Silicon-Containing Carbene Complexes. 15.1 A Strong W...H...Si Interaction in the 16-Electron Carbene Complex (CO)₄WC(NMe₂)SiHMes₂

Ulrich Schubert,*,† Matthias Schwarz, and Frank Möller

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received March 1, 1994*

Summary: Upon photolysis of the carbene complex $(CO)_5WC(NMe_2)SiHMes_2$ (Mes = mesityl), a CO ligand is eliminated and the stable 16-electron carbene complex $(CO)_4WC(NMe_2)SiHMes_2$ is obtained. In this complex there is an agostic interaction of the Si-H bond with the tungsten atom. This is manifested by the very small coupling constant J(SiH) of 106 Hz and the location of the hydrogen atom in a bridging position between silicon and tungsten in the X-ray structure analysis. The W...H...Si interaction results in a strong distortion of the carbene ligand. The W-C(carbene)-Si angle is reduced to 87.8(6)°, and the sum of the C-Si-C angles is 351.1°.

The M.H.Si three-center interactions by which silanes HSiR₃ interact with coordinatively unsaturated transitionmetal complexes $(L_n M)$ in the early stages of oxidativeaddition reactions are well understood.^{$\overline{2}$} In contrast to the η^2 -coordination of HSiR₃, agostic M,H,Si interactions, i.e., intramolecular, chelating interactions in mononuclear complexes of the type $L_nM-X-SiR_2-H$, are rare.³

The first complex of this type, MeCp(CO)MnPPh₂- $(CH_2)_2SiMe_2H$,⁴ is not typical, because the large distance between the Si-H group and the phosphine allows an interaction geometrically similar to that in the nonchelated complexes MeCp(CO)(R_3P)Mn(η^2 -HSi R_3). Three examples were found very recently in which Si-H groups in β -positions with regard to the metal center are involved in the M,H,Si three-center interactions. In {Zr[N- $(SiHMe_2)_2]_2Cl (\mu-Cl)_2$ a very weak β -SiH interaction of one of the N-SiHMe₂ groups was indicated by the Zr-H and Zr-Si distances.⁵ Unfortunately, no SiH coupling constants were measured. In $[(PCy)_3(SiHMes)_3]Cr(CO)_3$ $(Cy = C_6H_{11}, Mes = mesityl)$ the triphosphatrisilacyclohexane ligand is coordinated to the metal atom via two phosphorus atoms and one η^2 -SiH group.⁶ The SiH coupling constant of this group (135.7 Hz) is 75-90 Hz lower than ${}^{1}J(SiH)$ of the "normal" SiH groups of the heterocycle. An even more advanced stage of a β -SiH addition to a metal center was found in the complexes $Cp_2(X)ZrNBu^tSiMe_2H$ (X = H, F, Cl, Br, I),⁷ as judged by the small SiH coupling constants of only 113.2 (X =

H) to 135.4 Hz (X = F) and the acute Zr-N-Si bond angles $(95.1^{\circ} \text{ for } X = H \text{ and } 99.1^{\circ} \text{ for } X = Cl).$

We have now found a strong β -SiH interaction in Fischer-type silvl carbene complexes. In earlier work, we obtained the stable 16-electron complexes (CO)₄WC- $(NR_2)SiPh_{3-x}Me_x$ (x = 0-2) upon thermolysis of the corresponding 18-electron carbene complexes (CO)₅WC- $(NR_2)SiPh_{3-x}Me_x$.⁸ The X-ray structure analysis of $(CO)_4$ - $WC(NC_5H_{10})SiPh_3$ showed this complex to be intramolecularly stabilized by a weak agostic interaction of the ipso carbon of one phenyl group with the tungsten atom. The W-C(ipso) distance (268.8 (8) pm) was larger than, for instance, the W-C distances in W(0) complexes with π -olefin ligands, and the W-C_{carbene}-Si angle was reduced to 101.2(4)°.

Upon photolysis of the carbone complex (CO)₅WC-(NMe₂)SiHMes₂ (1), recently prepared by standard methods,¹ a CO ligand was eliminated, and the 16-electron carbene complex 2 was obtained (eq 1).⁹ Photolysis of the 18-electron carbene complex turned out to be more effective than thermolysis, because thermolysis also resulted in decomposition to a substantial degree.

Some spectroscopic properties of the SiH-substituted 16-electron carbene complex 29 are distinctly different from those of the previously prepared derivatives (CO)₄WC- $(NR_2)SiPh_{3-x}Me_x$.⁸ The $\nu(CO)$ bands of 2 (2021 m, 1966 w, 1939 s, 1923 vs, 1888 s cm^{-1} in petroleum ether) are between those of 1 (2055 m, 1970 w, 1934 vs, 1926 vs cm⁻¹) and (CO)₄WC(NMe₂)SiPh₃ (2013 w, 1931 s, 1914 vs, 1860 m cm^{-1}). These data indicate that 2 is less electron

[†] New address: Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A-1060 Wien, Austria.
[®] Abstract published in Advance ACS Abstracts, April 1, 1994.
(1) Part 14: Schubert, U.; Wülfert, P.; Mock, S. J. Organomet. Chem.

^{1993, 459, 55.} (2) Reviewed in: Schubert, U. Adv. Organomet. Chem. 1990, 30, 151.

⁽³⁾ Reviewed in: Schubert, U. In Advances of Organosilicon Chemistry; Marciniec, B., Chojnowski, J., Eds.; Gordon and Breach: Yverdon-les-Bains, Switzerland, in press

⁽⁴⁾ Schubert, U.; Bahr, K.; Müller, J. J. Organomet. Chem. 1987, 327, 357.

⁽⁵⁾ Herrmann, W. A.; Huber, N. W.; Behm, J. Chem. Ber. 1992, 125, 1405.

⁽⁶⁾ Driess, M.; Reisgys, M.; Pritzkow, H. Angew. Chem. 1992, 104, 1514; Angew. Chem., Int. Ed. Engl. 1992, 31, 1510.

⁽⁷⁾ Procopio, L. J.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1994, 116. 177.

⁽⁸⁾ Schubert, U.; Hepp, W.; Müller, J. Organometallics 1986, 5, 173. Hepp, W.; Schubert, U. J. Organomet. Chem. 1990, 385, 221.

⁽⁹⁾ All operations were carried out under an atmosphere of dry Ar. diethyl ether solution of 11 was irradiated at -20 °C with a 160-W UV lamp. Through the solution is bubbled a weak stream of dry Ar to remove CO. The reaction is monitored by IR spectroscopy and stopped when all $\nu(CO)$ bands of 1 have disappeared (about 1 h). The solvent is then removed in vacuo and the residue chromatographed at -20 °C with a petroleum ether/ether mixture (2:1) on silica. The first zone contains unreacted 1 and the second 2. Removal of the solvent in vacuo gives an unreacted 1 and the second 2. Removal of the solvent in vacuo gives an orange-red solid, which is washed with pentane at 0 °C: yield, 67%; mp 134 °C dec. ¹H NMR (C₆D₆, 200 MH2): δ 6.58 (s, 4H, C₆H₂Me₃), 3.00 (s, 3H, (Z)-NCH₃), 2.59 (s, 3H, (E)-NCH₃), 2.26 (s, 12H, o-CH₃), 2.02 (s, 6H, p-CH₃), -2.40 (s, 1H, SiH, J(SiH) = 106 Hz, J(WH) = 34 Hz). ²⁰Si NMR (C₆D₆, 79.5 MHz): δ -89.3 (d, J(SiH) = 106 Hz, J(WH) = 34 Hz). ²⁰Si NMR (C₆D₆, 50.3 MHz): δ 216.90, 214.68, and 204.61 (CO), 145-129 (C₆H₂Me₃), 53.67 ((Z)-NCH₃), 52.65 ((E)-NCH₃), 23.58 (o-CH₃), 20.93 (p-CH₃). Anal. Found (calcd): C, 48.73 (48.47); H, 4.82 (4.72); N, 2.18 (2.26).

Figure 1. ORTEP drawing of 2. Important bond distances (in pm) and angles (in deg) are as follows: W-C(1) = 194(1), W-C(2) = 200(1), W-C(3) = 202(1), W-C(4) = 204(1), W-C(5) = 214(1), W-H(1) = 210(10), W-Si = 277.6(3), C(5)-N =131(1), C(5)-Si = 185(1), Si-H(1) = 150(10), Si-C(11) = 188-(1), Si-C(21) = 188(1); C(1)-W-H(1) = 172(3), C(1)-W-C(5)= 103.6(6), C(2)-W-C(5) = 160.8(6), C(3)-W-C(5) = 99.1(5),C(4)-W-C(5) = 90.5(6), C(3)-W-C(4) = 168.5(7), W-C(5)-N= 140(1), W-C(5)-Si = 87.8(6), N-C(5)-Si = 131(1), C(5)-Si-C(11) = 119.3(6), C(5)-Si-C(21) = 118.4(6), C(5)-W-H(1)= 97(4), C(11)-Si-C(21) = 113.4(5), C(11)-Si-H(1) = 104(4),C(21)-Si-H(1) = 99(4).

deficient than the known 16-electron complexes (CO)₄WC- $(NR_2)SiPh_{3-x}Me_x$. The NMR data of the SiH group provide strong evidence that the electron deficiency at the metal is reduced by an agostic interaction: in the ${}^{1}H$ NMR spectrum the signal of the SiH group is dramatically shifted from 6.56 ppm in 1^1 to -2.40 ppm in 2 and the ²⁹Si NMR signal from -30.1 ppm in 1 to -89.31 ppm. The chemical shift of the SiH group is in the typical range of transition-metal hydrides rather than silicon hydrides. Changes in ²⁹Si NMR shifts are generally difficult to interpret. Although the ¹³C NMR resonance of the carbene carbon was not observed for 2, the signal of the related complex (CO)₄WC(NC₄H₈)SiHMes₂ (δ 275.8 compared to δ 283.2 in (CO)₅WC(NC₄H₈)SiHMes₂) indicates that this carbon atom still is a typical carbone carbon atom.

The strongest evidence for a W,H,Si three-center bond comes from the coupling constant J(SiH) (106 Hz), which is 109 Hz lower than in the corresponding 18-electron complex 1! This is the smallest coupling constant in a M,H,Si three-center bond to date. The SiH addition in 2 to the metal is therefore probably more advanced than in any other known complex. Correspondingly, the carbene ligand is rather distorted. The W-C(carbene)-Si angle in 2 (Figure 1)¹⁰ is reduced to 87.8°, compared with 113.1(4)° in 1. The sum of the C-Si-C angles is increased

from 342.6° in 1 to 351.1° in 2; i.e., the substituents at silicon (excluding the hydrogen atom) are increasingly planarized. The W-C(carbene) distance is the same as in the other structurally characterized 16-electron carbene complex $(CO)_4WC(NC_5H_4)SiPh_3$, while the C(carbene)-Si distance is slightly shorter (185(1) pm, compared with 187.7(9) pm).

A similar agostic interaction in a carbene complex was found in $[Tp'(CO)_2W = C(Ph)CH_2R]BF_4$ (Tp' = hydridotris(3,5-dimethylpyrazolyl); R = H, Me), where the β -CH group interacts with the metal.¹¹ The carbene ligand of the methyl derivative (R = H) shows a distortion (W- $C(\text{carbene})-C(\text{methyl}) = 91(1)^{\circ})$ similar to that in 2.

The β -elimination of C–H bonds leading to olefins is one of the principal reactions in organometallic chemistry. Although several examples for the generation of silene¹² or silanimine complexes¹³ by β -SiH migration are known. β -SiH eliminations do not play as an important role as β -CH eliminations. β -Si-H bonds are considered to be less activated, because the concomitant formation of silenes or disilenes makes the whole process disadvantageous. The β -hydrogen transfer probably occurs via a multicenter transition state, in which the M,H,Si interaction is similar to that in 2 or other complexes with an agostic β -SiH group.

Bonding in the carbene complex 2 corresponds to an intermediate stage of the hydrogen transfer from a nonstabilized 16-electron complex (A) to a metallasilacyclopropene (B).

It is worth noting that in 2 the (β) Si-H bond is more easily activated than the (α) C(carbene)-Si bond. Migration of the silyl group in 1 would result in the silyl carbyne complex $(CO)_4(Mes_2HSi)W \equiv CNMe_2$. Such a rearrangement was found for the corresponding stannyl complex $(CO)_5Cr = C(NEt_2)SnPh_3^{14}$ and was also postulated to explain the thermolysis products of alkoxy(silyl)carbene complexes $(CO)_5M = C(OR)SiPh_3$ (M = Cr, Mo, W).¹⁵

Acknowledgment. This work was supported by the Volkswagen-Foundation and the Fonds der Chemischen Industrie.

Supplementary Material Available: Listings of the final atomic coordinates, thermal parameters, bond lengths, and bond angles for 2 (6 pages). Ordering information is given on any current masthead page.

OM940157Y

⁽¹⁰⁾ Crystals of 2 were obtained from ether/pentane. Crystallographic data (213 K): orthorhombic, space group $P2_12_{2_1}$; a = 1186.2(4) pm, b = 1764.5(7) pm, c = 1222.7(9) pm, V = 2559(3) pm³, Z = 4, $d_{calcd} = 1.61$ g cm⁻³. A total of 6808 independent reflections were measured at 213 K $(2^{\circ} \le 2\theta \le 48^{\circ})$ Mo K α radiation, $\lambda = 71.069$ pm) on an Enraf-Nonius CAD4 diffractometer. The structure was solved by direct methods (SHELXS 86) using 4708 decay- and absorption-corrected reflections (F_{o} $\geq 3\sigma(F_{0}); R = 0.054, R_{w} = 0.061$. The agostic hydrogen atom (H(1)) was located from a difference Fourier map and isotropically refined.

⁽¹¹⁾ Feng, S. G.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1990, 112, 8192.

⁽¹²⁾ Pannell, K. H. J. Organomet. Chem. 1970, 21, 17. Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 7768. Randolph, C. L.; Wrighton, M. S. Organometallics 1987, 6, 365. Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1988, 110, 7558; 1990, 112, 4079.

⁽¹³⁾ Procopio, L. J.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1991, 113, 1870.

 ⁽¹⁴⁾ Fischer, E. O.; Fischer, H.; Schubert, U.; Pardy, R. B. A. Angew.
 Chem. 1979, 91, 929; Angew. Chem., Int. Ed. Engl. 1979, 18, 871.
 (15) Schubert, U.; Hörnig, H. J. Organomet. Chem. 1987, 335, 307.