Synthesis and Molecular Structure of $[\mathbf{Ru}(\eta^5\text{-}C_5\mathbf{H}_5)(\eta^5\text{-}C_5\mathbf{F}_5)]$. **Intramolecular Structural Comparison of the Cyclopentadienyl Ligand with Its Perfluorinated Analogue**

Russell P. Hughes,*,1a Xiaoming Zheng,^{1a} Robert L. Ostrander,^{1b} and Arnold L. Rheingold^{1b}

Departments of Chemistry, Burke Chemistry Laboratory, Dartmouth College, Hanover, New Hampshire 03755-3564, and University of Delaware, Newark, Delaware 19716

Received March 23, 1994"

Summary: Reaction of [RuCp(q4-butadiene)C1] (Cp = η^5 -C₅H₅) with [Tl(OC₆F₅)] in refluxing THF yields $[RuCp((2-6-\eta^5)-C_6F_5O)]$ (2b), characterized by its ^{*IH*} and *19F NMR, and infrared spectra. Flash vacuum pyrolysis of 2b (640 °C; 10⁻⁴ Torr) gives* $[RuCp(\eta^5-C_5F_5)]$ *(1b) in 84% yield. Compound lb contains only the second example of an 115-pentafluorocyclopentadienyl ligand and was characterized by its ¹HNMR*, ^{*i9FNMR*, ^{*i3C*{*iH}NMR*,}} *and mass spectra. The structure was confirmed by a single-crystal X-ray diffraction study. The two rings are eclipsed, with the pentafluorocyclopentadienyl ligand being significantly closer to the metal than its hydrocarbon analogue.*

Recently we described the first successful synthesis of the complex **la,** containing the **perfluorocyclopentadienyl** ligand, by flash vacuum pyrolytic decarbonylation of the η^5 -oxocyclohexadienyl precursor 2a.² Although 1a was

thoroughly characterized by spectroscopy and microanalysis, analysis of the intimate structural features of the new **perfluorocyclopentadienyl** ligand and its ligation to ruthenium by X-ray diffraction was thwarted by disorder problems in the crystals. Here we report the synthesis and X-ray structural determination of the analogue [Ru- $(C_5H_5)(C_5F_5)$] (1b) containing the perfluorocyclopentadienyl ligand and its cyclopentadienyl parent, allowing for the first time a direct intramolecular comparison of the structural features of these two ligands.

The n^5 -oxocyclohexadienyl complex 2b is most cleanly prepared **(70** %) by the reaction of the known compound $[RuCp(\eta^4\text{-}butadiene)Cl]^3$ (Cp = $\eta^5\text{-}C_5H_5$) with [Tl- $(OC_6F_5)^2$ in refluxing THF. Use of other precursors such as $\text{[RuCp}(\eta^4\text{-cyclooctadiene})\text{Cl}^3\text{ or }\text{[RuCp}(\text{CH}_3\text{CN})_3\text{]PF}_6{}^4$ gives much lower yields along with uncharacterized side products. The 19F NMR spectrum of **2b** contains three multiplet resonances for the F substituents of the η^5 pentafluorooxocyclohexadienyl ligand,⁵ shifted downfield by **5-9** ppm from those of **2aa2** The IR spectrum of **2b** shows $v_{C=0}$ at 1634 cm^{-1} , a frequency significantly higher than that observed (1620 cm⁻¹) for the pentamethylcyclopentadienyl analogue **2a.2**

Flash vacuum pyrolysis (FVP) of **2b** at **640** "C **(130** mg scale; 10⁻⁴ Torr) results in CO extrusion and formation of the pure **pentafluorocyclopentadienyl** complex **1 b** in **84** % yield.6 The 'H and 19F NMR spectra of **lb** show singlets7 at **6 4.35** and **-206.0** ppm, respectively. Further structural confirmation is provided by the ${}^{13}C/{}^{1}H$ NMR spectrum, which shows a singlet for the C_5H_5 ligand and a somewhat broader doublet $(^1J_{CF} = 298 \text{ Hz})$ for the carbons of the C_5F_5 ligand.⁶ The mass spectra of the two pentafluorocyclopentadienyl complexes show significant differences; in contrast to the spectrum of **la,** in which no peak due to loss of C_5F_5 was observed and in which the peak corresponding to $[Ru(C_5F_5)]^+$ (28.6%) is prominent,² the base peak in that of 1b is $[Ru(C_5H_5)]^+$, corresponding to loss of the fluorinated ligand, and only a small peak due to $[Ru(C_5F_5)]^+$ is observed.⁶

A single crystal of **lb** was subjected to an X-ray diffraction analysis.¹⁰ The ORTEP diagram is shown in Figure **1,** along with some key bond distances. As with other ruthenocenes, the two rings are eclipsed and parallel; the angle subtended by vectors from the two ring centroids to ruthenium is **178.3(2)'.** The fluorines are bent back from the plane of the C_5F_5 ring by 5-6°. Table 1 shows

(9) Barker, J. J.; Orpen, A. G.; Seeley, A. J.; Timms, P. L. *J. Chem.* **SOC.,** Dalton Trans. 1993, 3097.

⁰ Abstract published in Adoance ACS Abstracts, April 15, 1994.

⁽¹⁾ (a) Dartmouth College. **(b)** University of Delaware. (2) Curnow, 0. J.; Hughes, R. P. *J.* Am. Chem. **SOC.** 1992,114,5895.

⁽³⁾ Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics 1986, *5,* 2199.

⁽⁴⁾ Mann, K. R.; Gill, T. P. Organometallics 1982, *1,* 485.

^{(5) 2}b: 1H NMR (C₆D₆) 5 4.10 (s, C_{p)}; ¹⁹F NMR (C₆D₆) 5 -178.1 (m,
2F, m-C₆F₅O), -181.4 (m, 2F, o-C₆F₅O), -190.8 (tt, 1F, p-C₆F₅O); IR (KBr)
 v_{0} -0 1634 cm⁻¹. Anal. Calcd for C₁₀H₅F₆ORu: C, 37.59; H, 1.75.

C₃F₃); ¹³C(¹H) NMR (CDCl₃) δ 78.88 (s, C₆H₅), 109.10 (d, U_{CF} = 298 Hz, C₅F₃); ¹³C(¹H) NMR (CDCl₃) δ 78.88 (s, C₆H₅), 109.10 (d, U_{CF} = 298 Hz, C₅F₃); EI (70 eV) mass spectrum (m/e (15%) Ru⁺. (6) **1b**: ¹H NMR (C₆D₆) δ 4.35 (s, Cp); ¹⁹F NMR (C₆D₆) δ -206.9 (s, $(C_5H_5)^+$, 155 (14%) (C_5F_5)⁺, 141 (26%) Ru(C_3H_3)⁺, 114 (23%) RuC⁺, 102

⁽⁷⁾ Unlike the mixed-sandwhich complexes $[M(\eta^6-C_6H_6)(\eta^6-C_6F_6)]$ (M = Cr,⁸ Mo,⁹ W⁹), no inter-ring ¹H-¹⁹F coupling is observed. The ¹⁹F resonance in lb is at lower field than that in la, consistent with the trend reported for $[M(\eta^6-C_6H_6)(\eta^6-C_6F_6)]$ and $[M(\eta^6-C_6H_3Me_3)(\eta^6-C_6F_6)]$ $(M = M_0, W)$.⁹
(8) (a) Faggiani, R.; Hao, N.; Lock, C. J. L.; Sayer, B. G.; McGlinchey,

^{(8) (}a) Faggiani, R.; Hao, N.; Lock, C. J. L.; Sayer, B. G.; McGlinchey, M. J. Organometallics 1983, 2, 96. (b) McGlinchey, M. J.; Tan. T.4. Can. *J. Chem.* 1974,52, 2439. (c) McGlinchey, M. J.; Tan, **T.-S.** *J.* Am. Chem. *SOC.* 1976, 98, 2271. (d) Middleton, R.; Hull, J. R.; Simpson, S. R.; Tomlinson, C. H.; Timms, P. L. *J. Chem. SOC.,* Dalton Trans. 1973, 120.

Figure 1. Molecular structure of $[Ru(C_5H_5)(C_5F_5)]$ (1b). Selected bondlengths **(A):** Ru-C(l), 2.104(6);Ru-C(2), 2.125- (6); Ru-C(3), 2.136(6); Ru-C(4), 2.181(10); Ru-C(5), 2.186- $(8); Ru-C(6), 2.196(5); C(1)-C(2), 1.424(9); C(2)-C(3), 1.374(9);$ $C(3)$ -C(3a), 1.399(12); C(4)-C(5), 1.410(10); C(5)-C(6), 1.340-(11); C(6)-C(6a), 1.399(15); Ru-CNT(C_5F_5), 1.716(6); Ru- $CNT(C_5H_5), 1.847(5).$

a comparison of average Ru-C and C-C distances for the series of three ruthenocenes $[Ru(C_5H_5)(C_5X_5)]$ ($X = H$ ¹¹) Me,¹² F (1b)).¹³ In 1b the C_5F_5 ring is significantly closer to the metal than the C_5H_5 ring, but the mean C-C distances within each ring are identical. Curiously, the mean Ru-C distances to the C_5H_5 rings in the three

(13) The structures of $[Ru(C_6H_6)(C_5X_6)]$ (X = H, Me) were determined both at 293 K and at low temperature. The data at 293 K are used to compare with data for lb.

compounds are independent of the substituent X on the opposite ring, whereas the average C-C distances in the C5H5 ring are significantly different, decreasing as **X** changes from $H > Me > F$. With a constant C_5H_5 ligand in the three complexes, the opposite ring is bound more closely to the metal as X changes from $H > Me > F$. The closer interaction of the C_5F_5 ring with the metal compared with hydrocarbon analogues is consistent with trends observed for olefinic and other unsaturated ligands.14

Further studies of the chemistry, physical properties, and electronic structures of **(pentafluorocyclopentadieny1)** metal complexes are in progress.

Acknowledgment. We are grateful to the Air Force Office of Scientific Research (Grant AFOSR-91-0227) and the National Science Foundation for generous support of our research. **A** generous loan of ruthenium chloride from Johnson Matthey Aesar/Alfa is gratefully acknowledged.

Supplementary Material Available: Tables giving a structure determination summary, atomic coordinates and equivalent isotropic displacement coefficients, bond lengths, bond angles, ansiotropic displacement coefficients, **and** H-atom coordinates and isotropic displacement Coefficients for **1 b** (8 pages). Ordering information is given on any current masthead page.

OM940229L

(14) Hughes,R. P. Adu. *Orgummet. Chem.* **1990,3I,** 183andreferences therein.

⁽¹⁰⁾ Crystal data for 1b: monoclinic, $P2_1/m$, $a = 6.703(1)$ Å, $b = 11.179$ -
(2) Å, $c = 7.004(1)$ Å, $\beta = 108.01(1)$ °, $V = 499.09(17)$ Å³, $Z = 2$, $R(F) = 4.03\%$, $R(wF) = 5.82\%$. The molecule is situated on a mirror plan containing Ru and the two ring centroids. Of 1645 data collected ($2\theta_{\text{max}}$ = 60°, Mo K α), 1539 were independent and 1158 were observed (4σ F). The alternative space group *P21* was rejected on the basis of refinement stability. All computations used SHELXTL (4.2) software *(G.* Sheldrick, Siemens XRD, Madison, **WI).**

⁽¹¹⁾ Seiler, P.; Dunitz, J. Acta Crystallogr. **1980,** 836, 2946.

⁽¹²⁾ Zanin, I. E.; Antipin, M. Yu.; Struchkov, Yu. T. Kristallografiya **1991,** 36, 420.