Stoichiometric Alkyne Metathesis at Metal Cluster Compounds: Interconversion of Os3W Alkyne-Alkylidyne and Dimetalloallyl Clusters

Ming-Tsun Kuo,[†] Der-Kweng Hwang,[†] Chao-Shiuan Liu,^{*,†} Yun Chi,*^{,†} Shie-Ming Peng,' and Gene-Hsiang Leet

Departments of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China, and National Taiwan University, Taipei 10764, Taiwan, Republic of China

Received February 23, 1994@

Summary: Treatment of $O_{s_3}(CO)_{10}(C_2Me_2)$ *with* CPW *-(CO)z(=CTol) produced the alkylidyne-alkyne cluster* $CpWOs₃(CO)₁₀(\mu₃ - CMe)(CMeCTol)$ (2) and the dimet a *lloallyl* complex $CpWOs₃(CO)₉$ $C(Me)C(Me)C(Tol)J(3)$ *in sequence. Thermolysis of* **3** *induced the selective scission of one C-C bond to give a second alkylidyne* a *lkyne cluster,* $CpWOs₃(CO)₈(\mu₃-CTol)(C₂Me₂)$ *(4), providing a model of alkyne metathesis through a dimetalloallyl intermediate.*

We have recently prepared and examined the reactivity of Os_3W clusters with ligated C_4 hydrocarbons by addition of tungsten acetylide complexes to Os_3 alkyne complexes.¹ Our work has been motivated by attempts to develop a generalized strategy to mixed-metal clusters² and to learn about the reaction pathway of chemisorbed hydrocarbon intermediates on metal surfaces.³ This investigation is now extended to tetranuclear Os₃W cluster compounds with the asymmetric C₃ dimetalloallyl ligand $\mu_3 - \eta^3$ - $C(Tol)C(Me)C(Me)$. Before our investigation of these tetranuclear dimetalloallyl clusters, others have also studied syntheses and reactivities of dinuclear and trinuclear derivatives.⁴ Among the various chemical reactions probed, that of forming and breaking the $C-C$ bond is important because it provides valuable mechanistic insight into alkyne metathesis. 5 In this paper, we report a novel example of transformation of ligand pairs $[\mu_3$ -CMe + MeC₂Tol] to $[\mu_3$ -CTol + MeC₂Me] through the

(2) (a) Adams, R. D. In *The Chemistry of Metal Clusters;* Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH: New York, 1990; Chapter 3. (b) Wojcicki, A.; Shuchart, C. E. *Coord.* Chem. *Rev.* 1990, 105, 35. (c) Stone, F. G. A. *Angew. Chem., Int. Ed. Chem.* 1984, 23, 89. (d)
Vahrenkamp, H. *Adv. Organomet. Chem.* 1983, 22, 169.
(3) (a) Band, E.; Muetterties, E. L. *Chem. Rev.* 1978, 78, 639. (b)
Muetterties, E. L.; Rhodin, T. N.;

R. Chem. *Reu.* 1981,81, 447. (4) (a) Chisholm, M. H.; Heppert, J. A.; Huffman, J. C. *J.* Am. Chem. Soc. 1984, 106, 1151. (b) Hein, J.; Jeffery, J. C.; Sherwood, P.; Stone, F.
G. A. J. Chem. Soc., Dalton Trans. 1987, 2211. (c) Adams, R. D.; Babin, J. E.; Tasi, M.; Wang, J. G. Organometallics 1988, 7, 755. (d) Adams, R.
J K.; Dalton, D. M.; Keister, J. M.; Churchill, M. R. *Organometallics* 1989, 8, 492.

(5) (a) Chisholm, M. H.; Huffman, J. C.; Heppert, J. A. *J. Am. Chem.* Soc. 1985, 107, 5116. (b) Delgado, E.; García, M. E.; Jeffery, J. C.; Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 207. (c) Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 207. (c) Hart, I. J.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 207. (c) (hart, I. J.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 1899. (d) ligand $\mu_3 - \eta^3$ -[C(Tol)C(Me)C(Me)]. This experimental result substantiates an earlier report by Stone and coworkers, who demonstrated that two ligated C_3 allyl fragments, differing in the arrangement of substituents, were produced via cleavage and formation of a C-C bond, providing compelling evidence for scrambling of [CR + $R'C_2R'$] and $[CR' + \overline{R'C_2R}]$ fragments.⁶ Such rearrangement on metal complexes is noteworthy because it could in theory allow a dimetalloallyl species to be considered a possible intermediate of catalytic alkyne metathesis.

The alkyne cluster $Os_3(CO)_{10}(C_2Me_2)$ (1) reacts with approximately 3 equiv of $CpW(CO)_2(\equiv CTol)$ in refluxing toluene solution (30 min) to afford the red-orange alkylidyne-alkyne complex $CpWOs₃(CO)₁₀(\mu₃-CMe)(CMeC-$ Tol) (2) and dark green dimetalloallyl complex CpWOs₃-(CO)s[C(Me)C(Me)C(Tol)l **(3)** in 27 and 38% yields, respectively. These two cluster compounds were fully characterized by spectroscopic⁷ and X-ray measurements.⁸

The X-ray analysis of **2** indicated that it consists of a $Os₃W$ butterfly arrangement with the W atom located at the hinge position (Figure 1). The alkylidyne group, which connects to both wingtip Os atoms with two long bonds $(2.23(2)$ and $2.13(2)$ Å) and to the W atom with a short interaction (2.01(2) **A),** carries a methyl substituent but not a tolyl substituent. This information suggests that the alkylidyne ligand is derived from the 2-butyne ligand but not from the CTol unit of $CpW(CO)_2(\equiv CTol)$. In addition, the ligated alkyne $[C(Me)C(Tol)]$, generated from coupling of the second CMe unit and the incoming CTol fragment, lies on the $W-Os(1)-Os(2)$ face opposite

t National Tsing Hua University.

¹ National Taiwan University.

[•] Abstract published in Advance ACS Abstracts, May 1, 1994.
(1) (a) Chi, Y.; Hsu, S.-F.; Peng, S.-M.; Lee, G.-H. J. Chem. Soc., Chem.
Commun. 1991, 1019. (b) Chi, Y.; Shu, H.-Y.; Peng, S.-M.; Lee, G.-H. J. Chem. *Soc., Chem. Commun.* 1991, 1023. (c) Chi, Y.; Lin, R.-C.; Chen, C.-C.; Peng, S.-M.; Lee, G.-H. *J. Organomet.* Chem. 1992,439,347. (d) Chi, Y. *J. Chin.* Chem. *SOC.* 1992,39,591.

^{(6) (}a) Jeffery, J. C.; Mead, K. A.; Razay, H.; Stone, F. G. A.; Went, M. J.; Woodward, P. J. Chem. Soc., Chem. Commun. 1981, 807. (b) Jeffery, J. C.; Mead, K. A.; Razay, H.; Stone, F. G. A.; Went, M. J.; Woodward, P. J. C

⁽⁷⁾ Spectral data for 2: MS (FAB, $^{192}O_8$, ^{184}W) m/z 1258 (M⁺); IR (C₆H₁₂) ν (CO), 2077 (s), 2049 (vs), 2030 (s), 2026 (m), 2009 (m), 1996 (m), 1981 (m), 1969 (m), 1955 (m), 1939 (w) cm⁻¹; ¹H NMR (400 (s, 5H), 4.49 (s, 3H), 3.14 (s, 3H), 2.30 (s, 3H). Anal. Calcd for C₂₇H₁₈O₁₀-
Os₃W: C, 25.80; H, 1.44. Found: C, 25.40; H, 1.52. Spectral data for 3:
MS (FAB, ¹⁹²Os, ¹⁸⁴W) *m/z* 1230 (M⁺); IR (C_eH₁₂) *v*(294 K) 6 7.38 (d, 2H, *JH-H* = *8.0* Hz), 7.19 (d, 2H, **JH-H** = 8.0 Hz), 5.22 K) δ 7.75 (d, 1H, $J_{\text{H-H}} = 7.6$ Hz), 7.33 (d, 1H, $J_{\text{H-H}} = 7.6$ Hz), 7.04 (d, 1H, $J_{\text{H-H}} = 7.6$ Hz), 5.84 (d, 1H, $J_{\text{H-H}} = 7.6$ Hz), 4.65 (s, 5H), 3.69 (s, 3H), 2.58 (s, 3H), 2.58 (s, 3H), 2.57 (s, 3H); ¹³C N 154.0 *(Jwx* = 45 Hz), 151.9, 135.3, 132.6, 129.1, 129.0, 128.6, 127.4, 87.6 (broad, **30,** 189.4 (broad, 30, 185.9, 185.6 (CO), 166.5 *(Jwx* = 49 Hz),

⁽⁵C, Cp), 40.1 (Me), 26.0 (Me), 20.9 (Me). Anal. Calcd for $C_{28}H_{18}O_9$ -
Os₃W: C, 25.41; H, 1.48. Found: C, 25.41; H, 1.57.
(8) Crystal data for 2: $C_{28}H_{18}O_{10}O_{83}W$, $M_r = 1253.24$, triclinic space
group $P1$, space group *Pbcn*, $a = 29.065(4)$ Å, $b = 9.476(3)$ Å, $c = 22.839(5)$ Å, $V = 6291(3)$ Å³, $Z = 8$, $D_c = 2.570$ mg/cm³, $F(000) = 4334$, $\mu(\text{Mo K}\alpha) = 15.86$ mm⁻¹, $R_F = 0.049$, $R_w = 0.043$, GOF = 1.41.

Scheme **1**

 α Legend: (i) $\text{CpW(CO)}_2(\text{CTol})$; (ii) $-\text{CO}$; (iii) $+\text{CO}$.

Figure 1. Molecular structure of **2** and the atomic numbering scheme. Selected bond lengths (A) : $W-Os(1) = 2.832(1)$, $W - Os(2) = 2.778(2), W - Os(3) = 2.767(1), Os(1) - Os(2) = 2.787 (1), \text{Os}(1)-\text{Os}(3) = 2.889(2), \text{W}-\text{C}(12) = 2.01(2), \text{Os}(2)-\text{C}(12)$ $= 2.23(2), 0s(3) - C(12) = 2.13(2), C(11) - C(12) = 1.55(2),$ $W-C(14) = 2.27(1), 0s(2)-C(14) = 2.17(2), W-C(15) = 2.27-$ **(l), Os(l)-C(15)** = **2.16(2), C(13)-C(14)** = **1.49(3), C(14)-** $C(15) = 1.35(2), C(15) - C(16) = 1.48(3).$

the bridging ethylidyne group with two short Os-C bonds and two long W-C bonds, showing characteristics of the typical $2\sigma + \pi$ bonding mode.⁹

For complex 3, the structure adopts a distorted $Os₃W$ tetrahedral core, on which the W atom is capped by a Cp ligand, and each Os atom is coordinated by three orthogonal terminal CO ligands (Figure **2).** The 2-butyne and tolylalkylidyne fragments coupled to form an allyl functional group, which lies over the top of one Os_2W triangle and is coordinated to the atoms Os(1) and **Os(3)** via a σ -bond and to the W atom via a π -allyl interaction. Simple electron counting gives **58** valence electrons for this molecule, suggesting that the molecule is unsaturated and contains a multiple bonding interaction. However, the molecule has no apparent localized M=M double bond, as lengths of all the Os-W bonds are in the narrow range **2.682-2.722 A** and are all substantially shorter than that of other Os-Os single bonds **(2.891-2.794 A).** Thus, the unsaturation is distributed over all four metal centers, comparable to what is observed in the unsaturated **56** electron compound $H_4Re_4(CO)_{12}.^{10}$ An essentially identical dimetalloallyl bonding mode is observed in the **60-**

Figure **2.** Molecular structure of **3** and the atomic numbering scheme. Selected bond lengths **(A): W-Os(1)** = **2.668(2), W-Os(2)** = **2.722(2), W-Os(3)** = **2.682(2), Os(l)-Os(2)** = **2.805-** $(2), Os(1)-Os(3) = 2.891(2), Os(2)-Os(3) = 2.794(2), W-C(11)$ $= 2.13(2)$, W-C(12) $= 2.34(2)$, W-C(14) $= 2.19(2)$, Os(1)- $C(14) = 2.18(3), O_8(3) - C(11) = 2.24(3), C(11) - C(12) = 1.39$ (4) , $C(12) - C(14) = 1.43(3)$.

electron tetrahedral cluster $\mathrm{Os}_{4}(\mathrm{CO})_{11}(\mu\text{-H})(\mu\text{-}\eta^{3}\text{-C}_{4}\mathrm{H}_{5})^{11}$ and in many other trinuclear allyl cluster compounds.12 Consistent with the solid-state structure, the 13C NMR spectrum shows five Os-CO signals at 6 **197.6,190.6,189.4, 185.9,** and **185.6** in the ratio **1:3:3:1:1,** presumably implying the presence of three $Os(CO)₃$ units, two of which undergo rapid tripodal CO exchange. Three additional signals appeared at δ 166.5 $(J_{W-C} = 49 \text{ Hz})$, 154.0 $(J_{W-C} = 45 \text{ Hz})$, and **151.9** and are clearly due to the dimetalloallyl carbon atoms.

The order of formation of these clusters was established. Our experimental evidence indicates that the alkylidynealkyne cluster **2** was formed prior to **3,** as the latter contains one CO ligand less than the former and because when the reaction time is decreased from **30** to **20** min, the yield **of 2** increased to **39%,** whereas the yield of **3** diminished to **21** *5%.* Furthermore, complex **3** appears to undergo a unique thermal transformation to form the second alkylidynealkyne cluster $\text{CpWOs}_3(\text{CO})_8(\mu_3-\text{CTol})(C_2\text{Me}_2)$ (4)¹³ in over 80% yield, through a process involving elimination of CO and selective scission of the C-C bond of the dimetalloallyl ligand. The X-ray diffraction study of **4** shows that it consists of tolylalkylidyne and 2-butyne ligands coordinated to a Os_2W triangle and to one adjacent Os_2W face, respectively; the alkyne adopted the unusual $\mu_3 - n^2(\perp)$ mode for electron-deficient clusters.¹⁴ In accord with this

⁽¹¹⁾ Chen, H.; Johnson, B. F. G.; Lewis, J.; **Braga,** D.; **Grepioni, F.** *J. Organomet. Chem.* **1990,398,159.**

^{(12) (}a) Hanson, B. E.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *J. Chem. SOC., Dalton Trans.* **1980, 1852. (b) Yao, H.; McCargar, R. D.; Allendoerfer, R.** D.; **Keister, J. B.** *Organometallics* **1993, 12, 4283.**

assignment, the ¹³C NMR spectrum shows seven CO signals with one signal possessing double intensity corresponding to two coincident CO ligands, one triply bridging alkylidyne signal at δ 267.1 ($J_{\text{W-C}}$ = 97 Hz), and two alkyne signals at δ 170.1 (J_{W-C} = 71 Hz) and 161.0.

Attempts were also made to investigate the reverse process $4 \rightarrow 3 \rightarrow 2$. Exposing a solution of 3 under CO at room temperature has produced **2** as a transient species, but upon raising the temperature or increasing the reaction time, we isolated the saturated tetrahedral dimetalloallyl cluster $\text{CpWOs}_3(\text{CO})_{10}[\text{C}(\text{Me})\text{C}(\text{Me})\text{C}(\text{Tol})]$ as the final product. On the other hand, heating a solution of **4** with CO regenerated only a small amount of **3,** indicating that

(14) (a) Blount, J. F.; Dahl, L. F.; Hoogzand, C.; Hubel, W. *J. Am. Chem. SOC.* 1966, *88,* 292. (b) Busetto, L.; Jeffery, J. C.; Mills, R. M.; Stone, F. G. A,; Went, M. J.; Woodward, P. *J. Chem. SOC., Dalton Trans.* 1983, 101. (c) Clucas, J. A,; Dolby, P. A.; Harding, M. M.; Smith, A. K. *J. Chem.* **SOC.,** *Chem. Commun.* 1987,1829. (d) Carty, A. J.; Taylor, N. J.; Sappa, E. *Organometallics* 1988,7,405. (e) Rivomanana, S.; Lavigne, G.; Lugan, N.; Bonnet, J. J. *Inorg. Chem.* 1991, *30,* 4110.

re-formation of the allyl C-C bond is not completely accessible. Hence, the process $2 \rightarrow 3 \rightarrow 4$ is best considered innersurable under this circumstance. This accuracy is irreversible under this circumstance. This sequence is thus akin to the cleavage of alkyne in tetranuclear $Os₃W$ and Co_2Fe_2 clusters,¹⁵ rather than the respective process observed in trinuclear $\cos W_2$ and RuW_2 alkyne complexes, which is completely reversible.16 Extensive discussion of these reactions will be described in the near future.

Acknowledgment. We thank the National Science Council of the Republic of China **for** support (Grant No. **NSC 83-0208-M007-43).**

Supplementary Material Available: Tables of crystal data, bond distances, positional parameters, and anisotropic thermal parameters for **2** and 3 (10 pages). Ordering information is given on any current masthead page.

OM9401418

Stevenson, I. *Organometallics* 1991, *10,* 2274. (16) (a) Chi, Y.; Shapley, J. R. *Organometallics* 1986, *4,* 1900. (b) Stone, F. G. A.; Williams, M. L. *J. Chem. SOC., Dalton Trans.* 1988,2467.

⁽¹³⁾ Selected crystal data for 4: orthorhombic space group $Pna2_1$, $a = 19.066(4)$ Å, $b = 9.032(2)$ Å, $c = 18.059(4)$ Å. Spectral data for 4: MS (FAB, ¹⁹²Os, ¹⁸⁴W) m/z 1202 (M⁺); IR (C₆H₁₂) ν (CO), 2069 (vs), 2000 (va), 1991 **(s),** 1970 **(s),** 1953 (w), 1936 **(m)** cm-l; lH NMR (400 MHz, 5.49 **(e,** 5H), 3.49 *(8,* 3H), 2.96 *(8,* 3H), 2.35 *(8,* 3H), W NMR **(100 MHz,** CDCl,, 294 K) **6** 7.02 (d, 2H, *JH-H* = 8.0 Hz), 6.71 (d, 2H, *JH-H* = 8.0 Hz), 267.1 *(* J_{W-C} = 97 Hz, *C*Tol), 170.1 $(J_{W-C}$ = 71 Hz, *CMe*), 161.0 *(CMe)*, 137.7,130.3 (2C), 128.8 (20, 115.9,100.9 (5C, Cp), 28.0 (Me), 27.1 (Me), 22.2 (Me). Anal. Calcd for C₂₅H₁₈O₈Os₃W: C, 25.01; H, 1.51. Found:
C, 24.69; H, 1.54. THF-d₈, 256 K) δ 203.9, 198.3, 197.7, 185.3, 182.6, 180.8, 177.9 (2C) (CO),

^{(15) (}a) Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. *J. Am. Chem. SOC.* 1983, *105,* 6182. **(b)** Park, J. T.; Shapley, J. R.; Bueno, C.; Ziller, J. W.; Churchill, M. R. *Organometallics* 1988, 7,2307. (c) Rumin, R.; Pétillon, F.; Manojlovic-Muir, L.; Muir, K. W. J. Organomet. Chem. 1989, 371, C9. **(d)** Rumin, R.; Robin, F.; PBtillon, F. Y.; Muir, K. W.;