Site-Selective Substitution Reactions and Isomerizations in Tetrahedral MCo_3 Carbonyl Clusters (M = Fe, Ru) with N, P. S. and Te Donor Ligands. Crystal Structures of $HRuCo_3(CO)_{10}(PMe_2Ph)_2$ and $HRuCo_3(CO)_9(PMe_2Ph)_3$

Pierre Braunstein,* Jacky Rosé,* and Dominique Toussaint

Laboratoire de Chimie de Coordination, URA 416 CNRS, Université Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg Cédex, France

Sirpa Jääskeläinen, Markku Ahlgren, and Tapani A. Pakkanen*

Department of Chemistry, University of Joensuu, P.O. Box 111, SF-80101 Joensuu, Finland

Jouni Pursiainen

Department of Chemistry, University of Oulu, Linnanmaa, SF-90570 Oulu, Finland

Loïc Toupet

Groupe Matière Condensée et Matériaux, URA 804 CNRS, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cédex, France

Daniel Grandjean

Laboratoire de Cristallochimie, URA 1495 CNRS, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cédex, France

Received December 16, 1993[®]

We report on the influence of the metals and of the ligands on site-selective substitution reactions with various two-electron donor ligands. The reaction between the tetrahedral mixedmetal cluster $HRuCo_3(CO)_{11}(PMe_2Ph)$ (1) and PMe_2Ph has led selectively to the disubstituted cluster $HRuCo_3(CO)_{10}(PMe_2Ph)_2$ (2a) in which the phosphines are bound to cobalt atoms [isomer Co,Co]. This cluster spontaneously transforms in CH_2Cl_2 into the isomer 2b in which a phosphine is bound to ruthenium [Co,Ru]. Reaction of 2a with PMe₂Ph occurs via first isomerization in 2b, which instantly yields $HRuCo_3(CO)_9(PMe_2Ph)_3$ [Co,Co,Ru] (3). The latter is best prepared by the reaction of 1 with 2 equiv of PMe_2Ph in the presence of Me_3NO . Clusters containing different phosphine ligands have also been prepared. In contrast to the reactions of PMe₂Ph with the clusters $HRuCo_3(CO)_{11}(E)$ (E = SMe₂, SeMe₂, TePh₂) in which the Ru-bound chalcogenide ligand is displaced by the phosphine without formation of a disubstituted cluster, the reaction of 1 with TeMe₂ produced HRuCo₃(CO)₁₀(PMe₂Ph)(TeMe₂) (4) in good yield. Reaction of 1 with SEt₂ afforded a mixture containing the disubstituted clusters HRuCo₃(CO)₁₀(PMe₂Ph)(SEt₂) in the form of two isomers, [Co,Co] (5a) and [Co,Ru] (5b). In the presence of Me₃NO, mainly 5b was formed. In HRuCo₃(CO)₁₀(NMe₃)(PMe₂Ph) (6a), which was obtained from 1 and Me₃NO, the amine ligand is readily displayed by SEt₂ to give 5a selectively and in quantitative yields. Spectroscopic IR [ν (CO)] and ¹H and ⁵⁹Co NMR data are presented. Comparative studies have been performed with $HFeCo_3(CO)_{11}$ (phosphine): reactions with phosphine, amine, or thioether ligands afford only the [Co,Co] disubstituted clusters. Reaction from HFeCo₃(CO)_{12-n}L_n (n = 0-2) never led to substitution at iron. Clusters **2b** and **3** have been structurally characterized by X-ray diffraction: HRuCo₃(CO)₁₀(PMe₂Ph)₂ (2b) crystallizes in the space group $P2_1/c$, monoclinic, with a = 17.69(1) Å, b = 14.275(7) Å, c= 12.518(7), $\beta = 97.64(5)^{\circ}$, and Z = 4, and HRuCo₃(CO)₉(PMe₂Ph)₃ (3) crystallizes in the space group $P_{21/c}$, monoclinic, with a = 10.927(5) Å, b = 21.275(5) Å, c = 16.096(3), $\beta = 94.65(3)^{\circ}$, and Z = 4.

Introduction

Previous studies on the substitution chemistry of mixedmetal, tetrahedral carbonyl clusters of the type HMCo₃- $(CO)_{12}$ (M = Fe, Ru) have shown that the terminal cobalt carbonyls are more prone to nucleophilic substitution by two electron donor ligands than the carbonyls bound to the apical metal M = Fe, $Ru.^{1,2}$ Only few exceptions have been reported where the ligand L in $HRuCo_3(CO)_{11}L$ has

^{(1) (}a) Cooke, C. G.; Mays, M. J. J. Chem. Soc. Dalton Trans. 1975, 455. (b) Hidai, M.; Matsuzaka, H.; Koyasu, Y.; Uchida, Y. J. Chem. Soc., Chem. Commun. 1986, 1451. (c) Matsuzaka, H.; Kodama, T.; Uchida, Y.; Chem. Commun. 1986, 1451. (c) Matsuzaka, H.; Kodama, I.; Conda, I.;
Hidai, M. Organometallics 1988, 7, 1608. (d) Pursiainen, J.; Ahlgren, M.;
Pakkanen, T. A.; Valkonen, J. J. Chem. Soc., Dalton Trans. 1990, 1147.
(e) Braunstein, P.; Rosé, J.; Granger, P.; Raya, J.; Bouaoud, S.-E.;
Grandjean, D. Organometallics 1991, 10, 3686.
(2) Braunstein, P.; Mourey, L.; Rosé, J.; Granger, P.; Richert, T.;
Balegroune, F.; Grandjean, D. Organometallics 1992, 11, 2628.

been established by X-ray diffraction to be bound to Ru.³ and only in the trisubstituted cluster HFeCo₃(CO)₉(PMe₂-Ph)₃ has a ligand L replaced a Fe-bound carbonyl ligand.⁴ It therefore appeared interesting to investigate disubstituted clusters belonging to this family and examine the role of the apical metal M and of the two electron donor ligands L and L', in particular when $L \neq L'$, on the substitution pattern. In the following, the isomers in which each of these ligands is bound to a different cobalt atom will be referred to as [Co,Co], whereas those in which the ligands are bound to a cobalt atom and the metal M will be referred to as [Co,M].

Results and Discussion

Reactions of HRuCo₃(CO)₁₁(PMe₂Ph) (1) with Donor Ligands. Reactions with Phosphines. Reaction of HRuCo₃(CO)₁₁(PMe₂Ph) (1) with PMe₂Ph (1:1 molar ratio) afforded under ambient conditions HRuCo₃- $(CO)_{10}(PMe_2Ph)_2$ [Co,Co] (2a) which contains two cobaltcoordinated axial phosphines. No [Co,Ru] isomer 2b was observed after 1 h reaction time. The disubstituted derivative was also obtained by the reaction of HRuCo₃- $(CO)_{12}$ with 2 equiv. PMe₂Ph, which proceeds via very rapid formation of the monosubstituted cluster (TLC evidence). An interesting feature is that the isomer [Co,-Co] (2a) first formed completely isomerized after standing in CH_2Cl_2 overnight into [Co,Ru] (2b), in which one phosphine has migrated to ruthenium (Scheme 1). With other phosphine ligands, disubstituted clusters may also be obtained and the preferred isomer depends on the nature of the phosphine: in the case of PPh₃ only the [Co,Co] isomer was isolated whereas with, e.g., PPhH₂ or PPh₂H, a mixture of isomers was obtained.

Isolated 2a reacted over few hours with 1 equiv of PMe2-Ph in CH₂Cl₂ to give quantitatively HRuCo₃(CO)₉(PMe₂-

 Ph_{3} [Co,Co,Ru] (3) which contains two basal (on Co) and one apical (on Ru) phosphines. The solid-state structure is described below. In view of the isomerization of 2a in 2b, we studied independently the reaction of 2b with PMe₂-Ph. It instantly yielded 3, suggesting that the reaction of 2a with PMe₂Ph occurs first via isomerization in 2b. A comparison between the reactions of 2b with PMe₂Ph with the weaker nucleophile PPh3 showed that under similar conditions, the former reaction is instantaneous whereas the latter yields ca. 10 % of HRuCo₃(CO)₉(PMe₂Ph)₂- (PPh_3) [Co,Ru,Co(PPh_3)] after 5 days. On the other hand, the reaction of HRuCo₃(CO)₁₀(PPh₃)₂ [Co,Co] with excess PPh₃ afforded, after 24 h at room temperature, some HRuCo₃(CO)₁₀(PPh₃)₂ [Co,Ru] and HRuCo₃(CO)₉(PPh₃)₃ [Co,Co,Ru]. After 5 days, the conversion is ca. 50%, and these products are obtained in a 1:3 ratio. This is consistent with the fact that, for a given entering group (PPh_3) , substitution of a cobalt-bound carbonyl ligand is more difficult in the more electron-rich cluster. This trisubstituted cluster 3 is in fact best prepared by the reaction of 1 with 2 equiv of PMe₂Ph in the presence of Me₃NO (quantitative yield after 0.5 h reaction) (eq 1). This

reaction proceeds by first rapid and quantitative formation of the kinetic isomer 2a which instantly reacts with the amine oxide and the second equivalent of PMe₂Ph to give the stable trisubstituted cluster 3. After a longer reaction time, 3 subsequently transforms into species not yet fully characterized (see Experimental Section). In this case, the spontaneous isomerization of the [Co,Co] isomer (2a) into the [Ru,Co] isomer (2b) appears too slow to represent a significant pathway in the overall reaction. However, we shall see below with chalcogenide ligands that reaction of 2a with Me₃NO most likely leads to a cluster of type A, rather than of type B, which rapidly reacts with the third equivalent of phosphine with displacement of the Co-bound amine ligand. A related amine displacement reaction has been described with $HRuCo_3(CO)_{11}(NMe_3)$ and various phosphine ligands, which led to the cobaltsubstituted clusters HRuCo₃(CO)₁₁(phosphine) in quantitative yields.² Similarly, intermediate A would also account for the reaction of 2b with $PCyH_2$ in the presence of Me₃NO. It yielded pure HRuCo₃(CO)₉(PMe₂Ph)₂- $(PCyH_2)$, which has a phosphine ligand bound to Ru. In solution, $HRuCo_3(CO)_9(PMe_2Ph)_2(PCyH_2)$ transforms slowly with formation of 3, but the fate of the $PCyH_2$ ligand is not known.

Reactions with Chalcogenides. The reaction of 1 with $TeMe_2 produced HRuCo_3(CO)_{10}(PMe_2Ph)(TeMe_2)$ (4) in good yield. The same product was also obtained in 58%

⁽³⁾ Rossi, S.; Pursiainen, J.; Pakkanen, T. A. J. Organomet. Chem. 1990. 397. 81

⁽⁴⁾ Bartl, K.; Boese, R.; Schmid, G. J. Organomet. Chem. 1981, 206, 331.

yield from the reaction of the structurally characterized Ru-bound telluride cluster $HRuCo_3(CO)_{11}(TeMe_2)$ with PMe_2Ph (eq 2), strongly suggesting that the telluride ligand in 4 is bound to the apical ruthenium site. The latter

reaction contrasts with those of PMe_2Ph with $HRuCo_3$ -(CO)₁₁(SMe₂), $HRuCo_3(CO)_{11}(SeMe_2)$ or $HRuCo_3(CO)_{11}$ -(TePh₂) in which the cobalt-bound chalcogenide ligand L is easily replaced by PMe_2Ph , without formation of a disubstituted cluster (eq 3). Reaction 3 is rapid at room

L = SMe2, SeMe2, TePh2

temperature as well as a 0 °C. Both SMe₂ and SeMe₂ are replaced more easily than a carbonyl ligand. The SMe₂ ligand is also easily replaced by carbon monoxide, although in the preparation of HRuCo₃(CO)₁₁(SR₂) (R = Me, Et) or HRuCo₃(CO)₁₁(SeMe₂) the chalcogenide ligand (present in excess) has replaced a carbonyl group.

No reaction occurred between 1 and SEt_2 in hexane at room temperature, but under reflux, a complex mixture was obtained in which the disubstituted cluster $HRuCo_3$ - $(CO)_{10}(PMe_2Ph)(SEt_2)$ is present in the form of two isomers of which the [Co,Co] isomer **5a** could be independently characterized. The second isomer **5b** most certainly has a substituent on ruthenium, although its exact

nature could not be ascertained in the absence of X-ray quality crystals. When 1 was reacted with 1 equiv of SEt_2 in a mixture of hexane/ CH_2Cl_2 (5:1) in the presence of Me₃NO, a clean reaction yielded mainly brown 5b, and a smaller yield of violet 5a (Scheme 2). The proportion of 5a increases with increasing reaction times. The nature of these isomers, i.e., which ligand is bound to which metal center, was established on the following grounds. Whereas 5b has IR ν (CO) and ¹H NMR (hydrido signal) spectroscopic characteristics similar to those of 2b, the data for 5a are closely related to those of 2a (see Table 1). Both isomers show in the ⁵⁹Co NMR spectrum a resonance at ca. δ -1900 which is typical in this family of clusters for a S-substituted cobalt nucleus.² The spectrum of 5a contains in addition two distinct resonances in a 1:1 ratio at δ -2640 and δ -2710 which correspond to the Co-(PMe₂-Ph) and Co-(CO) nuclei, respectively. In the spectrum of **5b**, only one additional resonance is observed at δ -2250 which corresponds to the two equivalent Co-(CO) nuclei. When pure **5b** was dissolved in hexane, it isomerized to 5a within ca. 24 h (ca. 80% conversion) (Scheme 2) while some decomposition began to occur with liberation of SEt_2 and formation of 1 (some CO liberated by decomposition occupies the coordination site left vacant by SEt₂).

It is noteworthy that from the reaction of 1 with Me₃-NO in CH_2Cl_2 , we could only characterize the isomer of $HRuCo_3(CO)_{10}(NMe_3)(PMe_2Ph)$ (6a) in which both substituents are bound to cobalt atoms (eq 4). This cluster loses its NMe₃ ligand more rapidly than 5a loses its thioether ligand, in agreement with previous findings about the lability of the Co-amine bond.^{1e} As expected, the

amine ligand of **6a** is rapidly displaced by SEt_2 (slight excess in CH_2Cl_2) to selectively give **5a** in quantitative yields, again without occurrence of **5b**. Therefore, amine substitution by SEt_2 does not induce any isomerization. From these results, it appears reasonable to suggest that the reaction of 1 with Me₃NO occurs via a short-lived

Table 1. Selected Physical and Spectroscopic Data

cluster		color in IR		NMR	
formula	no.	solution	ν (CO), cm ⁻¹ (CH ₂ Cl ₂)	$\delta(^{1}\mathrm{H})(\mu_{3}\mathrm{-H})$	$\delta(^{59}\text{Co}) (\Delta \nu_{1/2}, \text{Hz})^a$
$HRuCo_3(CO)_{11}(PMe_2Ph)$	1	wine red	2081 s, 2042 vs, 2034 sh, 2009 vs, 1862 m, 1845 m	-20.2	-2745 (3500) (Co-CO) -2715 (2800) (Co-P)
$HRuCo_3(CO)_{10}(PMe_2Ph)_2$	2a	violet	2065 s, 2014 s, 1998 vs, 1842 m, 1824 m	-20.1	-2690 (3300) (Co-CO) -2580 (3300) (Co-P)
	2b	red brown	2048 m, 2013 vs, 1966 sh, 1851 m, 1843 m	-18.3	–2750 (2900) (CoCO) –2604 (6950) (CoP)
$HRuCo_3(CO)_9(PMe_2Ph)_3$	3	dark violet	2019 s, 1987 vs, 1955 s, 1822 s, 1810 sh	-18.8	–2620 (3700) (CoCO + Co-P)
$HRuCo_3(CO)_{10}(PMe_2Ph)(TeMe_2)$	4	dark red	2047 w, 2010 vs, 1966 m, 1844 m	-18.4	-2755 (3900) (Co-CO) -2600 (3200) (Co-P)
$HRuCo_3(CO)_{10}(PMe_2Ph)(SEt_2)$	5a	violet	^b 2072 s, 2023 s, 1997 vs, 1843 m, 1822 m	-20.1	-2710 (5250) (Co-CO) -2640 (4200) (Co-P) -1900 (2600) (Co-S)
	5b	brown	^b 2048 m, 2017 s, 2011 vs, 1965 m, 1860 m, 1845 m	-18.4	-2550 (2100) (Co-CO + Co-P) -1900 (3600) (Co-S)
HRuCo ₃ (CO) ₁₀ (PMe ₂ Ph)(NMe ₃)	6a	violet	2070 s, 2024 s, 1992 vs, 1861 w, 1831 m, 1814 m	-21.0	–2714 (3100) (Čo–ĆO) –2553 (3600) (Co–P) –956 (4000) (Co–N)

^a Measured at 298 K in CDCl₃; sample concentrations in the range $1-2 \times 10^{-2}$ mol/L; reference is K₃[Co(CN)₆] in D₂O; the line widths are not meaningful since they contain relaxation effects and coupling constants. ^b Recorded in hexane.

intermediate 6b (not evidenced in the reaction of eq 4) in which the phosphine has temporarely migrated to Ru. This situation is then frozen in the presence of SEt_2 which displaces the amine ligand, leading to 5b (eq 5). The latter

subsequently isomerizes to 5a (Scheme 2). This reaction sequence is also consistent with the lack of observation in all our studies of any Ru-bound amine ligand in these clusters. A similar behavior of 2a with Me₃NO would account for the formation of a trisubstituted N,P,P cluster which, in the presence of PMe₂Ph, affords the phosphine cluster 3 described above.

For comparison, we investigated some reactions of tetrahedral clusters of the type $HFeCo_3(CO)_{11}$ (phosphine). Addition of 1 equiv of a two electron donor ligand such as a phosphine, an amine or a thioether afforded the corresponding disubstituted cluster, but only the [Co,Co] derivatives were observed. It is interesting to remember that the trisubstituted cluster HFeCo₃(CO)₉(PMe₂Ph)₃ has been synthesized under conditions similar to ours and found to have a phosphine ligand attached to each cobalt center.^{1a} However, another isomer which is the Fe analog of 3 has been structurally characterized: it was prepared in low yields (2.8%) by the thermal reaction of FeCl₃ with $Na[Co(CO)_4]$ in diethyl ether for 1 day, followed by the addition of excess PMe₂Ph.⁴ This synthetic procedure strongly suggests that [FeCo₃(CO)₁₂]⁻ was first formed and reacted then with PMe₂Ph with a different siteselectivity than $HFeCo_3(CO)_{12}$. This explanation is supported by our recent findings that [RuCo₃(CO)₁₂]⁻ reacts with PPh₃ to give only $[RuCo_3(CO)_{10}(PPh_3)_2]^-$ [Co,Ru], which on protonation affords HRuCo₃(CO)₁₀(PPh₃)₂ [Co,-Ru].⁵ Obviously, the electron density in the basal plane

of the $[MCo_3(CO)_{12}]^-$ anions favors the [Co,M] isomer over the [Co,Co] isomer. This provides an interesting contrast with the reaction from $HFeCo_3(CO)_{12-n}L_n$ (n = 0-2) which never led to substitution at iron.

For the triphosphine tetrahedral clusters, ⁵⁹Co NMR does not allow a clear structural identification since the [Co,Co,Ru] isomers surprisingly gives rise to a singlet resonance, as would also be anticipated for a [Co,Co,Co] isomer. X-ray diffraction remains therefore the only method to ascertain their structure. This is even more so when the question arises of the axial or equatorial position of the ligands in the Co_3 base. Note for example that the phosphite ligands in HFeCo₃(CO)₉[P(OMe)₃]₃ are all axial⁶ whereas in $Ir_4(CO)_9(PPh_3)_3$ the phosphine ligands occupy one axial and two equatorial sites.⁷

This work emphasizes the importance of the sequence of introduction of the ligands for the selective synthesis of polysubstituted carbonyl clusters. However, more work is needed before systematic trends can be identified and a rationalization of this chemistry suggested.

Crystal Structures of HRuCo₃(CO)₁₀(PMe₂Ph)₂ (2b) and $HRuCo_3(CO)_9(PMe_2Ph)_3$ (3). The molecular structures of 2b and 3 have been determined by X-ray diffraction and are shown in Figures 1 and 2. Selected bond lengths and bond angles are given in Tables 2 and 3. The substitution reactions maintain the basic cluster core and the three bridging carbonyls between the cobalt atoms. Both clusters contain one phosphine ligand bound to Ru, trans to a cobalt-phosphorus bond. The metalmetal distances in both clusters are in the range found in other RuCo₃ tetrahedral clusters. Note however that substitution at the Ru apex tends to increase the Ru-Co bonds: they range from 269.0(3) to 273.9(3) pm in 2b, from 267.7(2) to 270.6(2) pm in 3, and from 264.0(2) to 265.6(2) pm in HRuCo₃(CO)₁₀(PPh₃)₂ [Co,Co].⁸ The Co-P distances are very similar to the values found in HFeCo₃- $(CO)_{11}(PPh_2H)$ [222.3(1) pm]^{1e} but slightly shorter than in HRuCo₃(CO)₁₁(PPh₃) [226.1(5) pm].^{1c} The Ru-P distances are also similar in the two clusters and compare

^{(6) (}a) Huie, B. T.; Knobler, C. B.; Kaesz, H. D. J. Am. Chem. Soc. 1978, 100, 3059. (b) Teller, R. G.; Wilson, R. D.; McMullan, R. K.; Koetzle,

T. F.; Bau, R. J. Am. Chem. Soc. 1978, 100, 3071.
 (7) Albano, V.; Bellon, P.; Scatturin, V. Chem. Commun. 1967, 730.

⁽⁵⁾ Braunstein, P.; Rosé, J.; Xu, M. Unpublished results.

⁽⁸⁾ Pursiainen, J.; Pakkanen, T. A. J. Organomet. Chem. 1985, 290, 85.

Figure 1. View of the molecular structure of HRuCo₃-(CO)₁₀(PMe₂Ph)₂ (**2b**) with the atom labeling scheme. The hydrogen atom μ_3 -bonded to the Co₃ face was not located by X-ray methods.

Figure 2. View of the molecular structure of $HRuCo_3$ -(CO)₉(PMe₂Ph)₃ [Co,Co,Ru] (3) with the atom labeling scheme.

with the mean value of 234.2 pm found for Ru-PMe₂Ph distances.⁹ It is noteworthy than in both structures, the terminal carbonyls C(6)O(6) and C(8)O(8) are slightly bent toward the Ru atom [Co-C-O angles in the range 156- $(1)-169.6(7)^{\circ}$]. This appears to be due to the more electron-rich nature of the phosphine-substituted Ru atom since these ligands are linear in the clusters $HRuCo_3(CO)_{11}$ -(L) (L = NMe₃, SMe₂, PPh₃).^{1c-e} The arrangement of the phosphine ligands in 3 is similar to that in HFeCo₃-(CO)₉(PMe₂Ph)₃⁴ but differs from that in HFeCo₃(CO)₉- $[P(OMe)_3]_{3.6}$ It appears that both electronic and steric effects determine the metalloselectivity of substitution reactions and the ligand arrangement in substituted tetrahedral clusters. The hydridic ligand of 2b could not be located by X-ray diffraction, in contrast to that of 3. The Co-H distances in the latter [in the range 170(6)-

Table 2. Selected Bond Distances (pm) and angles (deg) for HRuCo₃(CO)₁₀(PMe₂Ph)₂ (2b)

$FIKUC0_3(CO)_{10}(FIVIe_2FII)_2$ (20)					
Bond Distances					
Ru(1)-Co(1)	273.9(3)	$C_0(1) - C(12)$	194(2)		
Ru(1) - Co(2)	269.8(3)	$C_0(1) - C(13)$	193(2)		
Ru(1) - Co(3)	269.0(3)	$C_0(2) - C_0(3)$	248.6(4)		
$R_{\rm H}(1) - P(1)$	236 7(5)	$C_0(2) - C(6)$	178(2)		
$R_{1}(1) - C(1)$	190(2)	$C_{0}(2) = C(7)$	177(2)		
$R_{1}(1) = C(1)$	190(2)	$C_0(2) = C(1)$	107(2)		
Ru(1) = C(3) Ru(1) = C(8)	252(2)	$C_0(2) = C(12)$	197(2)		
$C_{0}(1) = C_{0}(3)$	233(2)	$C_{0}(2) = C(23)$	197(2)		
$C_0(1) = C_0(2)$	230.0(4)	$C_{0}(3) = C_{0}(3)$	101(2) 175(2)		
$C_0(1) = C_0(3)$	247.0(4)	$C_{0}(3) = C(3)$	1/3(2)		
$C_0(1) - F(2)$	223.9(3)	$C_0(3) = C(13)$	203(2)		
Co(1) - C(4)	180(2)	Co(3) - C(23)	196(2)		
	Bond A	Angles			
Co(1)-Ru(1)-Co(2)	54.9(1)	$C_0(3) - C_0(2) - C(7)$	127.3(6)		
$C_0(1) - R_1(1) - C_0(3)$	54.7(1)	$C_0(1) = C_0(2) = C(12)$	49.6(5)		
$C_0(2) - R_1(1) - C_0(3)$	55.0(1)	$C_0(3) = C_0(2) = C(12)$	109.5(5)		
$C_0(1) = R_0(1) = P(1)$	167 7(1)	$C_0(1) = C_0(2) = C(23)$	110 5(5)		
$C_0(2) = R_1(1) = P(1)$	1148(1)	$C_0(3) = C_0(2) = C_0(23)$	50 6(5)		
$C_0(2) = R_0(1) = P(1)$	114.0(1)	$B_{11}(1) = C_0(2) = C_0(2)$	63 6(1)		
$C_0(1) \mathbf{P}_0(1) - C(1)$	07 1 (5)	Ru(1) = Co(3) = Co(1)	62.7(1)		
$C_0(1) = Ru(1) = C(1)$	140 7(5)	$C_{0}(1) = C_{0}(3) = C_{0}(2)$	60 4(1)		
$C_0(2) = R_0(1) = C(1)$	1 + 7.7(3)	$P_{1}(1) = C_{0}(3) = C_{0}(2)$	65 1(6)		
$C_0(3) = R_0(1) = C(1)$	101.1(3)	$C_{0}(1) = C_{0}(3) = C_{0}(3)$	110 4(4)		
$C_{0}(1) - R_{0}(1) - C(3)$	90.0(<i>S</i>)	$C_0(1) = C_0(3) = C(3)$	117.0(0)		
$C_0(2) = R_0(1) = C(3)$	101.5(5)	$C_0(2) = C_0(3) = C(8)$	117.0(0)		
$C_0(3) - R_0(1) - C(3)$	149.5(5)	Ru(1) = Co(3) = C(9)	100.0(0)		
$C_0(1) - R_0(1) - C(8)$	90.3(4)	$C_0(1) = C_0(3) = C(9)$	125.2(6)		
$C_0(2) - R_u(1) - C(8)$	89.7(4)	$C_0(2) = C_0(3) = C(9)$	129.5(6)		
Co(3) - Ru(1) - C(8)	40.5(4)	$C_0(1) - C_0(3) - C(13)$	49.1(5)		
Ru(1) - Co(1) - Co(2)	61.7(1)	$C_0(2) - C_0(3) - C(13)$	109.5(5)		
Ru(1)-Co(1)-Co(3)	61.6(1)	Co(1)-Co(3)-C(23)	111.3(5)		
Co(2) - Co(1) - Co(3)	59.6(1)	Co(2) - Co(3) - C(23)	50.9(5)		
Ru(1)-Co(1)-P(2)	176.0(2)	Ru(1)-C(1)-O(1)	179(1)		
Co(2)-Co(1)-P(2)	114.6(2)	Ru(1)-C(3)-O(3)	178(2)		
Co(3)-Co(1)-P(2)	118.6(2)	Co(1)-C(4)-O(4)	176(2)		
Ru(1)-Co(1)-C(4)	84.9(6)	Co(2)–C(6)–O(6)	161(2)		
Co(2)-Co(1)-C(4)	133.2(6)	Co(2)-C(7)-O(7)	174(2)		
Co(3)-Co(1)-C(4)	132.8(6)	Ru(1)-C(8)-Co(3)	74.4(7)		
Co(2)-Co(1)-C(12)	50.8(5)	Ru(1)-C(8)-O(8)	129(1)		
Co(3)-Co(1)-C(12)	110.3(5)	Co(3) - C(8) - O(8)	156(2)		
Co(2)-Co(1)-C(13)	112.4(6)	$C_0(3) - C(9) - O(9)$	175(2)		
Co(3)-Co(1)-C(13)	52.8(6)	Co(1)-C(12)-Co(2)	79.6(7)		
Ru(1) - Co(2) - Co(1)	63.4(1)	$C_0(1) - C(12) - O(12)$	142(1)		
Ru(1) - Co(2) - Co(3)	62.3(1)	$C_0(2) - C(12) - O(12)$	138(1)		
$C_{0}(1) - C_{0}(2) - C_{0}(3)$	60.0(1)	$C_{0}(1) - C(13) - C_{0}(3)$	78.0(7)		
Ru(1)-Co(2)-C(6)	68.1(6)	Co(1)-C(13)-O(13)	143(2)		
Co(1)-Co(2)-C(6)	121.5(6)	Co(3)-C(13)-O(13)	139(2)		
$C_0(3) - C_0(2) - C(6)$	120.2(6)	$C_0(2) - C(23) - C_0(3)$	78.5(7)		
Ru(1)-Co(2)-C(7)	168.6(6)	$C_0(2) = C(23) = O(23)$	142(1)		
$C_0(1) - C_0(2) - C(7)$	125.3(6)	$C_0(3) = C(23) = O(23)$	140(1)		
	120.0(0)		140(1)		

172(6) pm] are not significantly different from those in $HFeCo_3(CO)_9[P(OMe)_3]_3$ [173.4(3) pm].⁶

Experimental Section

General Procedures. Reactions and manipulations, except chromatographic separations, were carried out under N₂ using standard Schlenk tube techniques. Solvent were distilled before use. $HRuCo_3(CO)_{12}$,^{1e} $HRuCo_3(CO)_{11}(PMe_2Ph)$,¹⁰ $HRuCo_3(CO)_{11}(SMe_2)$,¹¹ $HRuCo_3(CO)_{11}(SeMe_2)$,^{1c} $HRuCo_3(CO)_{11}(TeMe_2)^3$ were prepared by use of published procedures. SEt₂, SeMe₂, TeMe₂, Me₃NO·2H₂O, and PMe₂Ph were commercial samples and were used as received. Solution infrared spectra were recorded on a Nicolet 20SXC or a Bruker IFS-66 FT IR spectrometers. The UV-visible spectra were recorded on a Schimadzu UV-260 instrument. ¹H NMR spectra were recorded on a Bruker AM-250 spectrometer at 0 °C using CDCl₃ as the solvent. Chemical shifts are relative to TMS. ⁵⁹Co NMR spectra were measured on a Bruker MSL-300 instrument (71.21 MHz). The chemical shifts reported (ppm) for ⁵⁹Co are positive high frequency from

⁽⁹⁾ Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.

⁽¹⁰⁾ Pursiainen, J.; Pakkanen, T. A. Acta Chem. Scand. 1989, 43, 463.
(11) Rossi, S.; Pursiainen, J.; Ahlgren, M.; Pakkanen, T. A. Organometallics 1990, 9, 475.

Table 3.	Selected Bond Distances (pm) and Angles (deg) for
	$HRuCo_3(CO)_9(PMe_2Ph)_3$ (3)

Bond Distances							
Ru-Co(1)	268.6(1)	Co(1) - H(1)	171(6)				
Ru-Co(2)	270.0(1)	$C_{0}(2) - C_{0}(3)$	247.7(1)				
Ru-Co(3)	266.6(1)	$C_0(2) = P(2)$	221 8(2)				
Ru - P(3)	235.2(2)	$C_0(2) - C(2)$	193 0(8)				
Ru-C(6)	188.2(9)	$C_0(2) - C(3)$	199 1(7)				
Ru-C(7)	187.7(8)	$C_0(2) - C(5)$	175.7(8)				
Ru-C(8)	247.9(9)	$C_0(2) - H(1)$	172(6)				
$C_0(1) - C_0(2)$	250.2(1)	$C_0(3) - C(1)$	197 0(7)				
$C_0(1) - C_0(3)$	247.8(1)	$C_0(3) - C(2)$	198.6(8)				
$C_0(1) - P(1)$	219.5(2)	$C_0(3) - C(8)$	177(1)				
$C_{0}(1) - C(1)$	193.8(7)	$C_{0}(3) - C(9)$	175 7(9)				
$C_0(1) - C(3)$	195.0(7)	$C_0(3) - H(1)$	170(6)				
$C_0(1) - C(4)$	175.5(8)	00(0) 11(1)	1,0(0)				
	11010(0)						
	Bond A	Angles					
Co(1)-Ru-Co(2)	55.36(3)	Co(1)-Co(2)-Co(3)	59.69(4)				
Co(2)-Ru- $Co(3)$	55.15(3)	Co(1)-Co(2)-P(2)	117.75(7)				
Co(3)-Ru-P(3)	110.51(6)	Co(1)-Co(2)-C(2)	111.2(2)				
Co(1)-Ru-C(6)	153.3(2)	Co(1)-Co(2)-C(3)	49.9(2)				
Co(1)-Ru-C(7)	96.3(3)	Co(1)-Co(2)-C(5)	131.7(2)				
Co(2)-Ru-Co(3)	54.98(3)	Co(1)-Co(2)-H(1)	43(2)				
Co(2)-Ru-P(3)	164.54(6)	Ru-Co(3)-Co(1)	62.84(3)				
Co(2)-Ru-C(6)	99.2(2)	Ru-Co(3)-Co(2)	63.21(3)				
Co(2)-Ru-C(7)	93.5(2)	Ru-Co(3)-C(8)	64.3(3)				
Co(3)-Ru-P(3)	113.13(6)	Ru-Co(3)-C(9)	166.0(3)				
Co(3)-Ru-C(6)	105.5(3)	Ru-Co(3)-H(1)	91(2)				
Co(3)-Ru- $C(7)$	145.2(2)	Co(1)-Co(3)-Co(2)	60.66(4)				
Ru-Co(1)-Co(3)	62.01(4)	Co(1)-Co(3)-C(1)	50.1(2)				
Ru - Co(1) - P(1)	173.88(7)	Co(1)-Co(3)-C(2)	110.1(2)				
Ru-Co(1)-C(4)	74.8(3)	Co(1)-Co(3)-C(8)	117.2(3)				
Ru-Co(1)-H(1)	91(2)	Co(1)-Co(3)-C(9)	129.3(3)				
Co(2)-Co(1)-Co(3)	59.65(4)	Co(1)-Co(3)-H(1)	44(2)				
Co(2)-Co(1)-P(1)	123.35(7)	$C_0(1) - C(1) - O(1)$	142.3(8)				
Co(2) - Co(1) - C(1)	110.8(2)	Co(3) - C(1) - O(1)	138.9(8)				
Co(2)-Co(1)-C(3)	51.3(2)	$C_{0}(2) - C(2) - O(2)$	142.8(8)				
Co(2)-Co(1)-C(4)	126.2(2)	Co(3)-C(2)-O(2)	138.6(9)				
Co(2)-Co(1)-H(1)	43(2)	$C_0(1) - C(3) - O(3)$	142.4(9)				
Co(3)-Co(1)-P(1)	121.37(7)	$C_0(2) - C(3) - O(3)$	138.7(8)				
Co(3) - Co(1) - C(1)	51.2(2)	$C_0(1) - C(4) - O(4)$	170.0(7)				
Ru-Co(2)-Co(1)	62.04(3)	$C_0(2) - C(5) - O(5)$	174.4(7)				
Ru-Co(2)-Co(3)	61.81(3)	Ru–C(6)–O(6)	178.3(7)				
Ru-Co(2)-P(2)	176.65(7)	Ru - C(7) - O(7)	179.3(7)				
Ru - Co(2) - C(5)	85.4(3)́	Co(3)–Č(8)–Ó(8)	156.1(9)				
Ru-Co(2)-H(1)	90(2)	$C_0(3) - C(9) - O(9)$	177(1)				

the external reference $K_3[Co(CN)_6]$ saturated in D_2O . Standard parameters are as follows: pulse width 3 ms; sweep width 263 kHz; number of scans between 5000 and 100000. Selected physical and spectroscopic data for the complexes are given in Table 1. When product stability allowed, elemental analyses are given. Reactions were monitored by IR spectroscopy or TLC.

Preparation of HRuCo₃(CO)₁₀(PMe₂Ph)₂ (2a,b). HRuCo₃-(CO)12 (0.200 g, 0.28 mmol) and PMe2Ph (0.093 mL, 0.65 mmol) were refluxed for $1 h in CH_2Cl_2$ (20 mL). The color of the solution changed from wine red to dark violet. According to ¹H NMR data, the relative amounts of 2a and 2b were not reproducible. Before chromatography, the following amounts were observed: 1 16%, 2a 9% and 2b 75%. Chromatographic separation using a hexane/CH₂Cl₂ 5:1 mixture eluted some HRuCo₃(CO)₁₁(PMe₂-Ph) (1) (0.052 g, 0.058 mmol) followed by the violet title compound $HRuCo_3(CO)_{10}(PMe_2Ph)_2(2b) (0.095 g, 0.114 mmol, 66\%)$. This reaction produced only traces of the trisubstituted cluster. The fraction of HRuCo₃(CO)₁₀(PMe₂Ph)₂, however, showed some tendency to form HRuCo₃(CO)₉(PMe₂Ph)₃ in solution. HRu-Co₃(CO)₁₀(PMe₂Ph)₂ was also prepared from HRuCo₃(CO)₁₁(PMe₂-Ph) plus PMe₂Ph (1:1 ratio) in CH₂Cl₂. After 1 h the products were separated by TLC and characterized by IR: only 2a was found together with some unreacted 1. Further addition of PMe₂-Ph consumed all 1, and 3 was produced. Traces of 2b were observed after 2.5 h, and no 2a was present after 24 h. Anal. Calcd for 2b: C₂₆H₂₃Co₃O₁₀P₂Ru: C, 37.4; H, 2.78. Found: C, 37.0; H, 3.05. The ¹H-NMR signals of the hydride ligand are at δ -18.3 for the isomer **2b** with a Ru-bound phosphine and at δ -20.1 for the isomer 2a with two axial, Co-bound phosphines.

Table 4. Crystallographic Data for
HRuCo ₃ (CO) ₁₀ (PMe ₂ Ph) ₂ (2b), and
$HRuCo_3(CO)_9(PMe_2Ph)_3$ (3)

	2b	3
Formula	RuC03C26H23O10P2	RuCo3C33H34O9P3
fw	835.28	945.39
cryst syst	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$
a(Å)	17.69(1)	10.927(5)
b(Å)	14.275(7)	21.275(5)
c(Å)	12.518(7)	16.096(3)
β (deg)	97.64(5)	94.65(3)
$v(\mathbf{\hat{A}}^3)$	3133(3)	3729(1)
z	4	4
D_{calc} g cm ⁻³	1.77	1.684
20 limits, deg	5-50	2-50
no. of unique reflens	5505	7043
no. of obsd data	$2280 (I > 3\sigma(I))$	$3182(I > 2\sigma(I))$
h, k, l range	-22, 22: 0, 17: 0, 15	0. 13: 0. 25: -19. 19
μ, mm^{-1} ($\lambda = 0.709\ 26\ \text{Å}$)	2.12	1.87
no. params	379	542
Rª	0.0608	0.035
Ru ^b	0.0567	0.031
GOF⁰	1.4402	1.77
max residual, e Å ³ ; Δ/σ	1.68; 0.005	0.22; 1.31

^a $R = F - F_c/F_o$. ^b $R_w = w(|F_o| - |F_c|)^2/w|F_o|^2$]. ^c GOF = $[w(|F_o| - |F_c|)^2/(NO - NV)]$; NO = number of observed reflections; NV = number of variables.

Preparation of HRuCo₃(CO)₉(PMe₂Ph)₃ (3). HRuCo₃-(CO)₁₁(PMe₂Ph) (1) (0.032 g, 0.044 mmol) and PMe₂Ph (0.014 mL, 0.098 mmol) were dissolved in CH₂Cl₂ (5 mL). The solution was stirred for 0.25 h at room temperature, the color changed from wine red to violet, Me₃NO (0.005 g, 0.045 mmol) was added, and the solution became immediately dark violet. After few minutes the TLC plates indicated the presence of only HRuCo₃(CO)₉(PMe₂Ph)₃. The solution was filtered, and the solvent was evaporated in vacuo. The resulting solid was extracted with toluene, and the toluene solution was evaporated to dryness, giving HRuCo₃(CO)₉(PMe₂Ph)₃ (3) as a black powder (0.028 g, 67%) UV(CH₂Cl₂): λ_{max} 326, 380(sh), 500, 600 (sh) nm. Anal. Calcd for C₃₃H₃₄Co₃O₉P₃Ru: C, 41.93; H, 3.63. Found: C, 42.6, H, 3.61.

The title compound was also obtained as a byproduct in the preparation of $HRuCo_3(CO)_{10}(PMe_2Ph)_2$. Prolonged reaction times led to evolution of the IR spectrum and appearence of new products by TLC. A violet solution was obtained after 24 h of reaction time, which showed IR absorptions at 2001 vs, 1942 s, 1801 s, 1788 (sh) cm⁻¹ (in CH₂Cl₂). After 48 h of reaction time, the solution turned green and showed IR absorptions at 2002 m, 1954 vs, 1914 m, 1830 (sh), 1790 vs, 1766 vs cm⁻¹.

Reaction of HRuCo₃(CO)₁₁(PMe₂Ph) with TeMe₂. HRuCo₃-(CO)₁₁(PMe₂Ph) (0.150 g, 0.21 mmol) and TeMe₂ (0.032 mL, ca. 0.21 mmol) were refluxed in CH₂Cl₂ (20 mL) for 25 h. Chromatographic separation produced unreacted HRuCo₃(CO)₁₁(PMe₂Ph) (0.056 g, 0.08 mmol), HRuCo₃(CO)₁₀(PMe₂Ph)(TeMe₂) (4) (0.059 g, 0.07 mmol, 33%), and finally a trisubstituted cluster (0.002 g), which was not fully characterized. Anal. Calcd for C₂₀H₁₈Co₃O₁₀PRuTe (4): C, 28.1; H, 2.12. Found: C, 27.1; H, 2.73.

Reaction of HRuCo₃(CO)₁₁(PMe₂Ph) with SEt₂. HRuCo₃-(CO)₁₁(PMe₂Ph) (1) (0.108 g, 0.15 mmol) and SEt₂ (0.016 ml, 0.15 mmol) were dissolved in hexane (30 mL), and solid Me₃NO (0.016 g, 0.15 mmol) was added. The wine red solution, which rapidly became deep red, was stirred for 0.25 h at room temperature. In the TLC separation with a hexane/toluene (1: 1) mixture, two isomeric compounds were obtained. (i) HRuCo₃(CO)₁₀(PMe₂Ph)(SEt₂) was obtained as the violet isomer (5a) (0.025 g, 21%). UV (CH₂Cl₂): λ_{max} 310, 379, 515, 600 (sh) nm. Anal. Calcd for C₂₂H₂₂Co₃O₁₀PRuS: C, 33.56; H, 2.82; S, 4.07. Found: C, 34.0; H, 3.0; S, 3.7; (ii) HRuCO₃(CO)₁₀(PMe₂Ph)(SEt₂) was obtained as the brown isomer (5b) (0.046 g, 40%). UV(CH₂Cl₂): λ_{max} 311, 380, 475, 570 (sh) nm.

Table 5. Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (pm² × 10⁻¹) for HRuCo₃(CO)₁₀(PMe₂Ph)₂ (2b)

atom	x	У	z	$U_{ m eq}{}^a$
Ru (1)	3169(1)	5155(1)	626(1)	37(1)
Co(1)	2372(1)	4666(2)	-1320(2)	36(1)
Co(2)	2024(1)	6161(1)	-457(2)	36(1)
Co(3)	1697(1)	4629(2)	308(2)	39(1)
P(2)	1702(3)	4374(3)	-2932(4)	50(2)
P (1)	3605(2)	5706(3)	2384(3)	39(1)
O(1)	3946(7)	3281(9)	1117(10)	70(5)
O(3)	4534(8)	5974(9)	-288(11)	77(6)
O(4)	3781(8)	3863(11)	-1818(13)	94(7)
O(6)	3043(8)	7539(8)	595(10)	68(5)
O(7)	1003(8)	7617(11)	-1412(11)	89(7)
O(8)	2295(7)	3946(9)	2404(11)	72(5)
O(9)	232(7)	3768(11)	474(13)	96(7)
O(12)	2931(7)	6397(9)	-2262(10)	66(5)
O(13)	2147(7)	2756(8)	-520(10)	70(5)
O(23)	1175(7)	6267(8)	1430(9)	59(5)
C(1)	3661(9)	3986(13)	934(13)	46(6)
C(3)	4031(10)	5665(13)	76(14)	55(7)
C(4)	3261(11)	4183(12)	-1603(16)	55(7)
C(6)	2729(10)	6890(13)	267(12)	48(7)
C(7)	1383(10)	7017(14)	-1076(15)	55(8)
C(8)	2213(10)	4289(13)	1597(17)	52(7)
C(9)	804(11)	4127(13)	367(15)	55(7)
C(12)	2612(10)	5948(12)	-1668(13)	49(7)
C(13)	2102(10)	3573(13)	-546(15)	53(7)
C(23)	1466(9)	5897(12)	771(13)	47(7)
C(201)	861(9)	5094(12)	-3289(13)	49(6)
C(202)	145(12)	4784(16)	-3052(17)	91(10)
C(203)	-494(12)	5337(21)	-3274(21)	109(13)
C(204)	-460(17)	6200(19)	-3684(20)	99(12)
C(205)	228(17)	6511(16)	-3906(22)	111(13)
C(206)	881(14)	5963(15)	-3711(18)	101(11)
C(211)	1366(13)	3203(13)	-3151(16)	92(10)
C(212)	2237(11)	4585(16)	-4072(13)	85(9)
C(101)	4144(9)	4840(11)	3222(12)	39(6)
C(102)	3854(11)	4332(13)	3983(13)	60(7)
C(103)	4248(15)	3647(18)	4598(18)	93(11)
C(104)	4979(17)	3475(14)	4420(17)	87(11)
C(105)	5322(12)	3980(14)	3677(17)	77(9)
C(106)	4891(11)	4663(13)	3095(14)	67(8)
C(111)	2902(9)	6146(13)	3168(13)	60(7)
C(112)	4271(10)	6709(11)	2460(13)	61(7)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Reaction of HRuCo₃(CO)₁₁(**PMe₂Ph) with Me₃NO.** Solid Me₃NO was added to a solution of HRuCo₃(CO)₁₁(PMe₂Ph) (1) (0.050 g, 0.069 mmol) in CH₂Cl₂ (10 mL). Evolution of CO₂ occurred immediately, and the wine red solution became violet. After 0.25 h of stirring at room temperature, the solution was evaporated in vacuo. The resulting solid was extracted with a hexane/CH₂Cl₂ (80:20) mixture, and this solution was placed at -15 °C for 12 h, giving black crystals of HRuCo₃(CO)₁₀(PMe₂-Ph)(NMe₃) (6a) (0.035 g, 67%).

Reaction of $HRuCo_3(CO)_{10}(PMe_2Ph)(NMe_3)$ with SEt₂. HRuCo₃(CO)₁₀(PMe₂Ph)(NMe₃) (6a) (0.030 g, 0.040 mmol) was dissolved in CH₂Cl₂ (5 mL) and SEt₂ (0.006 mL, 0.056 mmol) was added. The formation of a new violet compound was observed by TLC. After 0.5 h reaction at room temperature, the violet solution was evaporated in vacuo. The resulting solid residue contained only the violet isomer (5a) of HRuCo₃(CO)₁₀(PMe₂-Ph)(SEt₂) (0.025 g, 79%).

Reaction of HRuCo₃(CO)₁₁(SMe₂) with PMe₂Ph. HRu-Co₃(CO)₁₁(SMe₂) (0.370 g, 0.57 mmol) was dissolved in CH₂Cl₂ (30 mL) and PMe₂Ph (0.081 mL, 0.57 mmol) was added. No change was observed by IR after 1 h reaction at room temperature. Chromatographic separation produced HRuCo₃(CO)₁₁(PMe₂Ph) (1) (0.326 g, 0.45 mmol, 79%) and some HRuCo₃(CO)₁₀(PMe₂-Ph)₂ (0.019 g, 0.02 mmol).

This reaction was also monitored by ¹H NMR at 20 °C where the resonances of $HRuCo_3(CO)_{11}(SMe_2)$ were observed at δ –19.6

HDuCo.(CO).(DMa.Dh). (3)

Braunstein et al.

11KuC03(CO/9(1 Wie21 H/3 (5)					
atom	x	у	Z	$U_{ m eq}{}^a$	
Ru	2070.5(5)	2008.7(3)	7964.9(3)	36.1(3)	
Co(1)	2389.9(8)	781.7(4)	7653.2(5)	32.3(5)	
Co(2)	390.2(8)	1104.7(4)	8178.3(5)	33.7(5)	
Co(3)	853.6(9)	1367.1(5)	6737.6(6)	40.6(6)	
P(1)	7141(2)	197.8(9)	12609(1)	41(1)	
P(2)	8970(2)	4630.3(9)	13276(1)	38(1)	
P(3)	3709(2)	2602.2(9)	7515(1)	43(1)	
0(1)	3098(5)	1014(3)	5955(3)	61(3)	
O(2)	-1406(5)	1940(3)	7289(4)	70(4)	
O(3)	2121(5)	472(3)	9414(3)	53(3)	
O(4)	4849(4)	1154(3)	8230(3)	59(3)	
O(5)	-262(5)	1795(3)	9622(3)	83(4)	
O(6)	515(6)	3137(3)	8249(5)	100(5)	
O (7)	3081(5)	1970(3)	9763(3)	67(4)	
O(8)	1195(7)	2607(3)	6110(4)	104(4)	
O(9)	-486(7)	991(5)	5192(4)	126(6)	
C(1)	2465(6)	1028(3)	6499(4)	40(4)	
C(2)	-550(7)	1621(4)	7374(5)	49(5)	
C(3)	1820(6)	663(3)	8759(4)	34(3)	
C(4)	3849(6)	1061(3)	8013(4)	42(4)	
C(5)	49(6)	1539(4)	9059(5)	51(4)	
C(6)	1101(7)	2722(4)	8133(5)	56(5)	
C(7)	2707(6)	1985(4)	9084(4)	44(4)	
C(8)	1198(8)	2159(4)	6508(5)	66(6)	
C(9)	31(8)	1125(5)	5810(5)	68(6)	
C(10)	4928(7)	2776(3)	8319(5)	45(4)	
C(11)	6145(7)	2605(4)	8287(5)	59(5)	
C(12)	7003(8)	2784(4)	8930(6)	76(6)	
C(13)	6656(9)	3123(5)	9597(6)	82(6)	
C(14)	5466(9)	3282(4)	9630(5)	77(6)	
C(15)	4609(7)	3120(4)	9020(5)	62(5)	
C(16)	6827(7)	717(3)	11718(5)	51(4)	
C(17)	5884(8)	557(4)	11125(5)	62(5)	
C(18)	5557(9)	932(4)	10457(5)	76(6)	
C(19)	6162(9)	1462(5)	1034/(6)	85(6)	
C(20)	7110(9)	1043(4)	108/9(6)	82(6)	
C(21)	/445(8)	12/4(4)	11591(6)	68(5)	
C(22)	8140(0)	4817(3)	12278(4)	44(4)	
C(23)	/232(8)	4418(4)	11944(5)	64(5)	
C(24)	00/1(9)	4328(3)	11109(5)	81(7)	
C(25)	7822(0)	5017(0)	10709(5)	97(7)	
C(20)	7623(9)	5425(5)	11032(0)	97(7)	
C(27)	0421(7)	3320(4)	11013(0)	0/(0)	
C(20)	4307(8)	2301(4)	0003(3)	03(3)	
C(29)	5724(7)	33/0(4) 295(A)	/130(0)	00(0)	
C(30)	3/34(/) 810/(0)	203(4)	12221(2)	79(4)	
C(31)	0174(7)	5386(4)	12714(5)	/0(0) 63(5)	
C(32)	7756(7)	$\frac{3360(4)}{4431(4)}$	13042(5)	62(5)	
H(1)	860(60)	710(30)	7330(40)	4 00	

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor. ^b Refined isotropically.

 $(Co_3(\mu_3-H))$ and at $\delta 2.15$ (SMe₂). An equimolar amount of PMe₂-Ph was then added to the NMR-probe. Collection of the first NMR-spectrum was completed ca. 5 min after the addition. This spectrum showed the signal of free SMe₂ (δ 2.1) and a minor signal of HRuCo₃(CO)₁₁(SMe₂) (about 10%), although some PMe₂Ph was present according to the signals at δ 7.0–7.2 due to the PMe₂Ph phenyl protons. Accordingly, the Co₃(μ_3 -H) hydride signal moved from δ –19.6 to δ –20.2 (HRuCo₃(CO)₁₁(PMe₂Ph)). After a reaction of HRuCo₃(CO)₁₁(SMe₂) with PMe₂Ph (2:1 molar ratio) all the phosphine was consumed to form 1 and approximately equal intensity signals were observed for free and coordinated SMe₂.

Reaction of HRuCo₃(CO)₁₁(SeMe₂) with PMe₂Ph. This reaction was monitored in a NMR tube at 0 °C where the resonances of HRuCo₃(CO)₁₁(SeMe₂) (3.5 mol) were observed at δ -19.6 (Co₃(μ_3 -H)) and at δ 2.1 ppm (SeMe₂). An equimolar amount of PMe₂Ph was then added to the NMR-probe. The first NMR-spectrum was collected about 1 min after the addition. This spectrum showed the signals of free SeMe₂ (δ 2.0) and a very small signal at δ 2.1 due to the starting cluster. The Co₃(μ_3 -H)

hydride signal moved to δ -20.2 [corresponding to HRuCo₃-(CO)₁₁(PMe₂Ph)] and also the phenyl protons showed only the two signals due to coordinated PMe₂Ph at δ 7.3 and δ 7.1. As in the SMe₂ reaction above some HRuCo₃(CO)₁₁(SeMe₂) remained unreacted, even in the presence of a slight excess of phosphine.

Reaction of HRuCo₃(CO)₁₁(TeMe₂) with PMe₂Ph. HRu-Co₃(CO)₁₁(TeMe₂) (0.145 g, 0.19 mmol) and PMe₂Ph (0.026 mL, 0.18 mmol) were stirred in a hexane/CH₂Cl₂ mixture for 20 min. Chromatographic separation produced HRuCo₃(CO)₁₁(PMe₂Ph) (1) (0.030 g, 0.04 mmol) as a reddish brown band and HRuCo₃(CO)₁₀(PMe₂Ph)(TeMe₂) (4) (0.096 g, 0.11 mmol, 58%) as a dark red band. Anal. Calcd for C₂₀H₁₈Co₃O₁₀PRuTe: C, 28.1; H, 2.12. Found: C, 28.2; H, 2.17.

X-ray Crystallography

Suitable black crystals of 2b and 3 were obtained by slow crystallization from a CH_2Cl_2 /hexane solution at -10 °C. Unitcell parameters were calculated from the setting angles of 25 carefully centered high theta reflections. The intensities of three reflections were monitored every hour of exposure and showed no evidence of decay. Crystal data and intensity collection parameters are given in Table 4.

Structure Analysis and Refinement. Compound 2b. Diffraction measurements were carried out at room temperature on a Nicolet R3m diffractometer using graphite monochromatized Mo K α radiation. The metal atom positions were solved by the direct methods of the SHELXTL Plus program package (SHELXTL Plus, Release 3.4, Nicolet Co., Madison, WI, 1988). All remaining non-hydrogen atoms were located by the usual combination of the full matrix least squares refinement and difference electron syntheses. The non-hydrogen atoms were refined anisotropically. Both the methyl and phenyl hydrogen atoms were placed in calculated positions (C-H = 0.96 Å; U =0.08 Å²) and not refined. An empirical absorption correction was made with SHELXTL. The positional parameters obtained from the last cycle of refinement are listed in Table 5, with the corresponding standard deviations.

Compound 3. Diffraction measurements were carried out at room temperature on a Enraf-Nonius CAD-4 four-circle diffractometer using graphite monochromatized Mo K α radiation. After

Lorentz and polarization corrections the structure was solved by direct methods which revealed the Ru, Co, and P atoms of the asymmetric unit.¹² The remaining non hydrogen atoms were located after successive scale factor refinements and Fourier difference methods. After isotropic (R = 0.057) refinement, an absorption correction was made with DIFABS.¹³ After anisotropic refinement (R = 0.045), all the hydrogen atoms (in particular the hydridic H atom) were found using Fourier differences calculations. The whole structure was refined by full-matrix least-square methods (use of F magnitude; x, y, z, β_{ii} for Ru, Co, P, O and C atoms and x, y, z for H atoms; 542 variables and 3182 observations; $w = 1/\sigma(Fo)^2 = [\sigma^2(I) + (0.04 Fo^2)^2]^{-1/2})$ with the residuals given in Table 4. Neutral atom scattering factors used for all atoms and anomalous dispersion coefficients were obtained from standard sources.¹⁴ All the calculations were performed on a Digital MicroVax 3100 computer with the MOLEN package.¹² The positional parameters obtained from the last cycle of refinement are listed in Table 6, with the corresponding standard deviations.

Acknowledgment. We are grateful to Prof. P. Granger and T. Richert (Strasbourg) for their contribution to the ⁵⁹Co NMR study and to the CNRS (Paris) and the "Commission of the European Communities" for financial support (Contract No. ST2J-0479-C).

Supplementary Material Available: Atomic coordinates, including the hydrogen atoms (Tables S-I and S-IV), anisotropic thermal parameters (Tables S-II and S-V), and complete bond distances and angles (Tables S-III and S-VI) for complexes 2b and 3, respectively (16 pages). Ordering information is given on any current masthead page.

OM930852Q

(14) International Tables for X-Ray Crystallography; Kynoch: Birmingham, 1974; Vol IV, p 99.

⁽¹²⁾ Fair, C. K. MOLEN Version 1990, An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

⁽¹³⁾ Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.