dalton Trans. 1990, 2833. (d) Dixon, A. J.; George, M. W.; Hughes, C.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc 1992, 114, 1719.

^{(5) (}a) Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 7794.
(b) Abrahamson, H. B.; Palazzotto, M.; Reichel, C. L.; Wrighton, M. S. Am. Chem. Soc. 1979, 101, 4123. (c) Tyler, D. R.; Schmidt, M. A.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 6018.

^{(6) (}a) Drake, P. R.; Baird, M. C. J. Organomet. Chem. 1989, 363, 131. (b) Koeslag, M. D.; Baird, M. C. Organometallics 1994, 13, 11.

^{(7) (}a) Ungvary, F.; Marko, L. J. Organomet. Chem. 1980, 193, 383. (b) Turaki, N. N.; Huggins, J. M. Organometallics 1986, 5, 1703. (c) Eisenberg, D. C.; Lawrie, C. J. C.; Moody, A. E.; Norton, J. R. J. Am. Chem. Soc. 1991, 113, 4888.

analogous molybdenum hydride CpMo(CO)₂(PPh₃)H,^{6a} which also forms a dimolybdenum compound containing a single PPh₃. In both systems, apparently, substituted radicals are formed but dimerize slowly or do not dimerize because of steric factors: however, partial decomposition and liberation of CO result in some formation of the carbonyl species $CpMo(CO)_3$ or $CpFe(CO)_2$, and these can couple preferentially with the corresponding substituted radicals to form the bimetallic compounds, which are isolated. That the iron-centered radical is formed in the hydrogen abstraction reaction of CpFe(CO)(PPh₃)H with Ph_3C^{\bullet} is shown by the observation solely of CpFe(CO)- $(PPh_3)Cl^9$ (ν_{CO} 1951 cm⁻¹ in benzene, 1958 cm⁻¹ in CH₂- Cl_2) when the reaction of $CpFe(CO)(PPh_3)H$ is carried out in the presence of excess trityl chloride. We note also that hydrogen atom abstraction from CpFe(CO)(PPh₃)H with the 17-electron compound Mn(CO)₅ also yields Cp₂- $Fe_2(CO)_3(PPh_3).^{8d}$

Since the metal-centered radicals $(\eta^5-C_5Ph_5)M(CO)_3$ (M = Cr. Mo) are much more stable with respect to dimerization than are $(\eta^5-C_5H_5)Cr(CO)_3$, $(\eta^5-C_5Me_5)Cr(CO)_3$, or $(\eta^5-C_5H_5)Mo(CO)_3$, $2^{2h,3g,h}$ we next turned our attention to hydrogen abstraction reactions of the compound (η^5 -C₅-Ph₅)Fe(CO)₂H.¹⁰ As anticipated, treatment of a yellow benzene solution of $(\eta^5-C_5Ph_5)Fe(CO)_2H$ with a yellow benzene solution of Ph₃C[•] at 25 °C resulted in a rapid change of color to deep green, the color of the dimeric $[(\eta^5 - \tilde{C}_5 Ph_5)Fe(CO)_2]_2$.^{10,11} Monitoring the reaction by IR spectroscopy revealed that the carbonyl stretching bands of the hydride (ν_{CO} 2009, 1954 cm⁻¹) were replaced by strong terminal and bridging carbonyl stretching bands at 1956 and 1781 cm⁻¹, respectively, very close to the frequencies reported for $[(\eta^5-C_5Ph_5)Fe(CO)_2]_2$ as a Nujol mull.^{11a} Interestingly, however, the band at 1781 cm⁻¹ was completely replaced within minutes by a band of comparable intensity at 1788 cm⁻¹, and it seemed possible initially that the dimer was undergoing *cis-trans* isomerization. However, for both $[CpFe(CO)_2]_2$ and $[Cp*Fe(CO)_2]_2$, the differences between the terminal carbonyl stretching frequencies of the cis-bridged and those of the transbridged isomers are 40-50 cm^{-1.4b} Since there is little perceptible change in the absorption at \sim 1955 cm⁻¹ during the reaction of $(\eta^5$ -C₅Ph₅)Fe(CO)₂H with Ph₃C[•], cis-trans isomerization seems an unlikely explanation for our observations. Instead, since the C_5Ph_5 groups are expected to be chiral by virtue of twisting of the phenyl groups,¹² it seems more likely that the bands at 1781 and 1788 cm^{-1} should be attributed to diastereomers in which the phenyl groups of pairs of C₅Ph₅ ligands in a molecule of the dimer have the same and the opposite chirality.^{13a}

Of greater interest is the observation, in solution but not in the solid-state IR spectra, of very weak terminal carbonyl stretching bands at 1991 and 1922 cm⁻¹. These are very similar to the carbonyl stretching frequencies of $CpFe(CO)_2$ and $Cp*Fe(CO)_2$, mentioned above, and are therefore possibly attributable to the monomer $(\eta^5-C_5Ph_5)Fe(CO)_2$, in equilibrium with $[(\eta^5-C_5Ph_5)Fe(C (0)_2]_2$:13b

$$[(\eta^{5} - C_{5} Ph_{5}) Fe(CO)_{2}]_{2} \rightleftharpoons 2(\eta^{5} - C_{5} Ph_{5}) Fe(CO)_{2} \quad (4)$$

Although rapid exchange with the thermodynamically more stable diamagnetic dimer rendered the system EPR inactive, tentative identification of the species in solution as an iron-centered radical was confirmed by its rapid reaction with methyl iodide in benzene to form the iodo $(\nu_{\rm CO} 2029, 1989 \text{ cm}^{-1}; \text{ compare } (\eta^5 - C_5 \text{Ph}_5) \text{Fe}(\text{CO})_2 \text{Br}, \text{ for}$ which $\nu_{\rm CO}$ is 2038, 1996 cm⁻¹ in CH₂Cl₂¹⁴) and methyl ($\nu_{\rm CO}$ 2002, 1948 cm⁻¹; compare 2002, 1946 cm⁻¹ in CH₂Cl₂^{11a}) analogues (eq 5), identified spectroscopically. Similar

$$[(\eta^{5}-C_{5}Ph_{5})Fe(CO)_{2}]_{2} + MeI \rightarrow (\eta^{5}-C_{5}Ph_{5})Fe(CO)_{2}Me + (\eta^{5}-C_{5}Ph_{5})Fe(CO)_{2}I$$
(5)

reactivity is exhibited by CpCr(CO)₃, which exists in solution to the extent of a few per cent of its diamagnetic dimer, with it is in equilibrium, but not, we find, by [CpFe- $(CO)_2]_2$, which does not dissociate significantly in solution.4,15

At this point, since the very low solubility of $[(n^5-C_5 Ph_5)Fe(CO)_2]_2^{11}$ was hindering further progress, we opted to continue research with the sterically and electronically similar but more soluble p-tolyltetraphenylcyclopentadienyl system.¹⁶ The IR spectrum (benzene) of $[(\eta^5-C_5-$ Ph₄(p-tolyl))Fe(CO)₂]₂¹⁶ also exhibits pairs of carbonyl stretching bands for monomer (ν_{CO} 1989, 1922 cm⁻¹; absent in spectra of the solid) and dimer (ν_{CO} 1958, 1780 cm⁻¹), and it is found that the relative intensities are strongly concentration dependent. Thus, the intensities of the monomer bands are relatively high in dilute solutions $(\sim 0.002 \text{ M})$ but relatively low in more concentrated solutions (~ 0.013 M), consistent with a dissociative process analogous to that of eq 4. Assuming comparable extinction coefficients for the terminal carbonyl stretching bands of the monomer and the bridging carbonyl band of the dimer, as is found for the cyclopentadienyl analogue,^{4d} the equilibrium constant for dimer dissociation is approximately 10^{-3} M.

As anticipated on the basis of the reactions of $(n^5-C_5 Ph_5$)Fe(CO)₂ with methyl iodide (see above) and of CpCr- $(CO)_3$ with a variety of organic halides,¹⁷ (η^5 -C₅Ph₄(ptolyl))Fe(CO)₂ reacts readily with methyl, allyl, and tertbutyl iodides to form $(\eta^5 - C_5 Ph_4(p-tolyl))Fe(CO)_2I$ and the

^{(8) (}a) Haines, R. J.; Du Preez, A. L. Inorg. Chem. 1969, 8, 1459. (b) Zhang, S.; Brown, T. L. Organometallics 1992, 11, 4166. (c) White, A. J. J. Organomet. Chem. 1979, 168, 197. (d) Bogdan, P. L.; Wong, A.; Atwood, J. D. J. Organomet. Chem. 1982, 229, 185.

⁽⁹⁾ Treichel, P. M.; Shubkin, R. L.; Barnett, K. W.; Reichard, D. Inorg. Chem. 1966, 5, 117

⁽¹⁰⁾ McVey, S.; Pauson, P. L. J. Chem. Soc. 1965, 4312.

^{(11) (}a) Connelly, N. G.; Manners, I. J. Chem. Soc., Dalton Trans. 1989, 283. (b) Aroney, M. J.; Buys, I. E.; Dennis, G. D.; Field, L. D.; Hambley, T. W.; Lay, P. A.; Masters, A. F. *Polyhedron* 1993, *12*, 2051.

 ⁽¹²⁾ Adams, H.; Bailey, N. A.; Browning, A. F.; Ramsden, J. A.; White,
 C. J. Crganomet. Chem. 1990, 387, 305. For a complementary discussion of hexaaryl benzenes, see: Willem, R.; Gielen, M.; Hoogzand, C.; Pepermans, H. Adv. Dyn. Stereochem. 1985, 1, 207.

^{(13) (}a) While differences in the terminal carbonyl stretching bands of the diastereomers of $[(\eta^5-C_5Ph_5)Fe(CO)_2]_2$ would still be anticipated. the band at 1956 cm⁻¹ overlaps both a solvent absorption and one of the absorptions of the hydride, and any subtle variations during the reaction are obscured. (b) Carbonyl stretching frequencies of η^5 -C₅Ph₅ compounds are expected to lie between those of the Cp and Cp* analogues.³

⁽¹⁴⁾ Field, L. D.; Ho, K. M.; Lindall, C. M.; Masters, A. F.; Webb, A.

G. Aust. J. Chem. 1990, 43, 281. (15) Tenhaeff, S. C.; Covert, K. J.; Castellani, M. P.; Grunkemeier, J.; Kunz, C.; Weakley, T. J. R.; Koenig, T.; Tyler, D. R. Organometallics 1993, 12, 5000 and references therein.

⁽¹⁶⁾ The dimer $[(\eta^5-C_5Ph_4(p-toly))Fe(CO)_2]_2$ was prepared essentially the same as was $[(\eta^5-C_5Ph_5)Fe(CO)_2]_2$. The known bromo compound $(\eta^5-C_5Ph_4(p-tolyl))Fe(CO)_2Br^{14}$ was reacted with NaBH₄¹⁰ to form the corresponding hydride $(\eta^5 - C_5 Ph_4(p-tolyl))Fe(CO)_2H$, which was in turn treated with trityl radical.

^{(17) (}a) Cooley, N. A.; Watson, K. A.; Fortier, S.; Baird, M. C. Organometallics 1986, 5, 2563. (b) Goulin, C. A.; Huber, T. A.; Nelson, J. M.; Macartney, D. H.; Baird, M. C. J. Chen. Soc., Chem. Commun.
 1991, 798. (c) MacConnachie, C. A.; Nelson, J. M.; Baird, M. C. Organometallics 1992, 11, 2521. (d) Huber, T. A.; Macartney, D. H.; Baird, M. C. Organometallics 1993, 12, 4715.

Communications

methyl (ν_{CO} 2000, 1947 cm⁻¹), η^1 -allyl (ν_{CO} 1998, 1948 cm⁻¹), and hydrido (ν_{CO} , 2007, 1950 cm⁻¹) analogues, respectively, identified spectroscopically. Typical of halogen abstraction reactions from organic halides by metal-centered radicals,^{17,18} the relative rates are allyl, *tert*-butyl \gg methyl, lending support to our identification of the species exhibiting carbonyl stretching bands at 1989 and 1922 cm⁻¹.

Also typical of 17-electron species, which are generally very labile with respect to ligand substitution,¹ we find that a benzene solution of $(\eta^5-C_5Ph_4(p-tolyl))Fe(CO)_2$ reacts rapidly with enriched ¹³CO (1 atm, room tempera-

(19) Zhang, S.; Brown, T. L. J. Am. Chem. Soc. 1993, 115, 1779.

ture) to yield fully exchanged monomer (ν_{CO} 1942, 1876 cm⁻¹) and dimer (ν_{CO} 1911, 1740 cm⁻¹) within minutes. For all four bands, the decreases in frequency associated with ¹³CO substitution are very similar to those reported for [CpFe(CO)₂]₂¹⁹ and are also as predicted theoretically.²⁰ We also find that [CpFe(CO)₂]₂ exchanges very little with ¹³CO under these conditions,²¹ again providing firm evidence for the identity of the iron-centered radical (η^5 -C₅Ph₄(p-tolyl))Fe(CO)₂.

OM9400863

^{(18) (}a) Howes, K. R.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1988,
27, 3147. (b) Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1969, 91, 582.
(c) Halpern, J.; Phelan, P. F. J. Am. Chem. Soc. 1972, 94, 1881.

⁽²⁰⁾ Braterman, P. S. *Metal Carbonyl Spectra*; Academic Press: New York, 1975; pp 36, 146.

⁽²¹⁾ A more thorough investigation of this exchange reaction has been reported,¹⁹ and it has been shown that exchange of $[CpFe(CO)_2]_2$ in the dark occurs *only* via the monomer.