Consecutive Insertion Reactions of Unsaturated Molecules into the Ni-C Bonds of the Nickelacycle

 $(Me_3P)_2Ni(CH_2CMe_2-o\text{-}C_6H_4)$. Formation of Heterocycles **Derived from Seven-Membered Cyclic Acid Anhydrides**

Juan Cámpora,[†] Enrique Gutiérrez,*,[†] Angeles Monge,[†] Pilar Palma.[†] Manuel L. Poveda,*,[†] Caridad Ruíz,[†] and Ernesto Carmona*,†

Departamento de Quimica Inorgbnica-lnstituto de Ciencia de Materiales, Universidad de Sevilla-CSIC, Apdo 553, 41071 Sevilla, Spain, Instituto de Ciencia de Materiales, Sede D, CSIC, Serrano 113, 28006 Madrid, Spain, and Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid, Spain CME_2 - $\text{o-C}_6\text{H}_4$). Format

Seven-Membered Cycli

Enrique Gutiérrez,*¹ Angeles

oveda,** Caridad Ruíz,[†] and E
 e Química Inorgánica-Instituto de
 e Química Inorgánica-Instituto de
 e Química Inorgánica-Ins

Received January 24, 1994@

 CS_2 inserts into the Ni-aryl bond of $(M_{e_3}P)_2Ni(CH_2CMe_2-O_eH_4)$ (1a) at very low temperatures

 $(-90 °C)$ with formation of $(Me_3P)_2N_1(\eta^3-S_2CC_6H_4-o-CMe_2CH_2)$ (A), which contains a Ni- η^3 -S,C,S'-pseudoallylic moiety. Compound **A** spontaneously evolves at -70 "C to the dithiolactone

complex $(Me_3P)_2Ni(\eta^2-S=CSCH_2CMe_{2-0}C_6H_4)$ (3a) by means of a reductive elimination process that involves C-S bond formation. Other heterocumulenes such as SCO, SCNPh, OCNPh, and C(NC6H4-p-Me)2 also insert into the Ni-aryl bond of **la,** but in these cases the resulting products

are 16-electron species of composition $(Me_3P)_2Ni(X-C(=Y)C_6H_4-o-CMe_2CH_2)$. When $X \neq Y$, i.e., for unsymmetric heterocumulenes, the Ni center preferentially bonds to the softer heteroatom. All these seven-membered heterometallacycles undergo insertion into the Ni-CH₂ linkage by reaction with CO or CNBu^t to afford products whose nature depends upon the particular, heterocumulene-derived functionality present in the starting complex. For instance, if a $C=$ S Ie_2CH_2 . When $X \neq Y$,
to the softer heteroatom.
the Ni-CH₂ linkage by
ds upon the particular,
For instance, if a C=S
=CSC(=0)CH₂CMe₂-o-
-membered-ring Ni(II)
5) (17), or the free seven-
h Ni(CO₂(PMe₃)₂) are

group is available, Ni(0) species related to $3a$, e.g., $(M_{\text{e}_3}P)_2Ni(\eta^2-S=CSC(=O)CH_2\overline{CMe_2-O}$

 C_6H_4) (11a), are formed. In the remaining cases, unusual eight-membered-ring Ni(II)

 η^2 -iminoacyls, such as $(\text{Me}_3\text{P})\overset{\text{}}{\text{Ni}}(\eta^2\text{-C}(\text{=}\text{NBu}^t)\text{CH}_2\text{C}\text{Me}_2\text{-}o\text{-}C_6\text{H}_4\text{C}(\text{=O})\text{S})$ (17) , or the free seven-

membered heterocycles $O=C-X-C(=Y)C_6H_4$ -o- CMe_2CH_2 (along with $Ni(CO)_2(PMe_3)_2$) are obtained when the entering reagent is $\mathrm{CNBu^t}$ or CO , respectively. $\,$ Related organic heterocycles, derived from the parent seven-membered cyclic acid anhydride, can be readily obtained by further elaboration of the stable heteronickelacycles. The interaction of CS_2 with the related $\sqrt{1 + \alpha}$, $\sqrt{1 + \alpha}$, $\sqrt{1 + \alpha}$ bouncis whose hattle depends
sent in the starting complex. For the starting complex. For the starting cases, unusual eight-m
Bu^t)CH₂CMe₂-o-C₆H₄C(=0)S) (
C₆H₄-o-CMe₂CH₂ (along with 1
lu^t or CO, respecti

nickelacycle (dmpe)Ni(CH₂CMe₂-o-C₆H₄) (1b) (dmpe = Me₂PCH₂CH₂PMe₂) takes a completely

different course and yields the gem-dithiolate complex $(dmpe)Ni(S_2\overset{\dagger}{C}CH_2CMe_2-o\overset{\dagger}{C}_6H_4)$ (4), which is formally the product of the insertion of $CS₂$ into the two Ni-C bonds of the starting nickelacycle. Compound 4 further reacts with CS_2 to furnish the Ni(II) trithiocarbonate (dmpe)-

 $Ni(\eta^2-S_2C=S)$ (5) and the thioketone S= $\text{CCH}_2\text{CMe}_{2-0}\text{-C}_6\text{H}_4$ (6). Complexes 3a, 4, and 5 have been characterized by single-crystal X-ray diffraction analyses. Crystallographic data: for **3a,** space group $P2_1/n$, $a = 19.847(8)$ Å, $b = 9.343(2)$ Å, $c = 13.939(3)$ Å, $\beta = 109.79(3)$ °, $Z = 4$; for **4**, space group $Pbca$, $a = 11.888(4)$ Å, $b = 14.073(3)$ Å, $c = 25.065(3)$ Å, $Z = 8$; for 5, space group $P2_1/n$, $a = 14.286(5)$ Å, $b = 7.486(1)$ Å, $c = 12.692(1)$ Å, $\beta = 93.40(2)$ °, $Z = 4$.

Recently, there has been increasing interest in the synthesis and reactivity of mononuclear complexes with sulfur-containing ligands, in part because of the reactivity they display toward organic substrates.' **As** a matter of fact, the applications of organosulfur chemistry in organic synthetic reactions have increased enormously in the last few years.2 **A** useful synthetic approach to organotran-

Introduction sition, organosulfur chemistry consists of the investigation of the reactivity of small, sulfur-containing molecules like $CS₂$, COS, and RNCS with organometallic compounds.³

⁺Universidad de Sevilla-CSIC.

¹CSIC and Universidad Complutense. Abstract published in *Advance ACS Abstracts,* March **15, 1994.**

⁽¹⁾ See: (a) Klein, D. P.; Kloster, *G.* M.; Bergman, R. *G. J. Am. Chem.* (1) See: (a) Kiemi, D. r., Kuosei, C. Kie, Sanchez, L. J. Am. Chem. Soc.
1990, 112, 2022. (b) Legzdins, P.; Sánchez, L. J. Am. Chem. Soc.
1985, 107, 5525. (c) Liaw, W.-F.; Kim, C.; Darensbourg, M. Y.; Rheingold, A. L. J. B.; Archer, C. M.; Dewan, J. C. *Organometallics* **1989,8,430. (e)** Seyferth, D.; Womack, *G.* B.; Archer, C. M.; Fackler, J. P.; Marler, D. 0. Organometallics 1989, 8, 443. (f) Yang, X.; Rauchfuss, T. B.; Wilson, S.
R. J. Am. Chem. Soc. 1989, 111, 3465. (g) Jones, W. D.; Selmeczy, A. D.
Organometallics 1992, 11, 889. (h) Wachter, J. Angew. Chem., Int. Ed. *Engl.* **1989, 28, 1613.**

⁽²⁾ Linford, L.; Raubenheimer, H. *G. Adu. Organomet. Chem.* **1991, 32, 1.**

Metalacycles are organometallic species⁴ of growing importance which are often involved in a number of catalytic reactions such as metathesis and dimerization of olefins, isomerization of strained organic cyclic compounds, cyclooligomerization of alkynes, and others.⁵ In addition, their enhanced stability, as compared to metal alkyls, allows the study of some transformations of transitionmetal compounds which undergo facile decomposition reactions. Despite the importance of metallacycles, some fundamental properties, in particular their insertion chemistry, remain far from being well understood. rgo facile decomposition
ce of metallacycles, some
articular their insertion
mg well understood.
wo areas of research, we
insertion reactions of the
nes CS₂, COS, and PhNCS
 $\overline{Vi(CH_2CMe_2-O-C_6H_4) (1a)}$
he dmpe analog (dmp

In the intersection of these two areas of research, we have decided to investigate the insertion reactions of the sulfur-containing heterocumulenes CS₂, COS, and PhNCS

with the nickelacycle^{6,7} (Me₃P)₂Ni(CH₂CMe₂-o-C₆H₄) (1a) and other related species like the dmpe analog (dmpe)-

 $Ni(CH_2CMe_2-O-C_6H_4)$ (1b) (dmpe = $Me_2PCH_2CH_2PMe_2$). Here we provide a full account of these investigations, which include a related study of the reactivity of other heterocumulenes like PhNCO and $C(NC₆H₄-p-Me)₂$. Moreover, and taking advantage of the existence of two Ni-C bonds in **la,** we have also investigated the successive insertions of the above heterocumulenes and other unsaturated molecules such as CO and CNBut. This has allowed the selective synthesis of a number of unusual seven-membered sulfur-containing heterocycles. Part of this work has been reported in preliminary form.⁸

Results

Reaction of 1a with CS_2 **. The nickelacycle 1a has been shown to react only very slowly with** CO_2 **,^{6a} with** anowed the selective synthesis of a humber of dinastal
seven-membered sulfur-containing heterocycles. Part of
this work has been reported in preliminary form.⁸ to:
Results formation of 1a with CS₂. The nickelacycle formation of the nickelalactone complex $(PMe₃)₂Ni(CH₂$ - CMe_{2} -o-C₆H₄C(=O)O), i.e., the product of the normal^{9a} insertion of $CO₂$ into the Ni-aryl bond. A much faster

(4) For some recent examples, see: (a) Hessen, B.; Buijink, J.-K. F.;
Meetsma, A.; Teuben, J. H.; Helgesson, G.; Håkansson, M.; Jagner, S.;
Spek, A. L. *Organometallics* 1993, 12, 2268. (b) Lin, W.; Wilson, S. R.; Girolami, G. S. *J. Chem. SOC.,* Chem. *Commun.* **1993,284.** (c) Matsunaga, P. T.; Hillhouse, G. L.; Rheingold, A. L. *J. Am. Chem. Soc.* 1993, *115*,
2075. (d) Fischer, W.; Hembre, R. T.; Sidler, D. R.; Norton, J. R. *Inorg.*
Chim. Acta 1992, *198–200, 57.* (e) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. *J. Am. Chem. SOC.* **1991,113,3404.** *(0* Buchwald, S. L.; Fischer, R. A.; Foxman, B. M. *Angew. Chem.,Int. Ed. Engl.* **1990,29,771.**

(5) (a) Bennett, M. A. *J. Organomet.* Chem. **1986,300,7.** (b) Lindner, E. *Adu. Heterocycl.* Chem. **1986, 39, 237.** (c) Chappell, S. D.; Cole-Hamilton, D. J. *Polyhedron* **1982,1,739.** (d) Ingrosso, G. In *Reactions ofCoordinatedLigands;Braterman,P.* %,Ed.; Plenum Press: New York, **1986;** Vol. **1,** Chapter **10.**

(6) (a) Carmona, E.; Gutibrrez-Puebla, E.; Marln, J. M.; Monge, A.; Paneaue. M.: Poveda. M. L.: Ruiz. C. *J. Am.* Chem. *SOC.* **1989,111,2883.** (b) Carmona, E.; Paneque, M.; Poveda, M. L.; Gutiérrez-Puebla, E.; Monge, A. *Polyhedron* **1989,8, 1069.**

(7) For other recent nickelacyclic complexes, see ref **4c** and (a) Wilke, G. *Angew. Chem., Int. Ed. Engl.* 1988, 27, 185. (b) Bennett, M. A.;
Hambley, T. W.; Roberts, N. K.; Robertson, G. B. *Organometallics* 1985,
4, 1992. (c) Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.-H. *Angew. Chem.,*
Int 1989, 8, 585. (e) Yamamoto, T.; Sano, K.; Osakada, K.; Komiya, S.; Yamamoto, A.; Kushi, Y.; Tada, T. *Organometallics* 1990, 9, 2396. (f) Gong, J. K.; Peters, T. B.; Fanwick, P. E.; Kubiak, C. P. *Organometallics* 1992, *1* **1990,29, 1544.**

 (8) (a) Cámpora, J.; Carmona, E.; Gutiérrez-Puebla, E.; Poveda, M. L.; Ruíz, C. Organometallics 1988, 7, 2577. (b) Cámpora, J.; Carmona, E.; Palma, P.; Poveda, M. L. *J.* Chem. *SOC., Perkin Trans.* **1 1990, 180.**

and also more complex reaction ensues in the presence of CS₂. When an Et₂O solution of **la** is treated with $CS_2 \geq 3$ equiv) at 20 °C (eq 1), the heterometallacycle $Ni(C_2S_4 \overline{PMe}_{3}$)(\overline{PMe}_{3}), previously reported by Ibers,¹⁰ separates as a red-brown microcrystalline solid. From the super-

natant solution, the dark red crystalline dithiolactone **2** can be isolated by crystallization. Relevant spectroscopic features for **2** are an IR absorption at 1020 cm-l due to ν (C=S) and a ¹³C resonance at δ 224.7 attributable to the dithiolactone carbon, C(S)S.¹¹

In order to gain relevant mechanistic information about this interesting transformation, complex **la** has been reacted with 1 equiv of CS_2 at -90 °C. A very dark green, almost black reaction mixture can be obtained that becomes red-orange in color on warming at -70 °C. No further changes are observed upon raising the temperature to 20 $\rm{^{\circ}C}$, and from the resulting solution the Ni(0) complex

 $(Me_3P)_2Ni(\eta^2-S=CC_6H_4-o-CMe_2CH_2S)$ **(3a)** crystallizes out (eq 2). At -70 °C, its ${}^{31}P{^1H}$ NMR spectrum shows

an AX pattern $(\delta_A = -8.4, \delta_X = -7.1)$ with a small cisoid coupling of 7 Hz. The higher field signal further splits by coupling to the 13C(S)S carbon in the spectrum of **3a*** $(50\%$ ¹³CS₂-enriched^{9b}). The value of this coupling (33) Hz) can also be computed from the 13C resonance of the dithiolactone carbon, which appears as a doublet at δ 58. The very high-field chemical shift of this signal and the large $^{2}J_{CP}$ value found are in favor of the η^{2} -coordination mode proposed for the dithiolactone ligand which has been confirmed by X-ray studies (see below).

The nature of the products formed in the transformations represented in eqs 1 and 2 suggests that the reaction of **la** with CS₂ occurs with insertion into the Ni-aryl bond to give an unstable, dark green intermediate **A,** which spontaneously undergoes reductive elimination with for-

⁽³⁾ (a) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. In *Stereochemistry of Organometallic and Inorganic Compounds;* Bernal, I., Ed.; Elsevier: Amsterdam, **1986;** Vol. 1, Chapter **3.** (b) Burns, R. P.; McCullough, F. P.; McAuliffe, C. A. *Adu. Inorg.* Chem. *Radiochem.* **1980, 23, 211.** (c) Werner, H. Coord. Chem. *Rev.* **1982,43,165.** (d) Ibers, J. A. Chem. *SOC. Reu.* **1982,11, 57.** (e) Butler, I. **S.;** Fenster, A. E. *J. Organomet.* Chem. **1974,66, 161.** *(0* Yaneff, P. V. Coord. Chem. *Reu.* **1977,23,183.**

^{(9) (}a) The term *normal* refers to the commonly observed mode of insertion that affords a carboxylate ligand. See for example: Behr, A. Carbon *Dioxide Activation by Metal Complexes*; VCH Publishers:
Weinheim, Germany, 1988. (b) ¹³CS₂-enriched samples are represented by an appropriate symbol bearing an asterisk, e.g., **3a*.** Unless otherwise stated, the degree of enrichment is **50%.**

⁽¹⁰⁾ Mason, M. G.; Swepston, P. N.; Ibers, J. A. *Inorg.* Chem. **1983,22, 411.**

⁽¹¹⁾ (a) Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W. *Tabellen Zur* Strukturaufkllärung Organisher Verrbinndungen Mit Spektrokopischen
Metoden; Springer Verlag: Berlin-Heidelberg, Germany, 1976. (b)
Kalinowski, H.-O.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1974, 13, 90.

mation of the dithiolactone complex 3a. If additional amounts of $CS₂$ are present, displacement of the organic fragment and head-to-tail dimerization of two molecules of $CS₂$ take place, yielding Ibers's complex and the free dithiolactone **2.** In accord with this, the reaction of 3a* with CS2 gives **2*** and Ibers's complex with normal isotopic composition. Scheme 1 summarizes these results. As for the nature of **A,** we propose its formulation as containing an n^3 -S,C,S'-dithiocarboxylate moiety.^{12a} This is based mainly on the observation of a doublet at **137** ppm for the -CS₂ carbon ($^2J_{CP}$ = 19 Hz) in the ¹³C NMR spectrum of a solution obtained upon mixing equimolar amounts of la and ${}^{13}CS_2$ at -90 °C. This signal appears at much higher field than expected for η ¹-S- or η ²-S,S'-bonded dithiocarboxylate ligands^{12b-e} but in the same region found for structurally characterized Mo, Fe, and Ru complexes that exhibit this unusual η^3 -pseudoallylic bonding mode.^{12d,13,14} Other spectroscopic data, including the *lJcc* value of **55** Hz16 found for the quaternary aromatic carbon adjacent to the $*{\text{CS}}_2$ group, are in agreement with the proposed structure.

Interestingly, intermediate **A** reacts reversibly with PMe₃ at -80 °C to give the brown tris(phosphine) species **B** shown in eq 3. A large excess of PMe₃ is needed to

completely shift the equilibrium toward the formation of **B.** This species displays an AMX spin pattern in the 31P-

 1H NMR spectrum and a singlet at δ 258 in the $^{13}C{^1H}$ NMR spectrum (sample enriched in ${}^{13}CS_2$). The latter is in the range found for other η^1 -S₂CR ligands.^{12b} At higher temperatures, **B** becomes fluxional, and at **-60** "C, it transforms into the dithiolactone complex 3a.

Action of carbon monoxide on 3a also liberates the dithiolactone 2 and forms $Ni(CO)_2(PMe_3)_2$. With dmpe, however, the related complex 3b (eq **4)** is formed.

Reaction **of** lb with *CSz.* Rather unexpectedly, the reaction of 1b with CS_2 takes a very different course. Mixing together equimolar quantities of 1b and $CS₂$ at room temperature generates the orange 1,l-dithiolate complex 4 (eq 5). Monitoring the reaction by ³¹P{¹H} NMR

spectroscopy shows that **4** starts forming at temperatures near -50 °C without any detectable intermediates. Support for this structure comes from spectroscopic studies and from an X-ray determination (see below). The 'H, 13C, and 31P NMR spectra of **4** reflect the existence of a plane of symmetry. Thus, the two CH_2PMe_2 units give rise to a single set of resonances, and enantiotopic $CH₂$ protons and CMe_2 methyls are observed. The ¹³C $\{^1\}$ spectrum of $4*$ ^{9b} shows a singlet at δ 66.2 due to the CS₂ carbon of the 1,l-dithiolate ligand. This is in the region found for other complexes of this type,^{1a,g,16} e.g., 63.3 ppm in $Fe_2(CO)_6(\mu_2-S_2CH_2)^{16a}$ and 54 ppm in $Cp*Rh(S_2CH_2)$ -

^{(12) (}a) The original η ¹-S coordination proposed^{8b} for the RCS₂ fragment was entirely consistent with the insertion chemistry to be discussed in the following sections. (b) Darensbourg, D. J.; Rokicki, A. *Organometallics* **1982,1, 1685.** (e) Bruce, M. I.; Lidlell, M. J.; Snow, M. R.; Tiekink, R. T. *J. Organomet. Chem.* **1988, 352, 199.** (d) Scott, F.; Kruger, G. J.; Cronje, S.; Lombard, A.; Raubenheimer, H. G.; Benn, R.; Rufihska, A. *Organometallics* **1990,9, 1071.** (e) Brouwer, **E.** B.; Legzdins, P.; Rettig, S. J.; Ross, K. J. *Organometallics.* **1993, 12, 4234. (13)** (a) Tataumisago, M.; Mataubayashi, G.-E.; Tanaka, T.; Nishigaki,

S.; Nakatsu, K. J. *Chem.* Soc., *Dalton Trans.* **1982, 121.** (b) Bruce, M. I.; Hambley, T. W.; Snow, M. R.; Swincer, A. G. *J. Organomet. Chem.* **1984,273, 361.**

⁽¹⁴⁾ For some binuclear $\mu_2-\eta^2-\eta^3$ -S₂CR complexes, see: (a) Wright, L. L.; Haltiwanger, R. C.; Noordik, J.; Rakowski DuBois, M. J. Am. Chem.
L.; Haltiwanger, R. C.; Noordik, J.; Rakowski DuBois, M. J. Am. Chem.
C.; Rakowski DuBois, M. J. Am. Chem. Soc. 1987, 109, 283. (c) Coons,
D. E.; Halti *Organometallics* **1990, 9, 1607.**

⁽¹⁵⁾ Marshall, J. L. *Carbon-Carbon and Carbon-Proton NMR* Couplings: Application to Organic Stereochemistry and Conformational
Analysis; VCH Publishers: Weinheim, Germany, 1983.
(16) (a) Shaver, A.; Fitzpatrick, P. J.; Steliou, K.; Butler, I. S. J. Am.

^{(1976), 1979, 101, 1313. (}b) Werner, H.; Kolb, O. Chem. Ber. 1985, 118, 880. (c) Hofman, L.; Werner, H.; Kolb, O. Chem. Ber. 1985, 118, 880. (c) Hofman, L.; Werner, H. Chem. Ber. 1985, 118, 4229. (d) Alper, H.; Chan, A. S. *Chem. SOC.* **1983,105,5329.** (h) Seyferth, **D.;** Womak, G. B.; Gallagher, M. K.; Cowie, M.; Hames, B. W.; Fackler, J. P., Jr.; Mazany, **A.** M. *Organometallics* **1987,** 6, **289.**

 $(PMe₃)^{1g}$ On the other hand, the methylene and one of the aromatic quaternary carbons of the original neophyl ligand, now bonded to the *CS₂ unit, display¹J_{CC} couplings of 36 and **45** Hz, respectively.

Although complexes **3b** and **4** are isomers, no interconversion between them can be observed under normal conversion between them can be observed under normal
conditions (Scheme 2). An alternative reaction pathway
to 4 is by the $A \rightarrow C \rightarrow 4$ route depicted in Scheme 2, which summarizes all the already described experimental findings as well as the ¹³CS₂ NMR data (δ and J_{CP}). Thus, treatment of **A** (generated at -90 "C from **la** and 1 equiv of CS_2) with dmpe at -80 °C furnishes the S-bonded dithiocarboxylate complex **C** which spontaneously reorganizes to **4** at temperatures above -50 "C by C-C bond formation and complexation of the uncoordinated sulfur. Once again, the change in the coordination mode of the $-CS_2$ moiety from η^3 to η^1 is accompanied by a shift in the corresponding l3C resonance from 137 to **256** ppm. Competition experiments using equimolar mixtures of **lb** + CS2 and **C** show that the former converts to **4** at a faster rate than **C.** *This and the fact that no intermediates are observed in the reaction of* $1b$ *and* CS_2 *indicates that* C *cannot be an intermediate in the* $1b \rightarrow 4$ *transformation.*

Interestingly, the 1,l-dithiolate **4** reacts with additional amounts of CS_2 , with formation of the crystalline trithiocarbonate¹⁷ 5 (structurally characterized by X-ray crystallography, see below) and the thioketone 6 (eq 6), isolated as a violet, distillable oil.^{18,19} Isotopic labeling studies using **4*** demonstrate that the bridging carbon of the heterospi-

 $CS₂$

rocycle becomes incorporated exclusively into the cyclic thioketone. Other reagents such as Br_2 and HCl also cleave the CS2 moiety of **4** and generate the thioketone **6.** In addition, $NiBr₂(dmpe)$ plus sulfur and $NiCl₂(dmpe)$ plus HzS are respectively formed.20

To complete these studies, the reaction of the **2,2'-**

bipyridine complex $(bipy)\dot{Ni}(CH_2CMe_2-o\dot{C}_6H_4)$ (1c) and CSz has been studied. Compound **IC** can be prepared by the simple ligand displacement reaction of eq **7** and has been fully characterized by conventional analytical and spectroscopic techniques (see Experimental Section). Its

⁽¹⁷⁾ Trithiocarbonate complexes can adopt a variety of bonding schemes. Some recent examples include the following. η^2 -S₂C=S: (a) Bianchini, C.; Meli, A.; Vizza, F. *Angew. Chem., Int. Ed. Engl.* 1987, 26, 767. μ_2 - η^2 - η^2 -S₂C=S: ref 14a. μ_4 -S₂C=S: (b) Lanfredi, 1983, 1126. For some η^2 -trithiocarbonate complexes of Ni, see: (c) Burke, J. M.; Fackler, J. P., Jr. *Inorg.* Chem. **1972,11, 2744.** (d) Bianchini, C.; Mealli, C.; Meli, A.; Scapacci, G. *J.* Chem. *Soc., Dalton Trans.* **1982,799.**

⁽¹⁸⁾ Many thioketones such **aa** Me2C=S are unstable molecules that can be stabilized only by complexation to transition-metal centers. See: (a) Gingerich, R. G W.; Angelici, R. J. J. *Organomet.* Chem. **1977,** *132,* **377.** (b) Karcher, B. A.; Jacobson, R. A. J. Organomet. Chem. **1977,132, 387.** (c) Wang, S.; Fackler, J. P., Jr. J. Chem. *Soc.,* Chem. *Commun.* **1988, 22.**

⁽¹⁹⁾ Aryl-substituted thioketones are normally isolable compounds.

For the related, fully methylated thioketone $\overline{\text{CMe}_2\text{CMe}_2\text{-}o\text{-}C_8\text{H}_4\text{C}}$ = S, see: Klages, C.-P.; Voss, J. *Chem. Ber*. **1980**, *113*, 2255.

see: Klages, C.-P.; Voss, J. Chem. Ber. 1980, 113, 2255.
(20) The reaction with HCl probably affords the corresponding free gem-dithiol that immediately decomposes to the thioketone and SH_2 . See: Mayer, R.; Hiller, G.; Nitzschke, M.; Jentzsch, J. Angew. Chem. **1963, 75,** 1011.

$$
(Me3P)2Ni(CH2CMe2-o-C6H4) \n1a
$$
\n(bipy)
\n
$$
(bipy)Ni(CH2CMe2-o-C6H4) (7)
$$
\n1c

interaction with an excess of $CS₂$ gives the dithiolactone **2** together with an insoluble brown precipitate. Although the reproducibility of this reaction is rather poor, the brown solid can be shown by IR spectroscopy to contain (bipy)- $Ni(\eta^2$ -CS₂),²¹ but this system was not investigated any further.

Reactions **of** la with COS, PhNCS, PhNCO, and $C(NC₆H₄ - p$ -Me)₂. Carbonyl sulfide and 1a react very fast, even at -80 °C, to afford a dark red solution of the insertion product **D** (eq 8). Compound **D** is an unstable species

that decomposes upon warming at **20** "C to yield a complex mixture of compounds that has not been further investigated. Formulation **D** is proposed on the basis of the characteristic insertion chemistry of this species, to be described in the following sections, and also on the basis of its similarity with other related metallacycles reported in this contribution.

PhNCS also reacts quickly with la at -80 "C (eq **9)** to provide the heterometallacycle **E,** which can be isolated as a crystalline solid at low temperatures. This species

decomposes at **-10** "C, both in solution and in the solid state, to give the cyclic imine thioether **7.** Important spectroscopic data for **E** include a doublet of doublets at δ 33.7 in the ¹³C{¹H} NMR spectrum (² J_{CP} = 68 and 21 Hz) due to the methylene carbon and a doublet at δ 179.7 (${}^{3}J_{\rm CP}$ = **12** Hz) for the imine carbon. When the above reaction is effected in the presence of excess PMe₃ (3-4 equiv), a related species **F,** containing three coordinated PMe3 ligands, is formed. **F** can also be obtained directly from **E** and PMe₃. Its ¹³C{¹H} NMR spectrum indicates that the heterometallacycle remains unaltered, while its 31P- 1H spectrum reveals an AMX spin pattern. As for other related systems reported in this work, the $E \rightarrow F$ conversion is presumably reversible, but the low stability of both species has prevented a more detailed study.

(21) Uhlig, E.; Poppitz, W. *2. Chem.* **1975, 19, 191.**

^a (i) PhNCO; (ii) $C(NC_6H_4-p-Me)_2$.

More stable insertion products result from the reactions of $1a$ with phenyl isocyanate²² and p-tolylcarbodiimide (Scheme **3).** Compounds **8** and **9** are stable, crystalline species that can be heated at 50-60 °C without noticeable decomposition. The spectroscopic data collected in the Experimental Section are in accord with the proposed structures and require no further comments. We note, however, that two isomers, *(N-* or 0-bonded) are possible for 8, of which the Ni-N isomer²³ is strongly favored by a careful comparison of the lower-field region of the ¹³C-**{'HI** NMR spectra of **8** and **9.** In particular, the signal at 6 **159** in the spectrum of **9,** which can be safely assigned to the C=NAr group, is absent in the spectrum of **8,** which, in turn, exhibits a resonance at **171** ppm, in accord with the existence of a \geq C=O functionality.

The reaction leading to **8** can be monitored by lowtemperature NMR spectroscopy. The formation of **8** at a convenient rate starts only at -60 °C, with no intermediates being detected. The presence of added PMe₃ (4 equiv) slows down the insertion reaction, but at **-30** "C a tris(PMe_3) complex G (analogous, for example, to **F**) forms. In this case, G can be reversibly converted to **8** by simple removal of the volatiles *in* uacuo.

Reactivity **of** la-c toward **CO** and CNBut. The room temperature reaction of 1a with CO has been shown^{6a} to provide the products of the right-hand side of eq **10.** Carrying out the reaction at **-70** "C introduces no changes, and, moreover, we have been unable to characterize spectroscopically the proposed intermediate **H.** Nevertheless, evidence for the precise site of the insertion can be gained from the successive incorporation of CO and CS_2 (in either order), to be discussed below (see Scheme **4).**

The dmpe derivative **lb** exhibits a more interesting behavior, and at -80 "C, under a CO atmosphere, the characteristic AX spin pattern of its ${}^{31}P{}^{1}H{}$ } NMR spectrum collapses into a broad singlet that persists until temperatures close to 0 "C. Bubbling CO at **20** "C for 5-10 min induces insertion with formation of $Ni(CO)₂$ -(dmpe) and the above cyclic ketone. Since the $^{31}P\{^1H\}$

⁽²²⁾ See: Braunstein, P.; Nobel, D. *Chem. Rev.* **1989**, 89, 1927 for a **(23) Other synthetic routes are available for the formation of this kind**

of heterometallacycle. See: (a) Yamamoto, T.; Igaraehi, K.; Komiya, S.; Yamamoto, A. *J. Am. Chem. SOC.* **1980,** *102,* **7448. (b) Hoberg, H.; Hernbdez, E.** *J. Chem.* **SOC.,** *Chem. Commun.* **1986, 544. The same selectivity upon insertion is observed by Ti(II1) alkyls. See: Klei, E.; Telgen,** J. **H.; Teuben,** J. **H.** *J. Organomet. Chem.* **1981,** *209,* **297.**

spectrum of solutions of **lb** + CO at low temperatures is only slightly displaced from the center of gravity of the **AX** system, it can be proposed both that this behavior is due to the achievement of an equilibrium between **lb** and the fluxional, 24 5-coordinate adduct **I** and that this equilibrium favors the starting complex **lb.** Finally, in

this respect, no reaction is observed between complex **IC** and CO, even after prolonged exposures of solutions of **IC** to this gas $(20 \degree C, 2 \space atm, 10 \space h)$. Interestingly, the bipy ligand of **IC** is instantaneously displaced by dmpe at -80 "C to yield **lb.** Hence, the relative stabilities of metalacycles $1a-c$ follow the order $1b > 1c > 1a$ (i.e., dmpe > bipy $>$ PMe₃).

Complex **la** reacts with CNBut under ambient conditions (eq 11) to give the mixed adduct $(Me_3P)(Bu^tNC)$ -

observed, even after prolonged heating at 60 "C. The formation of **10** clearly reflects the higher trans effect of the Ni-alkyl bond as compared with the Ni-aryl moiety, and it is closely reminiscent of that of the analogous 10

heating at 60 °C. The

he higher trans effect of

ith the Ni-aryl moiety,

that of the analogous

vi(CH₂CMe₂-o-C₆H₄).^{6b}

solutions of $1b + CNBu^t$

f the adduct $1b$ -CNBu^t,

pyridine derivative $(Me_3P)(py)\dot{N}i(CH_2CMe_2-0\dot{C}_6H_4).^{6b}$ Low-temperature NMR studies of solutions of $1b + CNBu^t$ show evidence for the formation of the adduct **Ib-CNBut,** analogous to **I.** This seems to be strongly favored at low temperatures, but the system does not evolve any further.

Successive Insertions of the Heterocumulenes X=C=Y and CO or CNBut into the Ni-C Bonds of la. Formation of Seven-Membered Sulfur-Containing Heterocycles. Treatment of *in situ* formed **A** (Scheme **4)** with an excess of CO yields an orange crystalline compound **lla** as a result of CO insertion followed by reductive elimination. The proposed coordination of the acyl thioacyl sulfide functionality is similar to that of the dithiolactone ligand in complex **3,** and it is based on similar spectroscopic arguments, particularly the observation of a doublet at 65 ppm $(^{2}J_{CP} = 27$ Hz) for the labeled carbon in the ¹³C $\{^1H\}$ spectrum of a sample of 11 a^* . The C=O bond gives rise to an IR absorption at 1650 cm^{-1} and to a characteristic 13C resonance at **208** ppm, i.e., in the region expected for a thioester, $-SC(=O)$ -, moiety.¹¹

As shown in Scheme **4,** complex **1 la** can also be obtained by carrying out the reaction in the reverse order. This unambiguously demonstrates that CO regioselectively inserts into the Ni-alkyl bond and that the resulting

⁽²⁴⁾ The pentacoordinate species (Ph₃P)₃Ni(CH₂CH₂CH₂CH₂) has **been reported to be highly fluxional even at low temperatures. See: Grubbs, R. H.; Miyashita, A.;** Liu, M.; **Burk, P.** *J.* **Am. Chem.** *SOC.* **1978,** *100.* **2418.**

X = **0,13;** NBu', **14**

intermediate, H , undergoes CS_2 insertion into the Ni-aryl bond at a faster rate than reductive elimination.

The analogous reaction of **A** with CNBut (Scheme 4) yields complex **12a,** which contains an imine thioacyl sulfide ligand. It seems likely that prior to the formation of **lla** and **12a,** unstable acyl dithiocarboxylate and iminoacyl dithiocarboxylate intermediates, respectively, are produced and that these species undergo fast reductive elimination to afford the final products.

Displacement of the PMe3 ligands in **lla** and **12a** by $Me₂PCH₂CH₂PMe₂$ gives the corresponding dmpe derivatives **llb** and **12b,** respectively (Scheme **51,** which prove to be suitable starting products for the liberation of the organic ligands 13 and 14, respectively.²⁵ As shown in Scheme 5, treatment with Br₂ gives the desired compounds together with NiBrz(dmpe). Salient spectroscopic features for **13** and **14** are given in the Experimental Section.

The COS- and PhNCS-derived heterometalacycles, **D** and **E,** respectively, behave somewhat differently in their reactions with CO and CNBut. In the case of CO, the organic fragment resulting from the reductive elimination (following insertion) no longer remains coordinated to Ni under the reaction conditions²⁶ and can be directly obtained from the reaction mixture (eq 12). By contrast,

 (12)

X = **0,15;** NPh, **16**

the analogous reactions with CNBu^t provides unusual, albeit isolable, organometallic complexes containing eightmembered heterometalacycles and an η^2 -iminoacyl func-

tionality^{27a} (Scheme 6). The Ni- η^2 -iminoacyl linkage^{27b} is characterized by ν (C=N) at 1720 cm⁻¹ and δ (C=N) at 176 ppm (doublet, $^{2}J_{CP}$ = 63 Hz). The large $^{2}J_{CP}$ value is clearly indicative of a trans C-Ni-P arrangement. The acyl imine sulfide **19** and the bis(imine) sulfide **20** can be obtained in excellent yields by treatment of **17** and 18, respectively, with C0.26

Finally, we have investigated the reactions of the thermally stable heterometallacycles **8** and **9** with CO and CNBut. While in the latter case a clean reaction could not be induced, the addition of CO to **8** and **9** evolves as depicted in eq 13 and affords the bis(acy1) amine **21** and the acyl amidine **22** in good yields.28 The proper char-

^X⁼*0,* **Ar** = Ph, **8;** $X = NC_6H_4-p$ -Me, $Ar = C_6H_4-p$ -Me, 9

^X⁼*0,* **Ar** = Ph, **21;** $X = NC_6H_4-p-Me$, $Ar = C_6H_4-p-Me$, 22

acterization of the PhNCO-derived product **21** is of particular importance as a further test for the proposed regiochemistry of the insertion of PhNCO in **la.** Since **22** has been unambiguously characterized, a comparison of the ^{13}C ^{{1}H} NMR spectra of both compounds seems pertinent to this aim. While **22** shows two resonances at 157 and 168 ppm, attributable to the C=N and CO functionalities, two very close resonances *(6* 174 and 176) are observed for **21,** in agreement with the existence of two carbonyl groups.

X-ray Studies of Complexes 3a, 4, and 5. The solidstate structures of the dithiolactone complex **3a,** the 1,l-

⁽²⁵⁾ For thio derivatives of acid anhydrides, see: (a) Kato, S.; Katada, T.; Mizuta, M. *Angew. Chem., Int. Ed. Engl.* 1976, 15, 766. (b) Kato, S.;
Sugino, K.; Yameda, M.; Katada, T.; Mizuta, M. *Angew. Chem., Int. Ed.*
Engl. 1977, 16, 879. (c) Kato, S.; Sugino, K.; Mizuta, M.; Katada, T.
An **1984, 106, 6084.** (e) Yoneda, S.; Ozaki, K.; Yanagi, K.; Minobe, M. *J. Chem. Soc., Chem. Commun.* **1986, 19.**

⁽²⁶⁾ Carbon monoxide is known to promote reductive elimination in closely related systems. See: (a) Komiya, S.; Yamamoto, A.; Yamamoto, T. Chem. Lett. 1981, 193. (b) Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A. Organometallics 1985, 4, 1130. (c) Fryzuk, M. D.; MacNeil, P.

Carmona, E.; Palma, P.; Paneque, M.; Poveda, M. L. *Organometallics* **1990,** 9, *583.*

⁽²⁸⁾ For a related reaction, see ref 23a.

Heterocumulene Insertion into Nickelacycle Ni-C Bonds

Figure 1. ORTEP view and atom labeling scheme of compound **3a.**

Figure **2.** ORTEP view and atom labeling scheme of compound **4.**

dithiolate **4,** and the trithiocarbonate **5** have been determined and are illustrated by ORTEP plots in Figures 1-3. Tables 1-3 collect important bond distances and angles, and Table **4** gives a summary of the crystallographic data for the three compounds.

The molecules of **3a** contain formally three-coordinated $Ni(0)$, bonded to two PMe₃ groups and to the C=S bond of the dithiolactone ligand, which is considered to occupy a single coordination site (the bite angle of the $\geq C=$ S entity is very acute, $51.2(3)$ °). The two trimethylphosphine ligands have normal bond lengths and angles, and the triatomic NiCS linkage displays bonding parameters similar to those found in complexes that contain η^2 thioketone,^{18,29,30}-thioketene,³¹ and related ligands. Thus, the coordinated C-S bond distance $(Cl-S1, 1.77(1)$ Å) is essentially identical with the values of 1.769(2) and 1.762- (4) 8, found respectively in **M029** and V30 thioketone

Figure **3.** ORTEP view and atom labeling scheme of compound **5.**

compounds and with that of 1.744(3) **A** characteristic of the thioformaldehyde derivative $Cp_2Ti(\eta^2-SCH_2)(PMe_3).^{32}$ This C1-S1 bond separation in complex **3a,** although intermediate between typical C=S and C-S lengths $(1.70$ and 1.82 **A,** respectively) approaches the single bond limit (compare, for example, with the single $C2-S2$ bond of 1.82(2) A) as a reflection of a strong bonding interaction between the metal center and the coordinated $C=$ S

⁽²⁹⁾ Alper, H.; Silvawe, N. D.; Birnbaum, G.; Ahmed, F. J. *Am. Chem. SOC.* 1979, 101,6582.

⁽³⁰⁾ Pasquali, M.; Leoni, P.; Floriani, C.; Chiesi-Villa, A.; Gaustini, G. **(31)** Werner, H.; Kolb, 0.; Schubert, U.; Ackermann, K. *Chem. Ber. Inorg. Chem.* 1983, *22,* 841.

^{1985,118,873.}

⁽³²⁾Park, J. W.; Henling, L. M.; Schaefer, W. P.; Grubbs, R. H. *Organometallics* 1990, 9, 1650.

moiety, which is also manifested in the short Ni-C1 and Ni-S1 contacts of 1.94(1) and 2.130(3) **A,** respectively.

Thegeometry around the Ni center in the 1,l'-dithiolate complex **4** is distorted square planar, the two PMez groups being essentially trans with respect to the sulfur atoms. Some deviation toward tetrahedral geometry is apparent. The P1-Ni-S1 and P2-Ni-S2 angles are 173.37(6) and $175.23(7)$ ^o, respectively, with P1 and S1 deviating by 0.1 and 0.07 *8,* from the best mean-square coordination plane and P2 and S2 exhibiting similar departures of 0.06 **A,** although in the opposite direction. The major distortion, however, is introduced by the S_2CRR' ligand that has a

bite angle of only $80.12(6)^\circ$, a value nevertheless larger than those found in related complexes, e.g., 73.58' in the mononuclear Cp*Rh(S₂CH₂)(PMe₃)^{1g} and 72.45(4)^o in the binuclear iron derivative $Fe_2(S_2CH_2)(CO)_6$.^{16a} The strain of the four-membered NiS_2C ring is evidenced by the appreciable deviation of the S1-C1-S2 angle $(98.8(2)°)$ with respect to the ideal tetrahedral value. While this deviation is very small in the above Rh complex (104.8'), related binuclear complexes containing μ -S₂CH₂ entities are characterized by S-C-S angles^{16a,e} of about 94°. Other structural features of the molecules of **4** are normal, for instance, the C1-S bond lengths (1.84 **A** av) are typical of C-S single bonds, and the Ni-S and Ni-P separations are similar to those found in other related complexes. $6,17d$

The trithiocarbonate complex *5* also exhibits a distorted square-planar geometry around the nickel center. The trithiocarbonate ligand is essentially planar (the C1 atom deviates slightly (0.012(4) **A)** from planarity) and bonds to the metal atom through two of its sulfur atoms, forming a four-membered NiS_2C ring similar to that found³³ in $Ni(CS_3)_2^2$ and related complexes.¹⁷ The small bite angle of the CS_3^2 ⁻¹ ligand in 5 (78.92(5)[°]) is somewhat larger that those found in the above-mentioned Ni complex and in the Co derivative³⁴ CpCo(CS₃)(CNBu^t) (ca. 76-77°). In correspondence with other $M-CS_3$ complexes,^{17,33,34} a considerable distortion of the S-C-S angles from the ideal 120' value corresponding to trithiocarbonic acid is found in *5.* Thus, the exocyclic S1-C1-S3 and S2-Cl-S3 angles have magnitudes close to 126° (see Table 3), while the endocyclic Sl-Cl-S2 angle is significantly smaller (108.2- $(3)°$). The three C-S bonds are relatively short, indicating some multiple bond character which, as expected, is significantly larger for the C-S bond to the uncoordinated sulfur (Cl-S3 = 1.648(5) vs 1.723(5) **A** av for the other two C-S bonds). Other bonding parameters are normal and require no comment.

Discussion

Although complex **la** has already been fully characterized. $6a$ it is worth recalling here, with due brevity, some important properties relevant to the results described in the previous sections and the discussion that follows. Compound **la** is a highly fluxional molecule in solution: the two PMe₃ groups undergoing fast intermolecular exchange at room temperature even with trace amounts of the free ligand.35 Due to the higher trans effect of the Ni-alkyl bond, as compared to the Ni-aryl, this exchange is faster for the trans-CH₂-NiPMe₃ phosphine. $^{31}P_{1}^{1}H_{1}^{1}$ and 13C{lH} low-temperature NMR studies indicate that the concentration of the putative 5-coordinated tris(phosphine) intermediate remains low at -80 °C, even in the presence of 4 equiv of added PMe3. These observations clearly indicate that (i) there is a coordination site already available, at least for small molecules, and (ii) the trans- $CH₂-Ni-PMe₃$ phosphine is more labile than the other.

It is appropriate, both conceptually and didactically, to start this section with a discussion of the reactions of **la** with CO and CNBut. The insertion of CO into the Ni-C

⁽³³⁾ McKechnie, J. S.; Miesel, S. L.; Paul, I. C. *J. Chem.* **SOC.,** *Chem. Commun.* **1967, 152.**

⁽³⁴⁾ Doherty, **I.;** Fortune, J.; Manning, A. R.; Stephens, F. S. J. Chem. Soc., *Dalton Trans.* **1984, 1111.**

⁽³⁵⁾ Further NMR observations in accord with the intermolecular nature of this exchange are provided in the following: Belderrah, T. R.; Gutibrrez, E.; Monge, A.; Nicasio, M. C.; Paneque, M.; Poveda, M. L. *Organometallics* **1993,** *12,* **4431.**

bonds of **la** can be suggested to occur through a 5-coordinate intermediate related to **I** which then evolves to the insertion products,36 as shown in eq **10.** The proposed regiochemistry (namely insertion into the Ni-alkyl bond) can be accounted for considering the greater migratory capability of the alkyl chain as compared to the Ni-aryl bond.37 The experiment depicted in eq **14** suggests, in

 $[Ni]$ -C(O)Ph + [Ni]-Me = [Nil-Ph + [Nil-C(0)Me **(14)**

 $[Ni] = trans-Ni(Br)(PMe₃)₂$

addition, that intermediate **H** (eq 10) is also the thermodynamic product of this transformation. Interestingly, while H readily undergoes CS_2 insertion into the Ni-aryl bond (Scheme **4),** no additional reaction with excess CO is observed, and only the reductive elimination products are obtained. This is in line with the analogous incorporation of CO into other metallacycles^{4c,24,37-39} which undergo only monoinsertion of CO and also with the high tendency of $Ni(C(O)R)R'$ species to reductively eliminate the corresponding ketone, RC(O)R', particularly in the presence of C0.40 The existence of the chelating ligands in metallacycles **lb** and **IC** makes these compounds much less susceptible to CO insertion. Again, this is in common with the behavior found for other related species. Usually, nickelacycles containing chelating ligands are unreactive toward CO unless these ligands are sufficiently electron

releasing.^{24,39,41} In the case of, for example, $\rm Ni (CH_2CH_2-$

 CH_2CH_2)($Ph_2PCH_2CH_2PPh_2$),²⁴ it has been argued that the reduced reactivity is due to the incapability of the complex to form the 5-coordinate carbonyl intermediate. More recently these arguments have been put forward in terms of the concept of geometrical rigidity, defined⁴² as the reluctance of a complex that contains rather rigid ligands to undergo changes in the bonding angles. mckenacycles co
toward CO unle
releasing.^{24,39,41}
CH₂CH₂)(Ph₂Pt

With regard to the reaction of **la** with CNBut, an adduct **la.CNBut** analogous to **I** can be proposed to form, but this does not evolve to the isocyanide insertion product. Instead, PMe₃ substitution is more favorable, and the resulting species **10** is stable toward insertion. This behavior resembles that found in some platinacycles^{38f} but contrasts with the facility with which other Ni-alkyl and Ni-aryl complexes undergo CNR insertion.^{27b,43,44}

⁽³⁶⁾ This reaction scheme for the formation of NiC(0)R species is frequently invoked in the literature. For some of the most interesting
earlier studies, see: (a) Stoppioni, P.; Dapporto, P.; Sacconi, L. *Inorg.*
Chem. 1978, 17, 718. (b) Maruyama, K.; Ito, T.; Yamamoto, A. J.
Organome

⁽³⁷⁾ Related zirconacycles exhibit the same selectivity: (a) Erker, G.; Kropp, K. *J. Organomet. Chem.* **1980,194,45. (b)** Erker, G. **Acc.** *Chem. Res.* **1984, 17, 103.**

⁽³⁸⁾ See for example: (a) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6529. (b) Grubbs, R. H.; Miyashita,
A. J. Organomet. Chem. 1978, 161, 371. (c) Foulger, B. E.; Grevels, F.-W.;
Hess, D.; Kroerner, v. Gustorf, E. A.; Leitich, J. J. Chem. Soc., Dalton *Trans.* 1979, 1451. (d) Diversi, P.; Ingrosso, G.; Lucherini, A.; Murtas, S. *J. Chem. Soc., Dalton Trans.* 1980, 1633. (e) Meinhart, J. D.;
S. *J. Chem. Soc., Dalton Trans.* 1980, 1633. (e) Meinhart, J. D.;
Santarsiero, Klinger, R. J.; Huffman, J. C.; Kochi, J. K. *J. Am. Chem. SOC.* **1982,104, 2147.**

⁽³⁹⁾ (a) Jolly,P. **W.;Kriiger,C.;Salz,R.;Sakutowski,J.C.J.Organomet.** *Chem.* **1979, 165, C39.** (b) Eisch, J. J.; Pietrowski, A. M.; Aradi, A. A.; Kriiger, C.; RomBo, M. J. *Z. Naturforsch.* **1986,40b, 624.** (c) Pasto, D. J.;Huang, N.-Z. *Organometallics* **1986,4,1386.** (d) Eisch, J. J.; Pietrowski, A. M.; Han, K. I.; KrQer, C.; Tsay, Y.-H. *Organometallics* **1985,4,224.** (e) Mynott, R.; Neidlein, R.; Schwager, H.; Wilke, G. *Angew. Chem., Int.*

Ed. Engl. **1986, 25, 640. (40)** Yamamoto, T.; Kohara, T.; Yamamoto, A. *Bull. Chem. SOC. Jpn.* **1981,54, 2161.**

⁽⁴¹⁾ Doyle, M. J.; McMeeking, J.; Binger, P. J. *Chem. SOC., Chem. Commun.* **1976, 376. (42)** Zhang, L.; Zetterberg, K. *Organometallics* **1991, 10, 3806. (43)** (a) Bochmann, M.; Hawkins, I.; Sloan, M. P. *J. Organomet. Chem.*

^{1987,332,371.} (b) Carmona, E.; Marfn, J. M.; Palma, P.; Poveda, M. L. *J. Organomet. Chem.* **1989,377,157. (c)** Cbmpora, J.; GutiBrrez,E.; Monge,

A.; Poveda, M. L.; Rulz, C.; Carmona, E. *Organometallics* **1993,12,4025. (44)** Unpublished observations from thislaboratory indicate that *trans-* $NiBr(PMe₃)₂Ph$ readily inserts CNBu^t to give trans-NiBr(PMe₃)₂(η ¹-C(=NBut)Ph). See also: Deming, T. J.; Novak, B. M. *J. Am. Chem. SOC.* **1993, 115, 9101.**

 $Ni(II)$ are known in different coordination modes, 3^b the

trihapto Ni-S2C-linkage found for intermediate **A** has not been observed previously. The 7-membered heterometallacycles resulting from the insertion of other heterocumulenes are 16-electron species, but some of these compounds have been shown to react with PMe₃ to afford the corresponding closed-shell tris(phosphine) adducts. As shown in Scheme 2, the η^3 -S,C,S'-bonding in **A** can be disrupted by addition of PMe₃ or dmpe.

bonding mode,3 with the softer atom of the nonsymmetric heterocumulene directly bonded to the Ni center (i.e,, with a preference order $S > N > 0$). Once this adduct is formed, CXY insertion into the Ni-aryl bond would give the

Interestingly, the kinetic insertion product of $CS₂$ and 1a, A, contains the resulting dithiocarboxylate group η^3 -S,C,S'-bonded to the metal, as revealed by low-temperature NMR studies. Although dithiocarboxylate complexes of

corresponding heterometallacycles.

Finally, in this regard, the very low reactivity of **la** against $CO₂$ may be due to the low affinity of the Ni(II) center for the C=O double bonds, which we believe it is also responsible for the regioselectivity observed in the PhNCO reaction.

The heterometallacycles resulting from the incorporation of the cumulene into the Ni-aryl bond are of variable stability. Those derived from CS_2 , COS, and PhNCS are unstable and undergo reductive elimination with concomitant $C-S$ bond formation. For CS_2 , this product is the dithiolactone **2,** which remains coordinated to the metal, forming complex **3a,** a novel example of an organometallic derivative of an n^2 -C=S ligand. Compounds of this type are of relevance for the desulfurization $reaction.^{30,53}$

The reaction of **lb** with dmpe gives the 1,l-dithiolate complex **4** (eq **5),** which in a formal sense can be considered as the product of the insertion of CS_2 into the two Ni-C bonds of the nickelacycle. Although other gem-dithiolates are known,^{1a,g,16} in no case, however, has this kind of functionality be generated using CS_2 as a reagent. In light of the above results, and taking into account the feasibility of adducts of type **I,** it seems reasonable to propose that this reaction proceeds through the intermediacy of a $CS₂$ adduct of type **L.** The trans labilizing effect of the Ni-

 $CH₂$ moiety is rendered inoperative by the chelating diphosphine. CS_2 insertion could occur either in the Niaryl or in the Ni-alkyl bond. In the first case, intermediate **C** would be generated, which indeed forms **4** at higher temperatures, but, as already mentioned, competition experiments clearly show that **C** is not an intermediate in the reaction pathway from **lb** to **4.** Hence we are left with the possibility of CS_2 inserting into the more labile Nialkyl bond to afford an alkyl dithiocarboxylate functionality of the type depicted in **M.** Intramolecular C-C coupling followed by coordination of the exocyclic sulfur

Complex **la** reacts with various heterocumulenes, $X=C=Y$. The insertion of $CO₂$ to give the nickelalactone

the three S-containing molecules react instantaneously 45 at temperatures as low as -80 $^{\circ}$ C, while with PhNCO and $C(NC_6H_4-p-Me)_2$, product formation starts at -60 °C, and C02 requires days at room temperature.

An interesting feature of the above findings is the very high reactivity toward CS_2 exhibited by 1a, which markedly contrasts with the slowness of the analogous $CO₂$ reaction. $CS₂$ insertion into M-C bonds is not, generally, a very favorable process.^{13,46} For example, R-M(CO)₅ derivatives $(M = Mn, Re)$ require⁴⁷ high temperatures and pressures in neat CS_2 , and for the formation of trans-Pd(η^2 -S₂- $CCH₃)I(PMe₃)₂$ from trans-Pd(CH₃)I(PMe₃)₂ and neat CS_2 , 48 h at 20 °C is needed.⁴⁸ No insertion is observed for the cationic species⁴⁸ $[**PG**(CH₃)(**PMe**₃)₃]⁺$ or for the neutral phenyl complex trans-Ni(C₆H₅)Br(PMe₃)₂.⁴⁹ Literature reports on relative rates of CO_2 and CS_2 insertions into $M-C$ bonds are very scarce, but $CS₂$ incorporation seems somewhat more favorable.^{12e,50}

A tentative mechanism for heterocumulene reactivity toward **la** is presented in Scheme **7.** This is based on that proposed by Bergman for alkyne insertion into Ni(CH₃)- (acac) (PPh₃)⁵¹ and postulates a preequilibrium step involving adduct **K.** In accord with this mechanism, a strong inhibiting effect is evidenced when the reaction of **la** and PhNCO is carried out in the presence of added PMe_{3.}52 In adduct **K**, the cumulene could adopt an η^1 or an η^2

both reagents have approximately the same reactivity toward insertion.
(46) (a) Camus, A.; Marsich, N.; Nardin, G. J. Organomet. Chem. 1980,
188, 389. (b) Otto, H.; Werner, H. Chem. Ber. 1987, 120, 97. (c) Torres,

species $Me_3P_2Ni(CH_2CMe_2-o-C_6H_4C(=0)O)$ has already been described; $6a$ the reactions with CS₂, COS, PhNCS, PhNCO and $C(NC_6H_4-p-Me)_2$ are the aim of this contribution. The reactivity order found is $CS_2 \sim COS \sim$ PhNCS > PhNCO > $C(NC_6H_4-p-Me)_2 \gg CO_2$. Thus,

⁽⁴⁵⁾ A competition experiment carried out with 1a and equivalent amounts of CS_2 and SCNPh at -80 °C reveals that CS_2 reacts about twice as fast as PhNCS. This result indicates that the C=S functionalities of

M. R.; Perales, A.; Ros, J. *Organometallics* **1988,** *7,* **1223. (47)** Lindner, **E.;** Grimmer, R.; Weber, H. *Angew. Chem.,Jnt.Ed. Engl.*

^{1970, 9, 639.} (48) Werner, H.; Bertleff, W. *Chem.* Ber. **1980, 113, 267. (49)** Palma, P., unpublished observations.

⁽⁵⁰⁾ Darensbourg, D. **J.;** Wiegreffe, H. P.; Reibenspies, J. H. *Orga- nometallics* **1991, 10, 6.**

⁽⁵¹⁾ Huggins, J. M.; Bergman, R. G. *J. Am. Chem.* Sot. **1981, 103, 3002.**

⁽⁵²⁾ Probably due to the very fast reaction with CS₂, no such qualitative inhibition effect by PMes can be noticed at **-80** "C.

⁽⁵³⁾ Eisch, **J.** J.; Hallenbeck, L.; Han, K. I. *J. Am. Chem. SOC.* **1986, 108, 7763** and references therein.

would afford the final observed product. The influence of the phosphine groups in this intraligand coupling reaction (C-S for PMe₃, C-C for dmpe) is not presently understood.

The 1,1-dithiolate 4 and CS_2 react further, forming the trithiocarbonate **5** and the thioketone **6.** The overall reaction, starting from 1b and CS₂, can be represented as shown in eq 15 and corresponds, formally, to a reductive induced by the Ni center. Curiously, the thiocarbonyl

unit resulting from this reaction becomes incorporated into the thioketone functionality. Equation 15 is highly reminiscent of the analogous reaction of 1a with CO₂ to give a Ni- $CO₃²⁻ complex$ and the corresponding ketone.^{6a} Interestingly, the above reaction takes place without change in the oxidation state of the nickel center. Hence, the required two electrons are provided, once again in a formal sense, by the organic fragment.

Mechanistically, the reaction of 4 with CS_2 may involve a CSz-induced reductive elimination with S-S bond formation, yielding an unstable dithiirane⁵⁴ which would quickly transfer one of its sulfur atoms to yield the observed products. A direct attack of the entering CS₂ molecule on

one of the Ni-S bonds of **4 (N),** in a process resembling some heterocumulene exchange reactions,^{17a} seems, however, more likely.

The heterometallacycles resulting from the insertion of the heterocumulenes, CXY, into the Ni-aryl bond of **la** contain seven-membered rings that incorporate one sulfur or nitrogen atom in addition to the Ni atom. Metallacycles of this type are usually susceptible to ring-contraction in a process that involves β -H elimination.^{23b,55} The lack of β -Hs in these complexes avoids this undesired transformation and allows one to take advantage of the presence in their molecules of a reactive $Ni-CH₂$ bond, susceptible to undergo further insertion chemistry. It should be noted that, probably due to subtle mechanistic factors, while **la** does not undergo CNBu^t insertion, the metallacycles derived from the incorporation of CXY into the Ni-aryl bond react cleanly and quickly with this molecule. **As** expected, they also interact rapidly with CO.

Three types of compounds can be isolated depending upon the nature of the starting heterometallacycle and incoming reagent (Scheme 8). Thus, the successive insertions of CS_2 and CO or $CNBu^t$ give rise to organometallic compounds of Ni(0) **(lla** and **12a,** respectively) that contain a Ni $-\eta^2$ -C=S moiety. If a >C=S bond is not available in the starting metallacycle, the reaction product depends upon the nature of the incoming molecule, CNBu^t or CO. Thus, the former affords stable η^2 iminoacyls (17 and 18), while for CO the corresponding acyls are unstable and undergo reductive elimination with evolution of the free organic molecules (e.g., **15** and **16).**

⁽⁵⁴⁾ Dithiiranes are very unstable, nonisolable molecules. See: (a) Zoller, U. In Heterocyclic *Compounds;* **Hassner, A. Ed., Wiley: London, 1983; Vol. 42, p 608. (b) Snyder,** J. **P.; Carlsen, L.** *J. Am. Chem.* **SOC. 1977,** 99, 2931. Very recently a derivative of such a ring has been isolated:
Ishii, A.; Akazawa, T.; Ding, M.-X.; Honjo, T.; Nakayama, J.; Hoshino,
M. J. *Am. Chem. Soc.* 1**993**, *115*, 4914.

⁽⁵⁵⁾ Yamamoto, T.; Sano, K.; Yamamoto, A. *J. Am. Chem. SOC.* **1987, 109,1092.**

Scheme 9 summarizes the organic products resulting from the sequential sulfur-containing heterocumulene-CO or -CNBut incorporations into the Ni-C bonds of la. These products are obtained either directly, from the above consecutive reactions, or by the methods described in the Results section. **As** can be seen, this methodology has been applied to the synthesis of thione analogs of acid anhydrides and to that of related imine derivatives. The thione analogs of acid anhydrides are compounds of considerable interest, and although some stable derivatives have been prepared recently, they are generally rather unstable and elusive molecules.25 **As** already mentioned, the synthetic approach that successfully allows the formation of these substances relies on the regioselective insertion of the heterocumulene into the Ni-aryl bond of la, to yield reactive 7-membered heterometalacyclic species able to undergo additional insertion of CO or CNBut into the Ni-alkyl bond.

Conclusions

The work described in this contribution demonstrates that the Ni-aryl bond of the nickelacycle $(Me_3P)_2Ni(CH_2 CMe₂-o-C₆H₄$ (la) is very prone to undergo insertion of a variety of heterocumulenes, $X=C=Y$, with formation of seven-membered heterometallacycles of disparate thermal stability. This transformation activates the preexisting Ni -CH₂ bond toward the insertion of CO or CNBu^t, allowing the synthesis, either directly or by further elaboration of the primary product of the insertion reaction, of a variety of seven-membered organic heterocycles. Contrary to the reaction of $1a$ with CS_2 , the related metallacycle $(dmpe)Ni(CH₂CMe₂-o-C₆H₄)$ (1b), which contains a chelating phosphine ligand, experiences, under analogous conditions, an unprecedented transformation that yields the 1,l-dithiolate complex **4,** formally the product of the insertion of CS_2 into the two Ni–C bonds of **lb.**

Experimental Section

Microanalyses were by Pascher, Microanalytical Laboratory, Remagen, Germany, and the Analytical Service of the University of Sevilla. The spectroscopic instruments used were Perkin-Elmer Models **577** and **684** for IR spectra, Varian **XL-200** for NMR, and Kratos MS-80 for mass spectroscopy. The 13C resonance of the solvent was used as an internal standard, but chemical shifts are reported with respect to SiMe_4 . The ¹³C{¹H} NMR assignments were helped in most cases with the use of gate decoupling and APT techniques. $^{31}P\{^1H\}$ NMR shifts are referenced to external **85%** H3P04. All preparations and other operations were carried out under oxygen-free nitrogen following conventional Schlenk techniques. Solvents were dried and degassed before use. The petroleum ether used had a boiling point of 40-60 °C. The compounds la,^{6a} 1b,^{6b} PMe₃,⁵⁶ and $CNBu^{t57}$ were prepared according to literature methods. rechniques. ³¹P{¹H} NMR shifts
55% H₃PO₄. All preparations and o
out under oxygen-free nitrogen follow
techniques. Solvents were dried
the petroleum ether used had a boi
he compounds $1a$,^{6a} 1b,^{6b} PMe₃,⁵⁶

Synthesis of $(bipy)$ **Ni** $(CH_2CMe_2 \cdot \sigma C_6H_4)$ **(1c).** To a solution of la **(0.34** g, **1** mmol) in Et20 **(30** mL) was added **0.1** g of solid bipy **(1** mmol). The resulting dark green mixture was stirred at room temperature for **20** min and then taken to dryness. Extraction with Et_2O , filtration, and cooling at -15 °C furnished very dark green crystals of complex IC: combined yield of two crops, **70%;** lH NMR **(200** MHz, CD2C12, **20** "C) d **1.43** (s, **6** H, CMeZ), **1.94** *(8,* **2** H, CHz), **5.3-9.1** (m, aromatics); 13C('H] NMR (CD₂Cl₂, 20 °C) *δ* 33.9 (CMe₂), 44.3 (CH₂), 47.9 (CMe₂), 120.5, **121.0, 122.8, 123.5, 126.0, 126.3, 136.1, 137.6, 148.9, 151.1 (1:2: 1:1:1:1:2:1:1:1** relative ratio, aromatic C-H carbons), **154.1,154.9, 163.0, 170.8** (aromatic quaternary carbons). Anal. Calcd for CzoHzoNzNi: C, **69.9;** H, **5.8.** Found: C, **69.1;** H, **5.9.**

Reaction **of** la with Excess **of** CSz. To a cold **(-50** "C), stirred solution of 1a (0.34 g, 1 mmol) in Et₂O (30 mL) was added **4** equiv of CS_2 (4 mL of a 1 M solution in toluene) via syringe. The cooling bath was removed, and upon warming the dark solution developed a red-orange coloration. After the solution was stirred for **2** h at room temperature, a brown microcrystalline precipitate, identified as Ibers's complex,10 was filtered and washed with $Et₂O$. The red filtrate was evaporated to dryness and the residue extracted with **20** mL of petroleum ether. The last operation was repeated, and after concentration of the extract and cooling at **-30** "C, compound **2** was obtained in the form of dark red needles: yield, 80% ; ¹H NMR (200 MHz, C₆D₆, 20 °C) δ 1.03 (s, 6 H, CMe₂), 2.30 (s, 2 H, CH₂), 6.9-8.5 (m, aromatics); $^{13}C_{7}^{11}H_{1}^{1}NMR(C_{6}D_{6}, 20^{\circ}C) \delta 27.4 (CMe_{2}), 34.2 (CMe_{2}), 42.4 (CH_{2}),$ **124.2, 126.6, 129.4, 133.4** (aromatic C-H carbons), **137.8, 143.0** (aromatic quaternary carbons), **224.7** (C=S); IR (Nujol mull) $\nu(C=S)$ 1020 s. Anal. Calcd for C₁₁H₁₂S₂: C, 63.4; H, 5.8. Found: C, **63.4;** H, **6.0.** operation are not probably and a simple and the second a

The ${}^{13}CS_2$ -enriched dithiolactone $2*$ was obtained by the following procedure: 1 equiv of 50% , ¹³C-enriched CS₂ was added at **-50** "C to a solution of la. The cooling bath was then removed, and after the solution was stirred for **10** min, **3** equiv more of CS_2 , this time of normal isotopic composition, was introduced into the flask. Workup as above furnished ¹³C-labeled **2*.** Selected data for 2^* : ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 137.7 (d, C_{ar} ^{*}C(=S), ¹J_{CC} = 50 Hz); IR (Nujol mull) ν ⁽¹³C=S) 1000 s.

Synthesis of $(Me_3P)_2Ni(\eta^2-S=CSCH_2CMe_2\cdot\sigma-C_6H_4)$ (3a). CS2 **(1** mmol, 1 mL of a **1** M solution in toluene) was added to a cold $(-90 °C)$ solution of 1a $(0.34 g, 1 mmol)$ in Et₂O $(40 mL)$; the original orange color of la suddenly changed to the very dark green, almost black, characteristic coloration of intermediate **A.** Upon gentle warming of the solution to -60 °C, a further change was observed to a reddish orange color. The solvent was removed under vacuum while the temperature was kept at 0° C, and the resulting orange microcrystalline residue was washed with **20** mL of petroleum ether: yield of crude product, 80%. Complex

^{(56) (}a) Wolfsberger, W.; Schmidbaur, H. Synth. React. Inorg. Met.-
Org. Chem. 1974, 4, 149. (b) Luetkens, M. L., Jr.; Sattelberger, A. P.;
Murray, H. H.; Basil, J. D.; Fackler, J. P., Jr. Inorg. Synth. 1990, 28, 305.
(57) 96.

3a can be crystallized from $Et₂O$ as well-formed red prisms of composition $3a \cdot 0.5 \text{ Et}_2\text{O}$. *Note*: It is very important to evaporate the volatiles at $0 °C$, otherwise decomposition to insoluble tars readily occurs. Once isolated, complex 3a is a very stable compound, even in solution, and therefore its decomposition when in the crude mixture may be due to the catalytic action of unknown impurities: ¹H NMR (200 MHz, C₆D₆, 20[°]C) δ 0.90 (br s, 18 H, $PMe₃$), 1.20, 1.48 (s, 3 H and 3 H, CMe₂), 2.46, 3.31 (d, ${}^{2}J_{HH}$ = **13** Hz, **1** H and **1** H, diastereotopic CH2 protons), **7.0-8.2** (m, aromatics); ³¹P{¹H} NMR (CD₂Cl₂, -70 °C) AX spin system, δ_A **16.3** (d, ${}^{1}J_{CP} = 24$ Hz, PMe₃), **18.0** (d, ${}^{1}J_{CP} = 23$ Hz, PMe₃), 30.8 **(8,** CMe2), **35.3 (s,** CMe2),45.8 **(s,** CH2), **68.5** (br s, **C=S),123.8, 124.5, 126.6, 130.7 (s,** aromatic C-H carbons), **143.9, 149.5** (s, aromatic quaternary carbons). The signal due to the C=S carbon appears as a doublet at low temperature: δ 58.0, $^2J_{CP} = 34$ Hz; M_{w} (cryoscopically, C_6H_6 , N_2) calcd for $C_{17}H_{30}P_{2}S_{2}Ni$ 419, found 416. Anal. Calcd for C₁₇H₃₀P₂S₂Ni¹/₂ (C₂H₅)₂O: C, 49.9; **H**, 7.6. Found: C, **49.4;** H, **7.2.** $= -8.4$, $\delta_X = -7.0$, $^2J_{AX} = 7$ Hz; $^{13}C(^{11}H)$ NMR (CD₂Cl₂, 20 °C) δ PMe₃), 1.20, 1.48 (s, 3 H and 3 H, CMe
13 Hz, 1 H and 1 H, diastereotopic CH
13 Hz, 1 H and 1 H, diastereotopic CH
aromatics); ³¹P(¹H} NMR (CD₂Cl₂, -70
= -8.4, δ x = -7.0, ²J_{AX} = 7 Hz; ¹³C(¹H}
16.3 (d,

By carrying out the reaction with 13 C-enriched CS₂, complex 3a* was similarly prepared. The 31P(1H) NMR spectrum of 3a* $(CD_2Cl_2, -70 \degree C)$ shows that the phosphorus resonance that appears at **-8.4** ppm in the spectrum of 3a is further split by coupling to ¹³C (² J_{PC} = 33 Hz).

Spectroscopic data for the green intermediate $({\rm Me}_3{\rm P})_2\overline{{\rm Ni}(\eta^3-1)}$

 $S_2CC_6H_4$ -o-CMe₂CH₂) (A): ¹³C{¹H} NMR (CD₂Cl₂, -80 °C) δ 17.0 $(d, {}^{1}J_{CP} = 19 \text{ Hz}, \text{ PMe}_3), 35.4, 38.5 \text{ (br s, } CMe_2), 36.8 \text{ (d, } {}^{2}J_{CP} =$ **23** Hz, CHz), **39.4** (d, 3J~p = **6** Hz, CMez), **124.5, 127.0, 127.7** (aromatic C-H carbons), **131.7** (d, Jcp = **8** Hz, aromatic C-H carbon), 145.5, 149.5 (d and t, $J_{CP} = 7$ and 5 Hz, respectively, aromatic quaternary carbons); ${}^{31}P{^1H}$ NMR (CD₂Cl₂, -80 °C) AX spin system, $\delta_A = -19.0$, $\delta_X = 9.6$, $^2J_{AX} = 8$ Hz. For A^* (¹³CS₂enriched sample), the first resonance is coupled to the 13C nuclei $= 19$ Hz, CS₂), 145.5 (dd, ¹J_{CC} = 55 Hz, J_{CP} = 7 Hz, aromatic quaternary carbon). $(^{2}J_{\text{PC}} = 18 \text{ Hz})$: ¹³C{¹H} NMR (CD₂Cl₂, -80 °C) δ 137.1 (d, ²J_{CP}

As described in the Results, the dark green intermediate **A** reacts reversibly, at -80 °C, with an excess of PMe₃ to give the brown tris(phosphine) species $(M_{\Theta_3}P)_{3}Ni(CH_2CH_2-C_6H_4C-$ *C(=S)), 256 As described in the Results, the dark green intermediate A
reacts reversibly, at -80 °C, with an excess of PMe₃ to give the
brown tris(phosphine) species $(M_{e_3}P)_{3}Ni(CH_2CMe_2-0-C_6H_4C$
 $\overline{(-S)}S)$ (B), fully characteriz data: ³¹P{¹H} NMR (CD₂Cl₂, -90 °C) AMX spin system, δ_A = NMR (CD₂Cl₂-Et₂O, -90 °C, ¹³CS₂-enriched sample) 6 124.7, **126.6, 128.4 (s, 2:l:l** ratio, aromatic C-H carbons), **145.5** (s, aromatic quaternary carbon), 258.0 (S₂CR) (the C_{ar} ^{*}CS₂ could not be positively identified). This complex decomposes in the presence of PMe₃ at -60 °C with formation of 3a. $-34.9, \delta_M = -12.9, \delta_X = -5.3, \frac{2J_{AM}}{3} = 182, \frac{2J_{MX}}{3} = 43 \text{ Hz}, \frac{13 \text{ C}}{1 \text{ Hz}}$

Synthesis of $(dmpe)Ni(\eta^2-S=CSCH_2CMe_{2} \cdot \alpha \cdot C_6H_4)$ (3b). Complex 3a (0.42 g, 1 mmol) was dissolved in Et₂O (20 mL) at room temperature, and to this solution was added **1** equiv of dmpe **(0.15** mL, **1** mmol) without stirring, in such a way that this reagent reached the main solution slowly down the walls of the flask. The mixture was left undisturbed for **2** h, and the resulting dark red crystals were decanted off, washed with petroleum ether, and dried under vacuum: yield, **87** % ; 'H NMR **(200** MHz, CD2- Cl_2 , 20 °C) δ 1.37 (filled in doublet, $J_{\text{HP}_{\text{app}}} = 10 \text{ Hz}, 6 \text{ H}, 2 \text{ P-Me}$), **1.32** (br s, 6 H, CMe₂), 1.66 (pseudotriplet, $J_{HP_{\text{app}}} = 2.1$ Hz, 6 H, **2 P-Me), 2.05 (m, 4 H, 2 P-CH₂), 2.55, 2.80** $(d, 2J_{HH} = 13.1 \text{ Hz})$ **, 1** H and **1** H, diastereotopic CH2 protons), **6.7-7.5 (m,** aromatics); $(2^{\circ}C)$ δ 13.8, 14.8 (m, P-Me), 28.5 (t, $J_{CP_{\text{app}}} = 23$ Hz, P-CH₂), 29.6 $(t, J_{\text{CP}_{\text{app}}} = 14 \text{ Hz}, \text{P-CH}_2, 30.8, 31.0 \text{ } (\text{C} \widetilde{\text{Me}}_2), 35.3 \text{ } (\text{s}, \text{CMe}_2), 44.3 \text{ }$ (s, S-CH2), **64.0** (br s, C=S), **123.9, 126.4, 130.1 (s, 2:l:l** ratio, aromatic C-H carbons), **142.8, 148.5** (s, aromatic quaternary carbons). Anal. Calcd for C17H28PzSzNi: C, **48.9,** H, **6.8.** Found: C, **48.7;** H, **7.4.** ³¹P^{{1}H}</sub> NMR (CD₂Cl₂, 20 °C) δ 46.4; ¹³C{¹H} NMR (CD₂Cl₂, 20

Reaction **of** 3a with **CO.** Carbon monoxide was bubbled, at room temperature and pressure, through a solution of 3a **(0.21** g , 0.5 mmol) in $CH_2Cl_2(10 \text{ mL})$ for ca. 5 min. During this process,

the color changed from orange to red-violet. The solution was stripped to dryness and the resulting residue extracted with **10** mL of petroleum ether. Filtration, concentration, and cooling at **-30** "C furnished the crystalline dithiolactone **2** in **75%** yield.

Synthesis of $(dmpe)Ni(\eta^2-S_2\overset{\circ}{C}CH_2\overset{\circ}{C}Me_2-\overset{\circ}{O}_6H_4)$ (4). To a solution of complex lb **(0.34** g, **1** mmol) in acetone **(20** mL) was added 1 mL of a 1 M solution of CS₂ in toluene via syringe. After being stirred for a few minutes at room temperature, the resulting solution was filtered, concentrated, and cooled at **-30** "C. Complex **4** was obtained **as** an orange crystalline material in **75** % yield: lH NMR **(200** MHz, CD2C12, **20** "C) 6 **1.33 (e, 6** H, CMez), **1.38** (pseudotriplet, $J_{HP_{app}} = 5.5$ Hz, 6 H, 2 P-Me), 1.40 $(pseudotriplet, J_{HP_{apo}} = 5.5 \text{ Hz}, 6 \text{ H}, 2P \text{ Me}), 2.50 \text{ (s, 2 H}, CH_2),$ **7.0-7.7** (m, aromatics); 31P(1H) NMR (CD2C12, **20** "C) 6 **42.9;** $^{13}C_{1}^{1}H_{1}^{1}NMR$ (CD₂Cl₂, 20 °C) δ 12.5 (m, P-Me), 27.4 (t, $J_{CP_{\text{amp}}}$ = **24 Hz, P-CH₂), 30.6 (s, CMe₂), 42.8 (s, CMe₂), 66.2 (s, CS₂), 67.0 (s,** S2CCH2), **121.4, 124.8, 126.6 (8, 1:1:2** ratio, aromatic C-H carbons), **148.8, 153.3** *(8,* aromatic quaternary carbons). Anal. Calcd for C17HzePzS2Ni: C, **48.9;** H. **6.8.** Found: C, **48.9,** H, **6.9.** xtracted with 10

ion, and cooling

e 2 in 75% yield.
 $\Gamma_{\text{Ce}}H_4$) (4). To a

one (20 mL) was
 via syringe. After

ure, the resulting

bled at -30 °C.

material in 75%

3 (s, 6 H, CMe₂),

2 P-Me), 1.40

50 (s, 2

By using 13C-enriched CS2, a sample of 13C-labeled **4*** was obtained: ¹H NMR (CD₂Cl₂, 20 °C) δ 2.50 (d, ²J_{HC} = 4.5 Hz, CH_2); ¹³C{¹H} NMR (CD₃COCD₃, 20 °C) δ 67.7 (d, ¹J_{CC} = 36 Hz, S_2 *CCH₂), 154.7 (d, ¹J_{CC} = 45 Hz, S_2 *CC_q).

Reactionof **A** withdmpe. Observationof

 $\overline{CMe_{2} \cdot \rho \cdot C_{6}H_{4}C(=S)}$ S (C). Complex A (0.5 mmol) was prepared in situ at -90 °C by carefully mixing cooled CH_2Cl_2 solutions of $CS₂$ and la (1:1 ratio). The resulting dark green solution was immediately treated with **0.5** mL of a cold **1** M dmpe solution in CH2Clz. A fast reaction was noticed as the color of the solution suddenly changed to the characteristic orange of **C:** 31P(1H) NMR (CD₂Cl₂, -80 °C) AX spin system, $\delta_A = 30.1$, $\delta_X = 45.7$, ${}^2J_{AX} =$ **27** Hz; 13C(lH} NMR (CD2C12,-80 "C) 6 **10-20** (m, P-Me, obscured by free PMe₃), 25-27 (complex multiplets, Ni-CH₂ and P-CH₂), **33.5, 34.8** (s, CMez), **39.7 (s,** CMez), **123.1, 124.7, 127.6 (s, 1:2:1** ratio, aromatic C-H carbons), **144.2,153.3** (s, aromatic quaternary carbons).

A $^{13}CS_2$ -enriched sample of C showed the following characteristics: ¹³C{¹H} NMR δ 153.3 (d, ¹J_{CC} = 49 Hz, C_{ar} - $*C (=S)$), 256.0 **(s, C=S)**.

Complex C decomposed cleanly in CH_2Cl_2 at temperatures above **-50** "C with formation of **4** in a reaction that constitutes an alternative method for the synthesis of the gem-dithiolate **4.** To a solution of complex la **(0.34** g, **1** mmol) in **20** mL of cold (-80 °C) Et₂O was added with stirring 1 equiv of CS₂ (1 mL of a **1** M solution in toluene). The dark green mixture was stirred at that temperature for **2-3** min, and then **10** mL of a cold (-80 °C) 0.1 M Et₂O solution of dmpe was slowly introduced into the reaction **flask.** An intermediate reaction took place with formation of a dark red precipitate. The cooling bath was then removed, and at \sim 0 °C, the color of the precipitate material changed to yellow-orange. This solid was filtered, washed with Et₂O, and dried in vacuo to give complex 4 as a yellow-orange microcrystalline material: yield, **75%.**

Reaction of the gem-Dithiolate 4 with Excess CS₂. To a solution of complex **4 (0.42** g, **1** mmol) in acetone **(15** mL) was added 2 mL of a 1 M solution of CS₂ in toluene. After being stirred at room temperature for **7** h, the reaction mixture was filtered to furnish complex 5 as a yellow microcrystalline solid. The filtrate was taken to dryness and the residue extracted with petroleum ether, leaving behind additional amounts of 5. The last operation was repeated twice to give further crops of this complex (combined yield, **95%)** and a violet solution of the thioketone **6 (0.04** g, **80%** yield). Compound 5 can be purified by crystallization from hot dimethyl sulfoxide, while the liquid violet thioketone **6** can be distilled under reduced pressure.

Complex 5: 1 H NMR (200 MHz, DMSO- d_6 , 20 °C) δ 1.44 (filled- $\text{Complexs}: \text{`H N} \text{M} \text{K} \text{ (200 MHz, D} \text{MSU-} a_6, 20 \text{°C}) \text{ o } 1.44 \text{ (filled-}$
in doublet, $J_{\text{HP}_{app}} = 6.0 \text{ Hz}, 12 \text{ H}, \text{P-Me}), 1.94 \text{ (d}, \text{²} \text{J}_{\text{HP}} = 16.2 \text{ Hz},$ NMR (DMSO- d_6 , 20 °C) δ 11.5 (pseudotriplet, $J_{CP_{app}} = 14$ Hz, $P-Me$, 25.9 (pseudotriplet, $J_{CP_{app}} = 24 Hz$, $P-CH_2$), 250.3 (s, C=S); **4 H, P-CH₂); ³¹P{¹H} NMR (DMSO-d₆, 20 °C)** δ **48.3; ¹³C{¹H}** IR (Nujol mull) ν (C=S) 1035 s. Anal. Calcd for C₇H₁₈P₂S₃Ni: C, 26.3; H, 5.6; S, 30.1. Found: C, 26.7, H, 5.1; S, 30.0.

By using ¹³CS₂, a sample of 5* was prepared: IR (Nujol mull) ν ⁽¹³C=S) 1000 s.

Thioketone 6: ¹H NMR (200 MHz, C₆D₆, 20 °C) δ 0.97 (s, 6 $H, CMe₂$, 2.80 (s, 2 H, CH₂), 6.9-8.0 (m, aromatics); ¹³C{¹H} NMR $(C_6D_6, 20 °C)$ δ 28.7 (CMe₂), 42.2 (CMe₂), 65.7 (CH₂), 123.4, 123.7, 127.7, 134.6 (aromatic C-H carbons), 144.6, 162.4 (aromatic quaternary carbons), 244.1 (C=S); IR (neat film) ν (C=S) 1320 s, 1290 s; MS m/e 176. Anal. Calcd for C₁₁H₁₂S: C, 74.9; H, 6.9; S, 18.2. Found; C, 75.0; H, 7.0; S, 17.8.

Selected spectroscopic data for ¹³C-enriched 6^{*}: ¹H NMR (200 MHz, C_6D_6 , 20 °C) δ 2.80 (d, ² $J_{\rm HC}$ = 6.3 Hz, CH₂); ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 65.7 (d, ¹J_{CC} = 35 Hz, CH₂), 144.6 (d, ¹J_{CC} = 50 Hz, C_{ar} *C(=S)); IR (neat film) ν (¹³C=S) 1300 s, 1280 s.

&action of 4 **with Brz.** To a stirred solution of **4** (0.42 g, 1 mmol) in CH_2Cl_2 (30 mL) cooled to -60 °C was added 10 mL of a 0.1 M Br₂ solution in CH₂Cl₂ *via* canula. The resulting yellow suspension was stirred for 1 h at room temperature and the precipitate NiBr₂(dmpe) filtered. The filtrate was taken to dryness and the residue extracted with EtzO. Repetition of this step using petroleum ether as the solvent furnished a final solution of pure **6.** S, 18.2. Found; C, 75.0; H, 7.0; S, 17.8.

Selected spectroscopic data for ¹³C-enriched 6*: ¹H NMR

MHz, C₆D₆, 20 °C) δ 2.80 (d, ²J_{Hc} = 6.3 Hz, CH₂); ¹³C{¹H} N

(C₆D₆, 20 °C) δ 2.80 (d, ²J_{Hc}

A similar procedure using an acetone-water mixture a solvent was followed for the reaction of 4 with HCl. The evolved $SH₂$ was clearly identified by its characteristic unpleasant odor. NiCl₂-
(dmpe) and 6 were obtained in quantitative yield.

Reaction of (bipy)Ni(CH₂CMe₂-o-C₆H₄) (1c) with Excess CS₂. A representative experiment was as follows. Complex 1c (0.17 g, **0.5** mmol) was dissolved in 25 mL of acetone, and the resulting dark blue solution was titrated at room temperature with a 1 M solution of CS_2 in toluene, with stirring, until the original color was completely discharged (an excess). The mixture was stirred overnight and then filtered. The filtrate was evaporated *in vacuo* and the oily residue taken up in petroleum ether. Evaporation of this red-purple solution furnished an oil which slowly crystallized in the refrigerator. The resulting red needles were identified by IR and NMR spectroscopies as the dithiolactone **2:** yield, 70%.

In some experiments, and by leaving the reaction mixture undisturbed, a brown microcrystalline material with an IR spectrum which matched that corresponding to an authenticated sample of $(bipy)Ni(CS₂)²¹$ could be obtained. The microanalytical data also agreed with this composition.

Reaction of $Me_3P_2Ni(CH_2CMe_2-oC_6H_4)$ (1a) with PhNCS. NMR monitoring of this reaction revealed that the inserted

 $\overline{\text{product (Me}_{3}\text{P})_{2}\text{Ni}(\text{CH}_{2}\text{CMe}_{2}\text{-o-C}_{6}\text{H}_{4}\text{C}(\text{=NPh})\text{S})}$ **(E)** was formed quantitatively at -80 "C. The following method allows the isolation of crude **E** as a solid material. A cold $(-90 °C)$ solution of the metalacycle 1a (0.34 g, 1 mmol) in Et₂O (15 mL) was treated with 1 mL of a 1 M PhNCS solution in toluene. After the solution was stirred for a few minutes at this temperature, an orange material precipitated. The resulting mixture was filtered and the crude product washed with Et₂O at -40 °C and dried *in vacuo* at this temperature: yield, 75 % , Compound **E** is unstable both in the solid state and in solution at room temperature: $^{31}P{^1H}$ NMR (CD₂Cl₂ -80 °C) AX spin system, $\delta_A = -14.5$, $\delta_X = -1.2$, 22 Hz , PMe₃), 16.4 (dd, ¹J_{CP} = 28 Hz, ³J_{CP} = 4 Hz, PMe₃), 31.8, 42.4 (CMe₂), 33.7 (dd, ²J_{CP} = 68, 21 Hz, Ni-CH₂), 120-130 (aromatic C-H carbons), 146.1, 146.8, 153.6 **(s,** aromatic quaternary carbons), 179.7 (d, ${}^{3}J_{CP} = 12$ Hz, C=N). As described in the Results section, this compound readily forms a tris- (trimethylphosphine) species, **F,** in the presence of excess of PMe3 at low temperatures: ${}^{31}P{^1H}$ NMR (CD₂Cl₂, -90 °C) AMX spin system, $\delta_A = -35.8$, $\delta_M = -11.6$, $\delta_\chi = -6.7$, $^2J_{AM} = 193$, $^2J_{MX} = 41$ Hz; ¹³C{¹H} NMR (CD₂Cl₂, -90^o°C) δ 183.6 (d, ³J_{CP} = 21 Hz, $C=N$). $^{2}J_{AX}$ = 28 Hz; ¹³C{¹H} NMR (CD₂Cl₂, -80 °C) δ 14.5 (d, ¹J_{CP} =

If a solution of complex **E** is allowed to decompose completely at 20 "C, low yields (ca. **35%**) of the imino thioether **7** could be

obtained after workup. Compound **7** was purified by crystallization from petroleum ether: ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.47 (s, CMe₂), 2.92 (s, CH₂), 6.9-8.2 (aromatics); ¹³C{¹H} NMR (CDCl₃, 20 °C) δ 28.3 (CMe₂), 34.2 (CMe₂), 39.9 (CH₂), 119.8, 124.0, 124.4, 126.7, 127.4, 129.1, 131.2 (2:1:1:1:1:2:1 ratio, aromatic C-H carbons), 131.7,146.4,151.2 (aromatic quaternary carbons), 160.9 (C=N); IR (Nujol mull) ν (C=N) 1575 s. Anal. Calcd for $C_{17}H_{17}NS$: C, 76.4; H, 6.4; N, 5.2. Found: C, 76.2; H, 6.4; N, 5.2.

 $\overline{\text{Synthesis of (Me}_3P)_2\text{Ni}(CH_2CMe_2 \cdot \sigma C_6H_4C(=0)\text{NPh}})$ (8). To a stirred solution of $1a$ (0.34 g, 1 mmol) in Et₂O (20 mL) was added 110 μ L (1 mmol) of PhNCO. In a few minutes complex **8** started to precipitate as a yellow microcrystalline solid. The mixture was stirred for an additional 3-h period to complete the precipitation. Filtration, washing with $Et₂O$, and drying furnished the crude product in 75 % yield. The analytical sample was crystallized from CH_2Cl_2 -toluene mixtures: ¹H NMR (200) MHz, CD_3COCD_3 , 20 °C) δ 0.89 (d, ²J_{HP} = 7.2 Hz, 9 H, PMe₃), 1.30 (d, *2J~p* = 9.0 Hz, 9 H, PMes), 1.36, 1.40 (s, 3 H and 3 H, CMe₂), 0.87 (dd, ${}^{3}J_{\text{HP}} = 28.8 \text{ Hz}$, ${}^{2}J_{\text{HH}} = 9.0 \text{ Hz}$, 1 H, CH_AH_B), 1.81 (dd, ${}^{3}J_{\text{HP}} = 8.5$ Hz, 1 H, CH_AH_B), 6.8-8.8 (m aromatics); ^{31}P {¹H} NMR (CD₂Cl₂, 20 °C) AX spin system, $\delta_A = -11.5$, $\delta_X =$ $= 15$ Hz, PMe₃), 16.1 (dd, $^{1}J_{CP} = 29$ Hz, $^{3}J_{CP} = 4$ Hz, PMe₃), 31.4 $(dd, {}^2J_{CP} = 65, 27 \text{ Hz}, \text{Ni-CH}_2, 33.3, 34.8 \text{ (s, } CMe_2), 38.8 \text{ (s, } CMe_2),$ 119.0-128.0 (aromatic C-H carbons), 143.3, 146.8, 149.6 *(8,* aromatic quaternary carbons), 171.0 (s, C=O); IR (Nujol mull) complex pattern at 1605-1555 cm-l. Anal. Calcd for $C_{23}H_{35}NOP_2Ni: C, 59.7; H, 7.6; N, 3.0. Found: C, 58.9; H, 7.9;$ N, 3.1. -2.9 , $^{2}J_{AX}$ = 16 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 14.7 (d, ¹J_{CP}

The tris(trimethy1phosphine) species *G,* formed when complex **8** is reacted with an excess of PMe3 at low temperatures, is a fluxional species even at -80 °C: $^{31}P_{1}^{1}H_{1}^{1}NMR$ (CD₂Cl₂, -80 °C) δ -10.0 (br s, 2 PMe₃), -1.7 (br s, 1 PMe₃); ¹³C{¹H} NMR (CD₂Cl₂,

 $\text{Synthesis of } (\text{Me}_3\text{P})_2\text{Ni}(\text{CH}_2\text{C}\text{Me}_2 \cdot o \cdot \text{C}_6\text{H}_4\text{C} (=N\text{C}_6\text{H}_4 \cdot p \cdot o \cdot \text{C}_6\text{H}_4)$

 $Me)NC₆H₄$ - p -Me) (9). This complex was prepared according to a procedure very similar to that described for **8.** As **9** is a more soluble species, the filtration step was carried out at -30 °C. The analytical sample was recrystallized from $CH_2Cl_2\text{-}CH_3COCH_3$ as yellow prisms: ¹H NMR (200 MHz, CD_2Cl_2 , 20 °C) δ 0.96 (d, ²J_{HP} $= 6.9$ Hz, 9 H, PMe₃), 1.15 (d, ²J_{HP} = 8.0 Hz, 9 H, PMe₃), 1.46, 1.63 (s, 3 H and 3 H, CMe₂), 0.77 (dd, ${}^{3}J_{\text{HP}} = 28.7 \text{ Hz}$, ${}^{2}J_{\text{HH}} = 8.7$ $(s, 3 H and 3 H, 2 Ar-Me), 6.8–8.6 (m, aromatics);$ 31P{1H} NMR (CD₂Cl₂, 20 °C) AX spin system, $\delta_A = -12.5$, $\delta_X = -4.9$, ${}^2J_{AX} =$ 14.5 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20^{$^{\circ}$}C) δ 15.4 (d, ¹J_{CP} = 18 Hz, PMe₃), 16.4 (dd, ¹J_{CP} = 29 Hz, ³J_{CP} = 4 Hz, PMe₃), 20.6, 20.7 (s, C_{ar} -*Me*), 31.4 (dd, ²J_{CP} = 65 Hz, 27 Hz, Ni-CH₂), 34.1, 34.2 **(s**, CMe₂), 39.6 (d, ${}^{3}J_{CP} = 3$ Hz, CMe₂), 122-131 (aromatic C-H carbons), 127.2,138.1,149.0,149.4,151.5 (s, aromatic quaternary carbons), 159.5 (s, $C=N$); IR (Nujol mull) complex pattern at 1540-1450 cm⁻¹. Anal. Calcd for $C_{31}H_{44}N_2P_2Ni$: C, 65.8; H, 7.8; N, 4.9. Found: C, 64.5; H, 8.1; N, 4.8. σ -10.0 (br s, 2 PMe₃), -1.7
-80 °C) δ 171.1 (s, C=O).
Synthesis of (Me₃P)
Me)NC₆H₄-p-Me) (9). The Hz , 1 H, C H_AH_B), 1.68 (t, ${}^{3}J_{HP} = 8.3$ Hz, 1 H, C H_AH_B), 2.18, 2.31

Synthesis of $(PMe₃)(CNBu^t)Ni(CH₂CMe₂·o-C₆H₄)$ **(10).** $CNBu^{t}$ (1 mL of a 1 M Et₂O solution) was added to a stirred, cold $(-60 \degree C)$ solution of 1a $(0.34 \text{ g}, 1 \text{ mmol})$ in $Et_2O(15 \text{ mL})$. The resulting mixture was allowed to reach room temperature, and the volatiles were removed under vacuum. The yellow residue was washed with cold petroleum ether and dried. The yield of crude product was quantitative. The analytical sample was crystallized from Et₂O-petroleum ether mixtures: ¹H NMR (200 MHz, C_6D_6 , 20 °C) δ 0.96 **(d,** $^2J_{HP}$ = 7.4 Hz, 9 H, PMe₃), 0.99 **(s**, 9 H, CMe₃), 1.57 (s, 6 H, CMe₂), 1.60 (br s, 2 H, Ni-CH₂), 7.1-7.9 (m, aromatics); ${}^{31}P{^1H}$ } NMR (C₆D₆, 20 °C) δ -10.0; ${}^{13}C{^1H}$ } NMR $(C_6D_6, 20 °C)$ δ 14.8 *(d, ¹J_{CP}* = 23 Hz, PMe₃), 29.9 *(s, CMe₃)*, 35.2 **(s,** CMez), 49.8 (s, CHz), 50.7 (s, CMez), 55.7 (s, CMea), 121.9, 123.6,123.7,139.8 (s, aromatic C-H carbons), 153.0 (br s, CNBut), 168.0 (br s, Ni-C_{ar}), 168.8 (s, quaternary aromatic carbon); ¹³C{¹H} NMR (CD₃COCD₃, -70 °C) δ 49.8 (d, ²J_{CP} = 19 Hz, CH₂), 50.8

(d, ${}^{3}J_{CP} = 10$ Hz, CMe₂), 124.3 (d, $J_{CP} = 6$ Hz, aromatic C-H carbon), 168.1 (d, $^{2}J_{\rm CP}$ = 83 Hz, Ni-C_{ar}); IR (Nujol mull) $\nu(\rm C= \rm N)$ 2120 s. Anal. Calcd for $C_{18}H_{30}NPN$: C, 61.7; H, 8.6. Found: C, 61.7; H, 8.6.

 $\text{Synthesis of (Me}_3\text{P}_2\text{Ni}(\eta^2\text{-S}=\text{CSC}(\text{=}0)\text{CH}_2\text{CMe}_2\text{-}o\text{C}_6\text{H}_4)$ **(Ila). Method a.** According to a procedure already described, complex A (2 mmol) was prepared in $situ$ at -80 °C in Et₂O (30 mmol) mL), and CO was bubbled through the resulting solution while the temperature was allowed to rise slowly. The initial dark green color changed to orange during this process, and a yellow material precipitated. The volume of the solution was reduced to **5** mL at room temperature, and the mixture was cooled to -30 "C. Complex **lla** was filtered and dried in *uucuo:* yield, 95%. The analytical sample was crystallized from toluene: ¹H NMR (200 MHz, CD_2Cl_2 , 20 °C) δ 1.30 (d, $^2J_{HP}$ = 7.8 Hz, 9 H, PMe₃), 1.41 (d, ${}^{2}J_{HP}$ = 7.6 Hz, 9 H, PMe₃), 1.39, 1.42 (s, 3 H and 3 H, CMe_2), 2.23, 5.16 (d, ${}^2J_{HH}$ = 12.6 Hz, 1 H and 1 H, diastereotopic CH₂ protons), 6.9-7.8 (m, aromatics); ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR (CD₂Cl₂, 20 °C) δ -11.0 (s, 1 PMe₃), -10.5 (s, 1 PMe₃); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 16.7 (d, ¹J_{CP} = 26 Hz, PMe₃), 17.8 (d, ¹J_{CP} = 24 Hz, PMe₃), 29.8, 36.2 (s, CMe₂), 38.5 (s, CMe₂), 54.7 (s, CH₂), 65.0 (d, **5** Hz, aromatic C-H carbons), 144.7,149.5 **(s,** aromatic quaternary carbons), 208.0 (s, C=0); IR (Nujol mull) ν (C=0) 1650 s; M_w (Signer's method, CH_2Cl_2 , N_2) calcd for $C_{18}H_{30}OP_2S_2Ni$ 471, found 462. Anal. Calcd for C₁₈H₃₀OP₂S₂Ni: C, 48.3; H, 6.7; S, 14.3. Found: C, 48.2; H, 7.0; S, 14.3. $^{2}J_{CP}$ = 27 Hz, C=S), 124.1, 126.0, 129.1, 132.3 *(s, s, s, d, J_{CP}* =

For a ¹³CS₂-enriched sample, $11a^*$: ³¹P{¹H} NMR (CD₂Cl₂, -70 °C) δ -9.3 (s, 1 PMe₃), -9.2 (d, ²J_{PC} = 30 Hz, 1 PMe₃); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 149.5 (d, ¹J_{CC} = 54 Hz, S₂*CC_{ar}).

Method b. Through a solution of $1a$ $(0.34 g, 1 mmol)$ in $Et₂O$ (20 mL), cooled at -90 "C was gently bubbled carbon monoxide for 2-3 min, the color changing to yellow after this treatment. One equivalent of CS_2 was immediately syringed onto the reaction mixture, and the system was closed and evacuated. The temperature was slowly allowed to rise while the flask was maintained under dynamic vacuum. The precipitated material was treated as in method a: yield, 60%.

Synthesis of $(Me_3P)_2Ni(\eta^2-S=CSC(=NBu^t)CH_2CMe₂·o-$

 \dot{C}_6H_4) (12a). According to a procedure similar to that described for synthesis of complex **lla,** the reaction of **A** with 1 equiv of CNBut furnished complex **12a** as a yellow solid. Crystallization could be effected from $Et_2O-CH_3COCH_3$: yield, 80% ; ¹H NMR PMe₃), 1.34 (d, $^{2}J_{HP}$ = 7.4 Hz, 9 H, PMe₃), 1.38, 1.42 (s, 3 H and 3 H, CMe₂), 2.14, 4.84 (d, $^{2}J_{HH}$ = 13.0 Hz, 1 H and 1 H, diastereotopic CH_2 protons), 6.8-7.9 (m, aromatics); ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR $(CD_2Cl_2, 20 °C) \delta -8.8$ (s, 1 PMe₃), -8.5 (s, 1 PMe₃); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 16.3 (d, ¹J_{CP} = 25 Hz, PMe₃), 17.4 (d, ¹J_{CP} = 24Hz,PMe3),28.9 (s,CMe3),29.3,36.0 (s,CMe2),39.3 (s,CMe2), aromatic C-H carbons), 145.3, 150.2 **(s,** aromatic quaternary carbons), 162.7 (s, C=N) (the C=S carbon was not observed); IR (Nujol mull) ν (C=N) 1590 s. Anal. Calcd for C₂₂H₃₉NP₂S₂-Ni: C, 52.6; H, 7.8; S, 12.7. Found: C, 52.7; H, 7.9; *S,* 12.6. (200 MHz, CD₃COCD₃, 20 °C) δ 1.28 (d, ²J_{HP} = 9.4 Hz, 9 H, 51.6 (s, CH₂), 123.2, 124.9, 128.4, 131.2 (s, s, s, d, $J_{CP} = 5$ Hz,

Synthesis of the dmpe Derivatives llb and 12b. The addition of 1 equiv of dmpe to room temperature solutions of **1 la** and **12a** furnished the desired substituted derivatives. Complex **11 b** was recrystallized from acetone as yellow plates in 80% yield, while the related compound **12b** was obtained as yellow crystals from Et₂O (yield, 90%). 11b: ¹H NMR (200 MHz, CD_3COCD_3 , 20 °C) δ 1.40 (d, ² J_{HP} = 8.8 Hz, 3 H, P-Me), 1.41 (d, ² J_{HP} = 8.5 Hz, 3 H, P-Me), 1.50 (d, $^{2}J_{\text{HP}} = 8.6$ Hz, 3 H, P-Me), 1.53 (d, $^{2}J_{\text{HP}}$ $= 8.4$ Hz, 3 H, P-Me), 1.37, 1.39 (s, 3 H and 3 H, CMe₂), 1.90 (m, P-CH₂), 2.15, 5.41 (d, $^{2}J_{HH}$ = 12.6 Hz, 1 H and 1 H, diastereotopic $CH₂$ protons), 6.9-7.6 (m, aromatics); $^{31}P{^1H}$ NMR (CD₂Cl₂, 20 °C) AX spin system, $\delta_A = 29.8$, $\delta_X = 36.2$, $^2J_{AX} = 17$ Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 12-15 (m, P-Me), 26.0 (dd, ¹J_{CP} = 28 Hz, $^{2}J_{\text{CP}}$ = 14 Hz, P-CH₂), 29.5 (dd, $^{1}J_{\text{CP}}$ = 21 Hz, $^{2}J_{\text{CP}}$ = 18 Hz,

 $P\text{-}CH_2$), 29.9, 35.7 **(s, CMe₂)**, 38.1 **(s, CMe₂)**, 54.7 **(s, C**(=O)CH₂), 123.3, 124.9, 128.6, 131.2 **(s,** s, s, t, Jcp = **5** Hz, aromatic C-H carbons), 145.3, 150.2, (d, $J_{CP} = 6$, 4 Hz, aromatic quaternary carbons), 208.8 (dd, $4J_{CP} = 12, 7$ Hz, C=0). The C=S carbon was not observed; IR (Nujol mull) v(C=O) 1640 s. **12b:** 1H NMR P-Me), 1.45 (d, $^{2}J_{\text{HP}}$ = 9.5 Hz, 3 H, P-Me), 1.49 (d, $^{2}J_{\text{HP}}$ = 8.6 Hz, 3 H, P-Me), 1.50 (d, ${}^{2}J_{HP}$ = 8.2 Hz, 3 H, P-Me), 1.30, 1.38 (s, 3 H and 3 H, CMe₂), 1.90 (m, P-CH₂), 2.14, 5.07 (d, ²J_{HH} = 12.8 Hz, 1 H and 1 H, diastereotopic CH2 protons), 6.6-7.6 (m, aromatics); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) AX spin system, δ_A = 29.3, δ_X = 35.0, $^{2}J_{AX}$ = 20 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 13-15 (m, P-Me), 27.0 (dd, ${}^{1}J_{CP} = 29$ Hz, ${}^{2}J_{CP} = 13$ Hz, P-CH₂), 29.0 (dd, $^{1}J_{\text{CP}} = 31 \text{ Hz}, \, ^4J_{\text{CP}} = 12 \text{ Hz}, \, \text{P-CH}_2$), 28.7 **(s, CMe₃)**, 29.4, 35.7 **(s,** CMe₂), 39.0 **(s, CMe₂)**, 50.7 **(s, C**(=NR)CH₂), 54.3 **(s, CMe**₃), 123.3, 124.9, 128.5, 131.1 (s, s, s, dd, $J_{CP} = 4$, 3 Hz, aromatic C-H carbons), 145.2, 150.8 (d, $J_{CP} = 4$, 3 Hz, aromatic quaternary carbons), 163.4 (t, ${}^4J_{CP} = 6$ Hz, C=N) (the C=S carbon was not observed); IR (Nujol mull) ν (C=N) 1610 s. Anal. Calcd for $C_{22}H_{37}NP_2S_2Ni: C, 53.0; H, 7.4; N, 2.8. Found: C, 52.9; H, 7.5;$ N, 2.6. (200 MHz, CD_3COCD_3 , 20 °C) δ 1.35 (d, ²J_{HP} = 10 Hz, 3 H,

ReactionofComplex IlbwithBrz. SynthesisoftheCyclic Thione Derivative S= $\overline{\text{CSC}(-0)\text{CH}_2\text{CMe}_2\text{-}o\text{C}_6\text{H}_4}$ **(13).** To a cooled (-60 "C) solution of complex **llb** (0.35 g, 0.8 mmol) in Et₂O (20 mL) was added, with stirring, 1 equiv of Br₂ (8 mL of a 1 M solution in CH_2Cl_2). A yellow precipitate of $NiBr_2(dmpe)$ was immediately formed. After the solution was stirred for 10 min at room temperature, the resulting mixture was filtered and the filtrate taken to dryness. The residue was extracted with petroleum ether and the solvent evaporated. This cycle was repeated twice or until no more yellow NiBr₂(dmpe) remained. Compound **13** was isolated as a blue, very unstable, oil: yield, 60%, ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.09 (s, 6 H, CMe₂), 2.83 (s, 2 H, CH₂), 7.0-7.8 (m, aromatics); ¹³C{¹H} NMR (CDCl₃, $20 °C$) δ 30.7 (CMe₂), 37.1 (CMe₂), 58.6 (CH₂), 126.4, 126.8, 131.7, 132.1 (aromatic C-H carbons), 142.2,148.3 (aromatic quaternary carbons), 196.4 (C=O), 231.3 (C=S); IR (Neat film) ν (C=O) 1680 s, ν (C=S) 1030 s; MS m/e 236.

Reaction of Complex 12b with Br₂. Synthesis of S=CSC-

 $(=\mathbf{N} \mathbf{B} \mathbf{u}^{\dagger}) \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{M} \mathbf{e}_{2} \cdot \mathbf{o} \cdot \mathbf{C}_{6} \mathbf{H}_{4}$ (14). According to the method described above for the synthesis of **13,** the related cyclic compound **14** was obtained as red crystals in 70% yield, mp 61- 1.26 (s, 6 H, CMe₂), 2.87 (s, 2 H, CH₂), $6.9-7.1$ (m, aromatics); ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 29.6 (CMe₃), 31.2 (CMe₂), 37.7 (CMe₂), 57.4 (CMe₃), 60.4 (CH₂), 125.6, 126.3, 130.5, 130.8 (aromatic C-H carbons), 142.3, 148.5 (aromatic quaternary carbons); IR (Nujol mull) ν (C=N) 1644 s, 1629 s, ν (C=S) 1021 s; MS m/e 291. Anal. Calcd for $C_{16}H_{21}NS_2$: C, 66.0; H, 7.2; N, 4.8. Found: C, 66.0; H, 7.4; N, 4.7. 64 °C: ¹H NMR (200 MHz, C₆D₆, 20 °C) δ 1.09 (s, 9 H, CMe₃),

Reaction of Complex D with Carbon Monoxide. Syn-

thesis of the Bis(acyl)sulfide $O=CSC(=O)CH₂CMe₂-\alpha C₆H₄$ (15). Complex **D** was prepared in situ at -90 "C by reacting the nickelacycle $1a$ (0.34 g, 1 mmol) in $Et₂O$ (30 mL) with 1 equiv of COS (0.8 mL of a 1.2 M solution in THF). The resulting dark red solution was treated with carbon monoxide and the cooling bath removed. After the solution reached room temperature, the volatiles were removed in vacuo and the residue dissolved in a mixture of EtzO-petroleum ether **(1:l).** Filtration, concentration, and cooling at -30 "C furnished compound **15** as colorless crystals that were purified by recrystallization from a petroleum ether-Et₂O (4:1) mixture: yield, 57%, mp 69-70 °C; ¹H NMR (200 MHz, CDCl,, 20 "C) 6 1.50 (s,6 H, CMez), 3.13 (a, 2 H, CH2), 7.3-7.5 (m, aromatics); ¹³C{¹H} NMR (CDCl₃, 20 °C) δ 31.3 (CMe₂), 37.5 (CMe₂), 59.0 (CH₂), 127.2, 127.6, 130.0, 132.7 (aromatic C-H carbons), 139.1, 145.5 (aromatic quaternary carbons), 190.5 (C_{ar} -C=O), 195.5 (CH₂-C=O, gated spectrum: t, ²J_{CH} = 6 Hz); IR (Nujol mull) ν (C=O) 1710 s, 1660 s; MS m/e 220. Anal. Calcd for $C_{12}H_{12}O_2S$: C, 65.4; H, 5.5. Found: C, 64.9; H, 5.6.

Synthesis of PhN=CSC(=O)CH₂CMe₂-o-C₆H₄ (16). The title compound was obtained from complex **E** and CO according to a procedure similar to that presented above for the synthesis of **15.** Compound **16** gave colorless crystals from petroleum ether-Et₂O mixtures (3:1): mp 130-132 °C, yield, 93%; ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.07 (s, 6 H, CMe₂), 2.85 (s, 2 H, CH₂), 6.5-7.1 **(m,aromatics);19C{1H}NMR(CDC13,20"C)** 632.2(CMez), 38.9 (CMe₂), 57.5 (CH₂), 119.7, 125.4, 126.8, 129.0, 129.2, 130.4, 130.7 (2:1:1:1:2:1:1 ratio, aromatic C-H carbons), 139.4, 144.4, 149.5 (aromatic quaternary carbons), 157.5 (C=N, gated spectrum: d, ${}^{3}J_{\text{CH}} = 4$ Hz), 195.2 (C=0, gated spectrum: t, ${}^{3}J_{\text{CH}} =$ 5 Hz); IR (Nujol mull) ν (C=O) 1675 s, ν (C=N) 1590 s; MS m/e 295. Anal. Calcd for C₁₈H₁₇NOS: C, 73.2; H, 5.8; N, 4.7. Found: C, 72.9; H, 5.9; N, 4.6.

Synthesis of the η^2 -Iminoacyl Complexes 17 and 18. Complex **D** (1 mmol) was generated *in situ* as described in the synthesis of **15.** At -80 "C, 0.11 mL (1 mmol) of CNBut was added *via* syringe, and the appearance of an orange precipitate was noticed. This solid completely dissolved upon increasing the temperature, and at 0° C, a pale yellow solution was obtained. The solution was taken to dryness and the residue crystallized from a 4:1 Et₂O-petroleum ether mixture. The yield of orange **17 was 62%: ¹H NMR (200 MHz, CD₃COCD₃, 20 °C) δ 1.19 (8,** 9 H, CMe₃), 1.25 *(d, ²J_{HP}* = 7.3 Hz, 9 H, PMe₃), 1.52, 1.83 *(s, 3*) H and 3 H, CMe₂), 2.68, 2.78 (AB spin system, $^{2}J_{\text{HH}} = 17.5 \text{ Hz}$, 1 H and 1 H, diastereotopic CH2 protons), 6.8-7.5 (m, aromatics); °C) δ 15.2 (d, ¹J_{CP} = 24 Hz, PMe₃), 27.5, 31.4 (s, CMe₂), 28.9 (s, $CMe₃$, 38.3 (s, $CMe₂$), 40.8 (s, $CH₂$), 46.2 (s, $CMe₃$), 125.4, 126.1, 126.2, 126.7 (s, aromatic C-H carbons), 176.2 (d, $^{2}J_{CP}$ = 63 Hz, C=N), 216.2 (d, ${}^{3}J_{CP}$ = 17 Hz, C=O); IR (Nujol mull) ν (C=N) 1725 s, ν (C=O) 1600 s. Anal. Calcd for C₁₉H₃₀NOPSNi: C, 55.9; H, 7.4; N, 3.4. Found: C, 55.4; H, 7.5; N, 3.4. 31P{¹H} NMR (CD₂Cl₂, 20 °C) δ -13.5; ¹³C{¹H} NMR (CD₂Cl₂, -70

A similar procedure allowed the synthesis of the η^2 -iminoacyl complex **18.** In this case, after the reaction mixture was warmed at 0^oC, the volume was reduced to 10 mL and the solution cooled to -30 °C. A quantitative yield of orange crystals was obtained: 9 H, PMe₃), 1.19 (s, 9 H, CMe₃), 1.58, 2.02 (s, 3 H and 3 H, CMe₂), 2.79, 2.89 (AB spin system *'JHH* = 17.1 Hz, 1 H and 1 H, diastereotopic CH₂ protons), 6.8-7.5 (m, aromatics); ³¹P{¹H} NMR $1J_{\text{CP}} = 24$ Hz, PMe₃), 28.6, 31.7 (s, CMe₂), 29.0, (s, CMe₃), 39.0 (s, CMe₂), 41.9 (s, CH₂), 44.0 (s, CMe₃), 119-130 (aromatic C-H carbons), 139.6, 147.5, 153.1 **(e,** aromatic quaternary carbons), 176.6 (d, ${}^2J_{CP}$ = 64 Hz, C=NBu^t), 182.0 (d, ${}^3J_{CP}$ = 18 Hz, C=NPh); IR (Nujol mull) ν (C=NBu^t) 1720 s, ν (C=NPh) 1570 s; M_w (Signer's method, CH_2Cl_2 , N_2) calcd for $C_{25}H_{35}N_2PSN$ i 485, found 471. Anal. Calcd for C₂₅H₃₅N₂PSNi: C, 61.9; H, 7.2; N, 6.6. Found: C, 62.5; H, 7.3; N, 6.4. ¹H NMR (200 MHz, CD₃COCD₃, 20 °C) δ 1.15 (d, ²J_{HP} = 7.3 Hz, (CD₂Cl₂, 20 °C) δ - 13.9; ¹³C{¹H} NMR (CD₂Cl₂, - 70 °C) δ 15.3 (d,

Reaction of the Iminoacyl Complexes 17 and 18 with CO.

Synthesis of the Heterocycles $X = \overbrace{CSC(=NBu^t)CH_2}^{CME_2-C4H_2}$ **
** $\overbrace{OC_4H_4(X=0.19; X=NPh, 20)}^{CATE_4}$ **.** Carbon monoxide was bubbled

 $e^{-C_6H_4}$ (X = 0, 19; X = NPh, 20). Carbon monoxide was bubbled at room temperature through a solution of complex **17** (0.3 g, 0.6 mmol) in $25 \text{ mL of } \text{Et}_2\text{O}-\text{CH}_3\text{COCH}_3(2:1)$ for a few minutes. The resulting colorless solution was then taken to dryness and the residue heated (40 "C) under vacuum to eliminate the volatile Ni(CO)₃(PMe₃). A cycle of extraction with petroleum ether, filtration, and evaporation was repeated three times. The final solution was concentrated to a volume of ca. 3 mL and cooled to -30 "C to give compound **19** as large colorless crystals: mp 60-64 $°C$, yield, 80%; ¹H NMR (200 MHz, C_6D_6 , 20 °C) δ 1.15 (s, 9 H, $CMe₃$), 1.45 (s, 6 H, CMe₂), 3.41 (s, 2 H, CH₂), 6.9-7.8 (m, aromatics); ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 29.1 (CMe₃), 31.8 (CMe₂), 38.0 (CMe₂), 57.1 (CMe₃), 59.1 (CH₂), 126.5, 126.9, 128.9, 131.3 (aromatic C-H carbons), 140.2, 145.5 (aromatic quaternary carbons); IR (Nujol mull) ν (C=O) 1670 s, ν (C=N) 1640 s, MS *m/e* 275. Anal. Calcd for C₁₆H₂₁NOS: C, 69.8; H, 7.6; N, 5.1. Found: C, 69.7; H, 7.6; N, 5.0.

Table 5. Fractional Coordinates for 3a

	гаріе э. Fractional Coordinates for 3a				
atom	X/A	Y/B	Z/C	U_{eq} , Å ²	
Ni	0.3498(1)	0.4026(1)	0.4299(1)	45(0)	
P1	0.4208(1)	0.3698(3)	0.3419(2)	52(1)	
P ₂	0.3365(1)	0.1957(3)	0.4880(2)	53(1)	
S1	0.3260(1)	0.6248(3)	0.4064(2)	64(1)	
S2	0.3275(1)	0.5408(4)	0.6161(2)	82(1)	
o	0.5000(0)	0.5000(0)	0.0000(0)	140(6)	
C ₁	0.2889(5)	0.5198(10)	0.4813(6)	49(3)	
C ₂	0.2628(8)	0.6730(21)	0.6262(12)	135(14)	
C ₃	0.1902(5)	0.6243(12)	0.5957(7)	59(4)	
C ₄	0.1634(5)	0.5440(10)	0.4936(6)	48(3)	
C ₅	0.2091(5)	0.5004(9)	0.4424(6)	43(3)	
C ₆	0.1800(5)	0.4293(10)	0.3486(7)	55(4)	
C ₇	0.1077(6)	0.4019(12)	0.3078(7)	65(4)	
C8	0.0639(6)	0.4442(14)	0.3587(9)	82(5)	
C9	0.0908(5)	0.5156(14)	0.4497(8)	70(5)	
C10	0.1437(9)	0.7457(19)	0.5998(13)	131(0)	
C11	0.1864(9)	0.5248(19)	0.6797(13)	131(0)	
C12	0.3706(6)	0.3336(15)	0.2098(8)	86(6)	
C13	0.4902(6)	0.2333(13)	0.3711(10)	82(6)	
C14	0.4741(6)	0.5244(12)	0.3355(9)	76(5)	
C15	0.2613(7)	0.1634(13)	0.5315(9)	90(6)	
C16	0.4093(7)	0.1366(14)	0.5979(10)	98(6)	
C17	0.3245(8)	0.0474(13)	0.4008(9)	93(7)	
C18 C19	0.5513(9)	0.4002(21) 0.3304(20)	0.0361(14) 0.1106(14)	139(0)	
	0.5783(9)			137(0)	
Fractional Coordinates for 4 Table 6.					
atom	X/A	Y/B	Z/C	$U_{\rm eq}$ a Å ²	
Ni	0.02213(5)	0.37449(4)	0.91190(2)	439(2)	
P1	$-0.14577(10)$	0.37535(10)	0.88002(5)	565(4)	
P2	-0.047 24(10)	0.317 95(9)	0.98435(5)	504(4)	
S1	0.19192(9)	0.391 18(8)	0.94219(4)	458(4)	
S2	0.10533(10)	0.42610(9)	0.84052(5)	510(4)	
C ₁	0.24024(34)	0.432 89(28)	0.876 91(16)	390(13)	
C ₂	0.294 57(39)	0.53167(29)	0.878 04(19)	492(15)	
C3	0.38070(39)	0.535 99(30)	0.83205(19)	486(15)	
C ₄	0.41044(35)	0.431 76(29)	0.82651(17)	418(14)	
C5	0.33067(34)	0.375 12(29)	0.850 81(16)	387(13)	
C6	0.33869(41)	0.27689(29)	0.847 94(19)	518(16)	
C ₇	0.42790(46)	0.236 49(34)	0.82048(21)	614(19)	
C8	0.50723(42)	0.292 39(36)	0.796 36(20)	606(18)	
C9	0.49971(39)	0.391 40(34)	0.798 83(19)	562(17)	
C10	0.48182(48)	0.598 43(36)	0.84501(25)	802(22)	
C11	0.32609(51)	0.570 76(36)	0.780 19(21)	727(21)	
C12	$-0.17524(48)$	0.322 18(49)	0.81630(24)	879(25)	
C13	$-0.20545(50)$	0.492 21 (45)	0.874 00(27)	885(25)	
C14	$-0.239990(44)$	0.315 46(46)	0.927 21(24) 0.98351(22)	811(23)	
C15 C16	$-0.19988(42)$ 0.00061(50)	0.33435(40) 0.365 96(39)	1.046 78(19)	696(20)	
C17	$-0.02884(46)$	0.19117(35)	0.992 25(23)	730(20) 702(20)	

 $^{a}U_{eq} = (1/3)\sum(U_{ij}a_{i}^{*} \cdot a_{j}^{*} \cdot a_{i} \cdot a_{j} \cos(a_{i}a_{j})) \times 10^{4}$.

According to a similar procedure but using complex **18** as the starting material, the bis(imino) compound **20** was obtained. In this case, the isolation of the pure product was facilitated by treatment of the crude petroleum ether solution with $CS₂$ to precipitate soluble nickel carbonyls. Final purification was achieved by flash chromatography using petroleum ether-But-OMe (24:l) as eluent: yield of the pale yellow oily product, 70% ; ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.18 (s, 9 H, CMe₃), 1.47 (s, 6 H, CMe₂), 3.12 (s, 2 H, CH₂), 6.9-7.5 (m, aromatics); ¹³C{¹H} NMR (CDCl₃, 20 °C) δ 28.7 (CMe₃), 32.2 (CMe₂), 39.7 (CMe₂), 56.4 (CHz), 56.6 (CMes), 119.7, 124.8, 126.3, 128.4, 128.8, 129.7 (2:1:1:1:2:2 ratio, aromatic C-H carbons), 140.3, 145.6, 150.2 (aromatic quaternary carbons), 150.0, 160.5 (C=N); IR (neat film) u(C=N) 1635 s, 1590 s, MS *mle* 350.

Synthesis of $X=CN(Ar)C(=0)CH₂CMe₂· σ -C₆H₄ Deriv$ **atives** $(Ar = Ph, X = 0, 21; Ar = C_6H_4-p$ **-Me,** $X = C_6H_4-p$ **-Me, 22).** Complex **8** (0.42 g, 0.9 mmol) was dissolved in 30 mL of THF, and through this solution carbon monoxide was bubbled at room temperature for 5 min. The now pale yellow mixture was evaporated under reduced pressure and the residue extracted with Et₂O. The solution was filtered, concentrated, and kept at

 $^{a}U_{eq} = (^{1}/_{3})\sum(U_{ij}a_{i}^{*}\cdot a_{j}^{*}\cdot a_{i}^{*}a_{j} \cos(a_{i}a_{j})) \times 10^{4}.$

-30 "C. Compound 21 separated as colorless crystals: mp 119 $°C$, 80% yield; ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.56 (s, 6 H, CMe₂), 3.06 (s, 2 H, CH₂), 7.1-8.0 (m, aromatics); ¹³C $\{$ ¹H_i NMR (CDCl₃, 20 °C) δ 29.4 (CMe₂), 35.3 (CMe₂), 52.0 (CH₂), 124.8, 127.0, 128.1, 129.3, 132.7, 134.1 (1:1:32:1:1 ratio, aromatic C-H carbons), 132.0,138.9,147.2 **(aromaticquaternarycarbons),** 174.2, 176.0 (C=O); IR (Nujol mull) ν (C=O) 1700 s, 1660 s, 1650 s, MS m/e 279. Anal. Calcd for C₁₈H₁₇NO₂: C, 77.4; H, 6.1; N, 5.0. Found: C, 77.5; H, 6.0; N, 4.8.

A solution of complex $9(0.28 \text{ g}, 0.5 \text{ mmol})$ in $\text{CH}_2\text{Cl}_2(10 \text{ mL})$ was pressurized with CO (3 atm) and stirred for 4 h at room temperature. The resulting dark mixture was taken to dryness, extracted with 30 mL of a petroleum ether- Et_2O mixture (3:1), and filtered. The orange filtrate was concentrated in vacuo to a final volume of 3 mL and kept in the refrigerator. The crystalline product thus obtained was recrystallized from a petroleum ether- $Et₂O$ mixture to give a 50% yield of colorless crystals: mp 159-161 °C; ¹H NMR (200 MHz, CDCl₃, 20 °C) δ 1.48 (s, 6 H, CMe₂), 2.16,2.25 (s,3 H and 3 H, 2 ArMe), 3.05 (br s, 2 H, CH2), 6.5-7.9 (m, aromatics); ¹³C{¹H} NMR (CDCl₃, 20 °C) δ 20.9, 21.0 (2 Ar-Me), 31.9 (br s, CMe₂), 37.4 (CMe₂), 49.0 (CH₂), 119.3, 125.0, 126.7, 128.4, 128.7, 129.1, 130.5, 131.0 (2:2:1:1:22:1:1 ratio, aromatic C-H carbons); 133.7, 135.3, 135.6, 136.1, 144.8, 146.4 (aromatic quatenary carbons), 157.3 (C=N), 168.1 (C=O); IR (Nujol mull) ν (C=O) 1690 s, 1640 s, ν (C=N) 1510 s, 1505 s, MS m/e 381 (M⁺ - 1).

Reaction of $trans\text{-}\text{NiBr}(\text{PMe}_3)_2(\text{COPh})$ with trans- $NiBr(PMe₃)₂Me.$ Equimolecular amounts of these complexes 58,59 were dissolved at room temperature in CD₂Cl₂. NMR monitoring of the reaction mixture indicated complete transformation to $trans\text{-}\text{NiBr}(\text{PMe}_3)_2\text{Ph}^{58}$ and $trans\text{-}\text{NiBr}(\text{PMe}_3)_2\text{-}$ $(COMe).⁶⁰$

X-ray Structure Determination **of** Compounds 3a, **4,** and **5.** A summary of the fundamental crystal data are given in Table 4. Appropriate single crystals were coated with epoxy resin and mounted in a Kappa diffractometer. The cell dimensions were refined by least-squares fitting of the values of 25 reflections. The intensities were corrected for Lorentz **and** polarization effeds. Scattering factors for neutral atoms and anomalous dispersion corrections for Ni, P, and S were taken from ref 61. The structure waa solved by Patterson and Fourier methods. An empirical absorption correction⁶² was applied at the end of the isotropic refinement. The refinement involved anisotropic thermal parameters for the non-hydrogen atoms. Final refinement with fixed isotropic factors and coordinates for H atoms gave $R_F =$ 0.035 and $R(\omega)_{\text{F}} = 0.035$ (4) and $R_{\text{F}} = 0.035$ and $R(\omega)_{\text{F}} = 0.039$ **(5).** For 3a, the methyl carbon atoms and the ether molecule were refined isotropically, and the hydrogens were included in the refinement with fixed contributions at their calculated positions. Some nonresolvable disorder from thermal motion was found in the ether molecule. Final mixed full-matrix leastsquares refinement gave $R_F = 0.071$ and $R(\omega)_F = 0.078$. Most of the calculation were carried out with the X-ray 80 system. 63 Fractional coordinates for 3a, **4,** and **5** are given in Tables 5-7, respectively.

Acknowledgment. Financial support from the Dirección General de Investigación Científica y Técnica (Projects PB91-0612 and PB91-0123) and Junta de Andalucia is gratefully acknowledged. We also thank the Ministerio de Educacibn y Ciencia for a research fellowship (J.C.) and the University of Sevilla for the use of its analytical and NMR facilities.

Supplementary Material Available: Tables of H atom coordinates and thermal parameters for 3a, **4,** and **5** (6 pages). Ordering information is given on any current masthead page.

OM9400560

University of Maryland: College Park, MD, 1985.

⁽⁵⁸⁾ Carmona, E.; Paneque, M.; Poveda, M. L. *Polyhedron* **1989,8, 285.**

⁽⁵⁹⁾ Klein, H. F.; Karsch, H. H. *Chem. Ber.* **1972,105,2628.**

⁽⁶⁰⁾ Klein, H. F.; Karsch, H. H. *Chem. Ber.* **1976,109, 2524. (61) Cromer, D. T.; Waber,** J. **T.** *International Tables for X-Ray*

Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV, p 72.
(62) Walker, N.; Stuart, D. *Acta Crystallogr*. 1983, *A39*, 158.
(63) Stewart, J. M. *The X-Ray 80 System*; Computer Science Center,