An Exo-Selective Diels-Alder Reaction of a Bimetallic **Carbene Complex: A Case of Steric Control?**

Michal Sabat, Kelly A. Reynolds, and M. G. Finn*

Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22901

Received July 23, 1993®

Summary: The α,β -unsaturated bimetallic Fischer carbene complex 1, $(CO)_5WC(OTiCp_2Cl)(C(CH_3)=CH_2)$, undergoes reaction with cyclopentadiene to give predominantly the exo Diels-Alder adduct in high yield; X-ray crystal structures and molecular mechanics calculations for both reactant and product complexes suggest that the reaction may be controlled by steric factors.

Fischer carbene complexes bearing a vinyl substituent at the carbone carbon are active dienophiles for [4 + 2]cycloaddition reactions with a variety of dienes.¹ Here we report an exo-selective Diels-Alder reaction of a Fischer vinylcarbene complex, in which the stereoselectivity may arise as a result of the steric environment of the dienophile, in opposition to stereoelectronic factors usually identified with endo selectivity.

The 2-propenyl complex (CO)₅WC(OTiCp₂Cl)(C- $(CH_3)=CH_2$, 1, prepared by metalation of the acylate complex $[Me_4N][(CO)_5WC(O)(CCH_3=CH_2)]^2$ with Cp_2 -TiCl₂,³ underwent condensation with cyclopentadiene in CH₂Cl₂ solution at ambient temperature to afford the Diels-Alder adduct 2, which was obtained by crystallization from the reaction mixture in 75% isolated yield (eq 1). This material displayed a dominant set of product resonances in the NMR, assigned to the exo isomer from the X-ray crystal structure (vide infra).

Treatment of the crude reaction mixture containing 2 with ceric ammonium nitrate in methanol afforded the methyl ester 3 in 40% yield (eq 1). Compound 3 was composed of two isomers by capillary GLC in an 8:1 ratio, which coeluted with the minor (exo) and major (endo) isomers, respectively, produced in the reaction of methyl methacrylate and cyclopentadiene catalyzed by AlCl₃^{1c,4} and in the reaction of methacrylic acid with cyclopentadiene catalyzed by BH₃·THF, followed by methyl esterification.⁵ NMR of the crude reaction mixture confirmed

the presence of a minor isomer, comprising approximately 10% of the product. The 8:1 diastereoselectivity in favor of the exo adduct may be compared with the reaction of the analogous methoxycarbene complex, (CO)₅W=C- $(OMe)(C(CH_3)=CH_2)$, which has been found to give a 59:41 endo:exo ratio with cyclopentadiene.^{1c} The transpropenyl N-benzoyl carbene complex (CO)₅W=C(NMe-COPh)(CH=CHMe), which is a highly exo-selective dienophile with a derivative of Danishefsky's diene, reacts with cyclopentadiene in a 1:1.1 diastereomeric ratio.^{1b} Therefore, substitution of the methoxy substituent with a OTiCp₂Cl moiety leads to enhanced *exo* selectivity.

The vinyl complex (CO)₅WC(OTiCp₂Cl)(CH=CH₂), 4, prepared analogously to 1, afforded a 7:3 endo/exo mixture of adducts in 75% yield, as determined by oxidative cleavage to the methyl esters and comparison with authentic samples.⁴ The corresponding methoxycarbene complex, (CO)₅W=C(OMe)(CH=CH₂), gives a 93:7 ratio of endo to exo isomers.^{1c}

These observations can be correlated to the X-ray crystal structures of dienophiles 1 and 4 and exo Diels-Alder adduct 2, which are shown in Figures 1-3 and Tables 1-4. Of note are the nearly linear C(1)-O(1)-Ti bond angles (173.3(5)° for 1, 170.4(8)° for 2, and 173.8(5)° for 4), suggesting sp-hybridization at O1, as has been previously discussed for the chromium congener of 1.^{3a} The Ti and Cl atoms are found in the plane defined by the carbenoxy unit, and the O(1)-Ti-Cl bond angles are near 95°, due to the disposition of π -accepting orbitals on Ti.^{3a,6} The TiCp₂Cl unit is found in opposite orientations in 1 and 4: the Cl atom is syn to the propenyl moiety in the former and anti to the vinyl group in the latter. In both cases, the titanoxy fragment imposes severe steric constraints on the vinvlcarbene moiety.

The most important parameter of the dienophile structures is the orientation of the olefinic group with respect to the carbonoxy plane. In the 2-propenyl complex 1, the C=C double bond is perpendicular to the carbene plane (W-C(1)-C(2)-C(3) dihedral angle = 84.1°). In contrast, the vinyl complex 4 displays a coplanar conformation (W-C(1)-C(2)-C(3) dihedral angle = 7.9°; C3 lies 0.1 Å out of the plane defined by W, C(1), C(2), and O(1)), with an s-cis relationship between C=C and W=C bonds and the vinylcarbene plane bisecting the adjacent OC-W-CO angle (C(14)-W-C(1)-C(2) dihedral angle = 38°).

The maximum electronic activation of the dienophile for cycloaddition would be expected to occur in a coplanar orientation in which the π orbitals of the C=C and W=C bonds can interact. The vinylcarbene complex 4 adopts such a structure in the solid state with an s-cis conformation. Molecular mechanics calculations⁷ indicate that the s-trans rotamer of 4 would be destabilized by at least

Abstract published in Advance ACS Abstracts, March 1, 1994. (a) Wulff, W. D.; Yang, D. C. J. Am. Chem. Soc. 1983, 105, 6726-6727.
 (b) Anderson, B. A.; Wulff, W. D.; Powers, T. S.; Tribbitt, S.;

K. C. Madelson, D. A., Wult, W. D., 10Wels, T. S., 1108, 1018, 01,
 Rheingold, A. L. J. Am. Chem. Soc. 1992, 114, 10784–10798. (c) Wulff,
 W. D.; Bauta, W. E.; Kaesler, R. W.; Lankford, P. J.; Miller, R. A.; Murray,
 C. K.; Yang, D. C. J. Am. Chem. Soc. 1990, 112, 3642–3659. (d) Wang,
 S. L. B.; Wulff, W. D. J. Am. Chem. Soc. 1990, 112, 4550–4552. (e) (e) D. N. Will, W. D. S. Am. Chen. 1960, 112, 4000-402. (e) Herndon, J. W. J. Org. Chem. 1986, 51, 2853-2855.
(2) Prepared by a produre similar to that used for the Cr analogue: Dötz, K. H.; Kuhn, W.; Ackermann, K. Z. Naturforsch., B: Anorg. Chem.,

Org. Chem. 1983, 38B, 1351-1356.

<sup>Org. Chem. 1983, 38B, 1351-1356.
(3) For related Cr complexes, see: (a) Sabat, M.; Gross, M. F.; Finn, M. G. Organometallics 1992, 11, 745-751. (b) Anslyn, E. V.; Santarsiero, B. D.; Grubbs, R. H. Organometallics 1988, 7, 2137-2145. (c) Raubenheimer, H. G.; Fischer, E. O. J. Organomet. Chem. 1975, 91, C23-C26. (4) Inukai, T.; Kojima, T. J. Org. Chem. 1966, 31, 2032-2034. (5) Furuta, K.; Miwa, Y.; Iwanaga, K.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 6254-6255.</sup>

⁽⁶⁾ Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729-1742.

Figure 2. ORTEP diagram of $(CO)_5WC[OTiCp_2Cl][C_8H_{11}]$ (2) with numbering scheme.

Figure 3. ORTEP diagram of $(CO)_5WC[OTiCp_2Cl]-[CH=CH_2]$ (4) with numbering scheme.

7 kcal/mol due to a steric interaction between the CH_2 group and the TiCp₂Cl fragment. Since conformationally locked *s*-*cis* enones are known to be *exo* selective in Diels– Alder reactions with cyclopentadiene,^{1b,8} it is surprising that 4 is an *endo*-selective dienophile. The orientation of diene and dienophile dipole moments has been suggested as a controlling interaction in these cases,⁹ and it is possible that the dipole moment of 4 does not match that of

Table 1. Positional Parameters for 1 (Å)

			(/				
atom	x	у	z				
w	_0.3347(1)	0.2735(1)	_0.3689(1)				
Ti	-0.6526(1)	0.3616(1)	-0.2593(1)				
C	-0.7389(3)	0.2270(2)	-0.1796(2)				
$\tilde{\mathbf{O}}(1)$	-0.5400(4)	0.2270(2) 0.2789(4)	-0.2873(5)				
$\mathbf{O}(1)$	-0.5400(4)	0.2532(8)	-0.2073(3)				
O(12)	-0.2054(7)	0.2552(3) 0.3047(7)	-0.0127(7)				
O(12)	-0.2054(7)	0.5025(5)	-0.12+3(0)				
0(14)	-0.4138(0)	0.3023(3)	-0.3778(0)				
0(14)	-0.1146(0)	0.3340(7)	0.4206(0)				
C(1)	-0.2320(7)	0.0437(0)	-0.3049(7)				
C(1)	-0.4736(0)	0.2222(0)	-0.3103(0)				
C(2)	-0.4919(7)	0.1121(0)	-0.2970(8)				
C(3)	-0.4470(12)	0.0808(10)	-0.1894(11)				
C(4)	-0.5452(10)	0.0536(9)	-0.3/84(10)				
	-0.4233(7)	0.2590(8)	-0.5264(8)				
C(12)	-0.2505(8)	0.2921(7)	-0.2133(8)				
C(13)	-0.38/4(8)	0.4207(8)	-0.3/41(6)				
C(14)	-0.1958(8)	0.3125(8)	-0.4046(8)				
C(15)	-0.2828(8)	0.1243(8)	-0.3661(8)				
C(21)	-0.6901(8)	0.3788(8)	-0.4477(7)				
C(22)	-0.7056(9)	0.4734(8)	-0.4054(8)				
C(23)	-0.7660(8)	0.3117(8)	-0.4298(8)				
C(24)	-0.8345(8)	0.3649(9)	-0.3826(8)				
C(25)	-0.7980(9)	0.4635(10)	-0.3671(8)				
C(31)	-0.4880(9)	0.4299(10)	-0.1393(9)				
C(32)	-0.5587(11)	0.5097(8)	-0.1819(9)				
C(33)	-0.6495(10)	0.5026(9)	-0.1487(8)				
C(34)	0.6367(10)	0.4179(10)	-0.0848(8)				
C(35)	-0.5374(10)	0.3712(8)	-0.0814(8)				
Table 2. Positional Parameters for 7 (Å)							
atom	~ ~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	~^	y					
337	0.04050(7)	0.007(((0))	0.00507(3)				
W	0.24958(7)	0.20766(2)	0.08587(3)				
W Ti	0.24958(7) 0.1873(2)	0.20766(2) 0.40636(9)	0.08587(3) 0.1703(1)				
W Ti Cl	0.24958(7) 0.1873(2) 0.2213(4)	0.20766(2) 0.40636(9) 0.4927(1)	0.08587(3) 0.1703(1) 0.0889(2)				
W Ti Cl O(1)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4)				
W Ti Cl O(1) O(1S)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2)				
W Ti Cl O(1) O(1S) O(11)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7)				
W Ti O(1) O(1S) O(11) O(12)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14)	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.666(1)\\ \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ -0.160(1)\\ 0.240(2)\\ 0.$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1) C(2)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.2$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1) C(2) C(2S)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ -0.100(2)\\ 0.245(2)\\ 0.650(5)\\ -0.100(2)\\ 0.245(2)\\ 0.650(5)\\ -0.100(2)\\ 0.245(2)\\ 0.255(2)\\ $	$\begin{array}{c} 0.20766(2)\\ 0.40636(9)\\ 0.4927(1)\\ 0.3473(3)\\ 0.004(1)\\ 0.0772(5)\\ 0.2359(5)\\ 0.1466(5)\\ 0.1954(5)\\ 0.2302(5)\\ 0.3123(5)\\ 0.3197(6)\\ 0.016(2)\\ \end{array}$	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1) C(2) C(2S) C(3S)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\end{array}$	$\begin{array}{c} 0.20766(2)\\ 0.40636(9)\\ 0.4927(1)\\ 0.3473(3)\\ 0.004(1)\\ 0.0772(5)\\ 0.2359(5)\\ 0.1466(5)\\ 0.1954(5)\\ 0.2302(5)\\ 0.3123(5)\\ 0.3197(6)\\ 0.016(2)\\ 0.048(2) \end{array}$	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1) C(2) C(2S) C(3S) C(3)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2) \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.2302(5) 0.3123(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1)				
W Ti Cl O(1) O(1S) O(11) O(12) O(13) O(14) O(15) C(1) C(2) C(2S) C(3S) C(3) C(4)	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2)\\ 0.502(2)\\ \end{array}$	$\begin{array}{c} 0.20766(2)\\ 0.40636(9)\\ 0.4927(1)\\ 0.3473(3)\\ 0.004(1)\\ 0.0772(5)\\ 0.2359(5)\\ 0.1466(5)\\ 0.1954(5)\\ 0.2302(5)\\ 0.3123(5)\\ 0.3197(6)\\ 0.016(2)\\ 0.048(2)\\ 0.2993(7)\\ 0.3587(7)\\ \end{array}$	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.106(1)				
	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2)\\ 0.502(2)\\ 0.379(2) \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.1906(9)				
	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2)\\ 0.502(2)\\ 0.379(2)\\ 0.234(2) \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3587(7) 0.3969(7)	$\begin{array}{c} 0.08587(3)\\ 0.1703(1)\\ 0.0889(2)\\ 0.0847(4)\\ -0.025(2)\\ 0.1629(7)\\ 0.2659(6)\\ -0.0797(6)\\ 0.0033(7)\\ 0.1587(7)\\ 0.0377(7)\\ -0.0565(8)\\ 0.045(2)\\ 0.072(3)\\ -0.080(1)\\ -0.1906(1)\\ -0.1906(9)\\ -0.172(1) \end{array}$				
	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2)\\ 0.502(2)\\ 0.379(2)\\ 0.234(2)\\ 0.239(2) \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.1906(1) -0.1906(9) -0.172(1) -0.0751(7)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7)	$\begin{array}{c} 0.08587(3)\\ 0.1703(1)\\ 0.0889(2)\\ 0.0847(4)\\ -0.025(2)\\ 0.1629(7)\\ 0.2659(6)\\ -0.0797(6)\\ 0.0033(7)\\ 0.1587(7)\\ 0.0377(7)\\ -0.0565(8)\\ 0.045(2)\\ 0.072(3)\\ -0.080(1)\\ -0.1906(9)\\ -0.172(1)\\ -0.0751(7)\\ -0.043(1)\\ \end{array}$				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.068(3)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.347(2) -0.168(1) 0.666(1) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.068(3) 0.268(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.043(1) -0.116(1) 0.1355(8)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3887(7) 0.3800(7) 0.3869(7) 0.3969(7) 0.3969(7) 0.3969(7) 0.3969(7) 0.3969(7) 0.3969(7) 0.32920(7) 0.1248(6) 0.2293(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7)				
	$\begin{array}{c} 0.24958(7)\\ 0.1873(2)\\ 0.2213(4)\\ 0.2229(8)\\ 0.547(3)\\ 0.275(1)\\ 0.152(1)\\ 0.347(2)\\ -0.168(1)\\ 0.666(1)\\ 0.240(2)\\ 0.245(2)\\ 0.650(5)\\ 0.759(7)\\ 0.418(2)\\ 0.502(2)\\ 0.379(2)\\ 0.234(2)\\ 0.234(2)\\ 0.234(2)\\ 0.234(2)\\ 0.234(2)\\ 0.234(2)\\ 0.268(2)\\ 0.186(1)\\ 0.315(2) \end{array}$	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3870(7) 0.3870(7) 0.3870(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.234(2) 0.239(2) 0.441(2) 0.668(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.180(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.514(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.048(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.068(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.514(2) 0.446(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.239(2) 0.441(2) 0.668(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.514(2) 0.446(2) 0.340(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.2302(5) 0.3123(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3870(7) 0.3870(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1) 0.307(1)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.234(2) 0.688(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.514(2) 0.340(2) 0.338(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3870(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.1906(9) -0.172(1) -0.043(1) -0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1) 0.307(1) 0.3123(9)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.234(2) 0.234(2) 0.234(2) 0.418(2) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.340(2) 0.338(2) 0.435(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.4585(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.037(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.043(1) -0.146(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.259(1)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.239(2) 0.441(2) 0.668(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.340(2) 0.338(2) 0.435(2) 0.502(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3870(7) 0.3870(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.4585(7) 0.411(1)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1) 0.3123(9) 0.259(1) 0.2168(8)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.340(2) 0.340(2) 0.338(2) 0.435(2) -0.089(1)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3870(7) 0.3870(7) 0.3870(7) 0.3870(7) 0.3870(6) 0.4012(7) 0.2292(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.4585(7) 0.411(1) 0.3520(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.1355(8) 0.1996(7) -0.0217(9) 0.343(8) 0.1329(7) 0.259(1) 0.259(1) 0.259(1) 0.2168(8) 0.1429(8)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.239(2) 0.441(2) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.315(2) -0.014(2) 0.338(2) 0.435(2) -0.89(1) -0.051(1)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3969(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.411(1) 0.3520(7) 0.3685(8)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.116(1) 0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.259(1) 0.259(1) 0.2168(8) 0.1429(8) 0.2291(9)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.75(1) 0.152(1) 0.347(2) -0.168(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.239(2) 0.441(2) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.315(2) -0.014(2) 0.340(2) 0.340(2) 0.340(2) 0.340(2) 0.345(2) -0.089(1) -0.051(1) -0.052(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.4385(7) 0.411(1) 0.3520(7) 0.3685(8) 0.430(1)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.106(1) -0.172(1) -0.0751(7) -0.043(1) -0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1) 0.3123(9) 0.259(1) 0.2168(8) 0.1429(8) 0.2291(9) 0.237(1)				
	0.24958(7) 0.1873(2) 0.2213(4) 0.2229(8) 0.547(3) 0.275(1) 0.152(1) 0.347(2) -0.168(1) 0.666(1) 0.240(2) 0.245(2) 0.650(5) 0.759(7) 0.418(2) 0.502(2) 0.379(2) 0.234(2) 0.234(2) 0.234(2) 0.234(2) 0.234(2) 0.441(2) 0.68(3) 0.268(2) 0.186(1) 0.315(2) -0.014(2) 0.514(2) 0.435(2) 0.502(2) -0.089(1) -0.051(1) -0.052(2) -0.099(2)	0.20766(2) 0.40636(9) 0.4927(1) 0.3473(3) 0.004(1) 0.0772(5) 0.2359(5) 0.1466(5) 0.1954(5) 0.2302(5) 0.3123(5) 0.3123(5) 0.3197(6) 0.016(2) 0.048(2) 0.2993(7) 0.3587(7) 0.3800(7) 0.3870(6) 0.4012(7) 0.2920(7) 0.1248(6) 0.2293(5) 0.1703(6) 0.1988(6) 0.2205(5) 0.3559(8) 0.3727(7) 0.4336(7) 0.4585(7) 0.411(1) 0.3520(7) 0.3685(8) 0.430(1) 0.4625(7)	0.08587(3) 0.1703(1) 0.0889(2) 0.0847(4) -0.025(2) 0.1629(7) 0.2659(6) -0.0797(6) 0.0033(7) 0.1587(7) 0.0377(7) -0.0565(8) 0.045(2) 0.072(3) -0.080(1) -0.106(1) -0.1906(9) -0.172(1) -0.0751(7) -0.043(1) -0.1355(8) 0.1996(7) -0.0217(9) 0.0343(8) 0.1329(7) 0.250(1) 0.3123(9) 0.259(1) 0.2168(8) 0.1429(8) 0.2291(9) 0.237(1) 0.151(1)				

analogous enones (e.g., methyl acrylate) or a methoxycarbene complex in the *s*-*cis* conformation.

Analysis⁷ of the structure of the 2-propenyl complex 1 reveals that both the *s*-*cis* and *s*-*trans* conformations are

⁽⁷⁾ Molecular mechanics calculations were done on a CAChe Worksystem¹⁶ with software version 2.7. The mechanics program uses Allinger's MM2 force field¹⁷ with CAChe augmentations.¹⁸

^{(8) (}a) Roush, W. R.; Essenfeld, A. P.; Warmus, J. S.; Brown, B. B. Tetrahedron Lett. 1989, 30, 7305. (b) Fotiadu, F.; Michel, F.; Buono, G. Tetrahedron Lett. 1990, 31, 4863. (c) Adam, W.; Albert, R.; Hasemann, L.; Nava Salgado, V. O.; Nestler, B.; Peters, E.-M.; Peters, K.; Prechtl, F.; von Schnering, H. G. J. Org. Chem. 1991, 56, 5782.

^{(9) (}a) Rousch, W. R.; Brown, B. B. J. Org. Chem. 1992, 57, 3380–3387.
(b) Berson, J. A.; Hamlet, J.; Mueller, W. A. J. Am. Chem. Soc. 1962, 84, 297.

Table 3. Positional Parameters for 4 (Å)

atomxyzW $0.01648(2)$ $0.25238(3)$ 0.49935 Ti $0.4187(1)$ $0.2320(1)$ 0.59894 Cl $0.3913(2)$ $0.1630(1)$ $0.4395(1)$ O(1) $0.2469(4)$ $0.2678(4)$ $0.6023(2)$ O(11) $-0.2318(6)$ $0.1661(5)$ $0.3461(4)$ O(12) $0.1301(5)$ $0.0404(4)$ $0.4819(4)$ O(13) $-0.1430(5)$ $0.1578(4)$ $0.6752(4)$ O(14) $-0.1679(5)$ $0.4625(5)$ $0.4975(5)$ O(15) $0.1314(5)$ $0.3549(5)$ $0.3385(4)$ C(1) $0.1371(7)$ $0.2994(6)$ $0.6102(5)$ C(2) $0.1349(7)$ $0.3623(6)$ $0.7008(5)$ C(3) $0.0365(8)$ $0.4106(7)$ $0.7238(6)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4)
$\begin{array}{ccccccc} O(14) & -0.1679(5) & 0.4625(5) & 0.4975(2) \\ O(15) & 0.1314(5) & 0.3549(5) & 0.3385(4) \\ C(1) & 0.1371(7) & 0.2994(6) & 0.6102(2) \\ C(2) & 0.1349(7) & 0.3623(6) & 0.7008(2) \\ C(3) & 0.0365(8) & 0.4106(7) & 0.7238(6) \\ \end{array}$	4)
$\begin{array}{ccccccc} O(15) & 0.1314(5) & 0.3549(5) & 0.3385(4) \\ C(1) & 0.1371(7) & 0.2994(6) & 0.6102(5) \\ C(2) & 0.1349(7) & 0.3623(6) & 0.7008(5) \\ C(3) & 0.0365(8) & 0.4106(7) & 0.7238(6) \\ \end{array}$	5)
$\begin{array}{cccc} C(1) & 0.1371(7) & 0.2994(6) & 0.6102(2) \\ C(2) & 0.1349(7) & 0.3623(6) & 0.7008(2) \\ C(3) & 0.0365(8) & 0.4106(7) & 0.7238(2) \\ \end{array}$	4)
C(2) 0.1349(7) 0.3623(6) 0.7008(5) C(3) 0.0365(8) 0.4106(7) 0.7238(6)	5)
C(3) = 0.0365(8) = 0.4106(7) = 0.7238(6)	5)
	5)
C(11) 0.1540(8) 0.1980(7) 0.4002(6	5)
C(12) 0.0781(7) 0.1165(6) 0.4883(5)
C(13) 0.0993(7) 0.1920(6) 0.6106(6)	5)
C(14) 0.1121(7) 0.3869(6) 0.5012(5)
C(15) 0.0787(7) 0.3178(6) 0.3950(6)	5)
C(21) 0.4408(7) 0.3912(6) 0.5187(6	5)
C(22) 0.4227(8) 0.4178(5) 0.6141(6	5)
C(23) 0.5211(8) 0.3757(6) 0.6778(6)	5)
C(24) 0.6063(7) 0.3298(6) 0.6194(6)	5)
C(25) 0.5550(8) 0.3397(6) 0.5216(6)	6)
C(31) 0.3447(7) 0.0894(6) 0.6865(3	5)
C(32) 0.4103(8) 0.1568(6) 0.7520(3	5)
C(33) 0.5358(8) 0.1540(6) 0.7348(6)	6)
C(34) 0.5429(8) 0.0882(6) 0.6547(5)
C(35) 0.4240(8) 0.0480(5) 0.6256(3	,

Table 4. Selected Bond Distances (Å) and Angles (deg) and Dihedral Angles (deg) for Complexes 1, 2, and 4

	1	2	4
W-C(1)	2.187(9)	2.25(1)	2.200(8)
C(1)–O(1)	1.264(11)	1.27(1)	1.275(8)
C(1)-C(2)	1.498(12)	1.55(2)	1.50(1)
C(2)–C(3)	1.428(16)	1.52(2)	1.31(1)
Ti–O(1)	1.916(6)	1.951(7)	1.921(5)
W-C(11)	2.049(9)	2.01(1)	2.019(8)
W-C(12)	2.020(9)	2.02(1)	2.046(8)
W-C(13)	2.041(10)	2.05(1)	2.034(8)
W-C(14)	2.020(11)	2.01(1)	2.024(7)
W-C(15)	2.066(11)	2.02(1)	2.061(9)
Ti–Cl	2.353(4)	2.366(4)	2.376(2)
Ti-O(1)-C(1)	173.3(5)	170.4(8)	173.8(5)
O(1)–Ti–Cl	95.3(2)	97.4(2)	95.8(2)
W-C(1)-O(1)	125.9(6)	123.2(8)	118.8(5)
W-C(1)-C(2)	122.0(6)	123.8(8)	130.0(5)
O(1)-C(1)-C(2)	111.8(8)	113(1)	111.1(7)
OC-W-C(1)-C(2)	0.8	10.7	37.9(7)
W-C(1)-O(1)-Ti	104.0	-15.2	162(4)
W-C(1)-C(2)-C(3)	-86.1	-58.1	-8(1)

destabilized by steric interactions of the TiCp₂Cl unit with either the CH₃ or CH₂ groups, respectively, giving rise to the observed perpendicular orientation. A conservative estimate of steric interactions¹⁰ (albeit in the ground state) places the perpendicular conformation at least 10 kcal/ mol more stable than either coplanar structure, ignoring solvation effects.

If the Diels-Alder reactions of both 1 and 4 occur in coplanar dienophile conformations the origin of the *exo* selectivity of 1 is not readily apparent. Alternatively, the solid-state structure of 1 could be its reactive form if the transition-state stabilization gained by rotation to a coplanar conformation does not overcome the groundstate barrier to that rotation. If a perpendicular dienophile

Figure 4. Proposed alignments of diene and dienophile in the Diels-Alder reaction of 1 viewed along the Ti-O-C bond axis, showing steric congestion disfavoring an *endo* configuration.

arrangement is reactive,¹¹ the *exo* selectivity is consistent with steric control as shown in Figure 4. Approach of cyclopentadiene on the Ti side of the dienophile, where there is more room, can occur in one of two orientations. An *endo* arrangement would be disfavored by a severe interaction between one of the distal CH groups of cyclopentadiene and the nearly linear C(1)-O(1)-Ti axis. The *exo* alignment would suffer no such interaction, as shown in Figure 4. The crystal structure of the Diels-Alder adduct 2 (Figure 2) closely resembles the putatitive *exo* transition state arrangement of reactants shown in Figure 4.

The Diels–Alder reactions of aminovinylcarbene complexes of tungsten with activated acyclic dienes have been shown to be highly *exo* selective.^{1b} The plausible suggestion has been made that the steric bulk of the (CO)₅W fragment is responsible for the observed stereoselectivity.^{1b} However, cyclopentadiene undergoes nonselective condensation with such dienophiles.^{1b} Thus, the results outlined here demonstrate that additional factors may be brought to bear to influence the reactivity of carbene complex reagents.

Experimental Section

All air-sensitive manipulations were performed in a Vacuum Atmospheres glovebox under dry nitrogen. GLC analyses were performed using a capillary column ($30 \text{ m} \times 0.32 \text{ mm}$; DB-Wax; J&W Scientific) and flame ionization detection; the relative response factor for *endo* and *exo* isomers was assumed to be 1.0. Elemental analyses were performed in this department on a Perkin-Elmer 2400 CHN analyzer using (2,4-dinitrophenyl)-hydrazine as standard.

Complex 1 was prepared via the corresponding tetramethylammonium acylate salt¹² in the same manner as the analogous chromium compound^{3a} and recrystallized from 1:1 Et₂O/CH₂Cl₂ at -30 °C. Complex 4 was prepared by addition of Cp₂TiCl₂ to the lithium acylate salt generated from vinyllithium¹² and W(CO)₆ *in situ.* An X-ray quality crystal was isolated from 2:1 Et₂O/ CH₂Cl₂, but the bulk sample was not obtained in analytically pure form, since multiple recrystallizations led to decomposition. For 1: ¹H NMR (CDCl₃, δ) 6.51 (s, 10H), 5.10 (br s, 1H), 5.02 (br s, 1H), 1.72 (s, 3H); ¹³C NMR (CDCl₃, δ) 333.07, 204.23, 198.81,

⁽¹⁰⁾ Accomplished by a correlation of energy with simultaneous rotations about the W–C(1), C(1)–O(1), and O(1)–Ti bonds, and deformation of the C(1)–O(1)–Ti bond angle, using augmented MM2 parameters in the Tektronix CAChe computer system.

⁽¹¹⁾ Other olefins lacking π -overlap with an electron-withdrawing functionality are known to undergo Diels-Alder reaction. For example, 1,1,1-trifluoro-2-propene reacts slowly with cyclopentadiene to give the [4 + 2] adduct in a 1:4 exo:endo ratio: Gaede, B.; Balthazor, T. M. J. Org. Chem. 1983, 48, 276-277.

⁽¹²⁾ Lithium acylate salts were generated in the manner of Wulff et al. (Wulff, W. D.; Bauta, W. E.; Kaesler, R. W.; Lankford, P. J.; Miller, R. A.; Murray, C. K.; Yang, D. C. J. Am. Chem. Soc. 1990, 112, 3642–3659) with a modified procedure for preparation of vinyllithium (Smith, G. M.; Suzuki, H.; Sonnenberger, D. C.; Day, V. W.; Marks, T. J. Organometallics 1986, 5, 549–61). The carbene acylate anions were isolated as NMe₄ salts by treatment with aqueous Me₄NCl as first described by Fischer and Maasbol: Fishcer, E. O.; Maasbol, A. Angew. Chem., Int. Ed. Engl. 1964, 3, 580–581.

162.59, 118.46, 114.18, 17.81; IR (ν_{CO} , CH₂Cl₂, cm⁻¹) 2048, 1916 (br). Anal. Calcd for C₁₉H₁₆ClO₆TiW: C, 37.63; H, 2.49. Found: C, 37.50; H, 2.75; N, 0.03. For 4: ¹H NMR (CDCl₃, δ) 6.85 (dd, J = 10.5, 17.2 Hz, 1H), 6.55 (s, impurity, \approx 1H), 6.54 (s, impurity, \approx 1H), 6.50 (s, \approx 8H), 5.90 (d, J = 16.8 Hz, 1H), 5.70 (d, J = 10.3 Hz, 1H).

Under a dry nitrogen atmosphere, 1 (250 mg, 0.41 mmol) in 5 mL of CH₂Cl₂ was treated with cyclopentadiene (135 mg, 2.04 mmol). The reaction mixture was allowed to stand at room temperature for 18 h and then was evaporated, taken up in 10 mL of Et₂O, cooled to 0 °C, and filtered to remove a small amount of W(CO)₆. Storage of the filtrate at -30 °C for 24 h provided 209 mg (0.31 mmol, 75% yield) of 2 as red-brown crystals, pure by NMR and IR. Single crystals for X-ray and combustion analysis were obtained from Et₂O at -30 °C. For 2: ¹H NMR (CDCl₃, δ) 6.56 (s, 5H), 6.52 (s, 5H), 6.26 (br dd, 1H), 6.04 (br s, 1H), 2.79 (br s, 2H), 1.63–1.43 (m, 4H), 1.05 (s, 3H); IR (ν_{CO} , CH₂Cl₂, cm⁻¹) 2048, 1916 (br). Anal. Calcd for C₂₄H₂₁ClO₆TiW: C, 42.86: H, 3.15. Found: C, 42.66; H, 3.18; N, 0.02.

For diastereomeric analysis, an identical crude Diels-Alder reaction mixture was evaporated and then dissolved in 10 mL of CH₃OH treated with 2 mL of a freshly-prepared solution of (NH₄)₂Ce(NO₃)₆ in CH₃OH (approximately 1 M). After 30 min at room temperature, the mixture was partitioned between 10 mL of Et₂O and 10 mL of H₂O, and the organic phase was washed with saturated NaHCO₃ and water and then dried (anhydrous $MgSO_4$). Due to the potential volatility of the product esters, the resulting ether solution was analyzed directly by capillary GLC, showing the presence of exo and endo isomers in a ratio of 8.0:1 (4.2 and 4.8 min, respectively). These peaks coeluted with added exo- and endo-3 prepared by the reaction of cyclopentadiene and methyl methacrylate catalyzed by AlCl₃.4 Evaporation of the solvent provided 35 mg of a mixture of compounds, approximately 80% of which was composed of the expected ester mixture in an 8:1 diatereomer ration, as judged by NMR in comparison with the authentic compounds.⁴ The Diels-Alder reaction of 4 was performed and analyzed in analogous fashion.

X-ray Crystallography

Compound 1. The complex crystallized in the monoclinic space group $P2_1/n$ with a = 12.642(2) Å, b = 13.148(3)Å, c = 13.226(2) Å, $\beta = 107.89(1)^\circ$, V = 2092(1) Å³, Z =4. The structure was solved by direct methods using SHELXTL PLUS¹³ and refined to the R factor of 0.037 $(R_w = 0.044)$ using 2694 absorption-corrected reflections with $I > 2\sigma(I)$ collected up to $2\theta = 50^\circ$ on a Siemens/Nicolet P3m diffractometer (Mo K α radiation, 25 °C).

Compounds 2 and 4. X-ray measurements were carried out on a Rigaku AFC6s diffractometer using Mo K α radiation at -120 and -60 °C for 2 and 4, respectively. All calculations were done using TEXSAN 5.0.14 The structures were solved by direct methods (SIR88).¹⁵ Crystallographic data for 2: monoclinic space group $P2_1/n$, a =7.621(2) Å, b = 22.39(1) Å, c = 15.809(2) Å, $\beta = 102.32(2)^{\circ}$, V = 2635(2) Å³, Z = 4. R = 0.046 ($R_w = 0.063$) for 2862 absorption-corrected reflections with $I > 3.5\sigma(I)$ measured up to $2\theta = 46^{\circ}$. A disordered diethyl ether solvent molecule was found in the unit cell of the compound. Crystallographic data for 4: monoclinic space group $P2_1/c$, a =10.829(2) Å, b = 12.912(2) Å, c = 13.850(4) Å, $\beta = 97.33(4)^{\circ}$, V = 1921(1) Å³, Z = 4. R = 0.024 ($R_w = 0.029$) for 2039 absorption-corrected reflections with $I > 3\sigma(I)$ measured up to $2\theta = 50^{\circ}$.

Acknowledgment. Support from the National Science Foundation (CHE-9109000), the American Cancer Society (Junior Faculty Research Award to M.G.F.), and a T. A. White Fellowship (to K.A.R.) is gratefully acknowledged.

Supplementary Material Available: Crystallographic details for 1, 2, and 4 including crystal data, intensity measurements, structure solution and refinement, anisotropic thermal displacement parameters, and bond lengths and angles (17 pages). Ordering information is given on any current masthead page.

OM930510K

(13) SHELXTL PLUS: Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1990.

- (14) TEXSAN 5.0: TEXRAY Structure Analysis Package, Molecular Structure Corp., The Woodlands, TX; 1989.
- (15) SIR88: Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.;
 Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Crystallogr. 1989, 22, 389.
 (16) CAChe Scientific, Inc., P.O. Box 500, M.S. 13-400, Beaverton, OR
- 97077.
 - (17) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127.

(18) Liu, Š.-Ý.; Purvis, G. D., III. CAChe Molecular Mechanics Force-Field. Technical Report No. 2; CAChe Scientific: Beaverton, OR, 1989.