Metal-Assisted Cleavage of a C–O Bond of a P-Bound Bifunctional Phosphine Ligand

Paul Steinert and Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received December 6, 1993*

Treatment of $[IrCl(C_2H_4)_2]_2$ (1) with the phosphino ester $iPr_2PCH_2CO_2Me$ affords the mononuclear complex trans- $[IrCl(C_2H_4)(iPr_2PCH_2CO_2Me-\kappa P)_2]$ (2), which reacts with CO to give trans- $[IrCl(CO)(iPr_2PCH_2CO_2Me-\kappa P)_2]$ (3) and with HC==CR to give $[IrH(C==CR)Cl-(iPr_2PCH_2CO_2Me-\kappa P)(iPr_2PCH_2CO_2Me-\kappa^2P,O)]$ (R = Ph (4), CO_2Me (5)). Upon heating, the alkynylhydridoiridium compounds 4 and 5 rearrange to yield the isomeric vinylidenemetal derivatives trans- $[IrCl(=C=CHR) (iPr_2PCH_2CO_2Me-\kappa P)_2]$ (R = Ph (6), CO_2Me (7)). Reaction of 3, 6, and 7 with Al_2O_3/H_2O leads to cleavage of a CH_3-O bond of one phosphino ester ligand and gives the chelate complexes $[Ir(L)(iPr_2PCH_2CO_2Me-\kappa P)(iPr_2PCH_2CO_2-\kappa^2 P,O)]$ (L = CO (8), C=CHPh (9), C=CHCO_2Me (10)) in 80-90\% yield. Compound 8 reacts with methyl iodide by oxidative addition to form the octahedral complex $[IrI(CH_3)(CO)(iPr_2PCH_2CO_2Me-\kappa P)-(iPr_2PCH_2CO_2-\kappa^2 P,O)]$ (11). The X-ray crystal structure of 8 has been determined (triclinic, space group PI (No. 2), with a = 9.124(5) Å, b = 11.301(7) Å, c = 12.126(6) Å, $\alpha = 79.34(4)^\circ$, $\beta = 78.92(4)^\circ$, $\gamma = 71.56(5)^\circ$, and Z = 2).

Introduction

We have recently shown that the use of the bifunctional phosphines iPr₂P(CH₂)₂OMe, iPr₂P(CH₂)_nNMe₂, and iPr₂-PCH₂CO₂R, which behave as "hemilabile" chelating ligands,¹ not only support the C—H activation of simple olefins such as ethene² but can also promote the rearrangement of terminal alkynes to vinylidene³ and even allenylidene units.^{4,5} When we attempted, in a continuation of our work on rhodium compounds of the general type [RhCl(κ -P-O)(κ^2 -P-O)],^{5,6} to prepare the corresponding iridium derivatives, we observed that instead of the expected square-planar complex [IrCl(iPr₂PCH₂CH₂OMe- κP)(*i*Pr₂PCH₂CH₂OMe- $\kappa^2 P$,O)] the octahedral C—H activation product [IrHCl(CH₂OCH₂CH₂PiPr₂- $\kappa^2 P_iC$)(*i*Pr₂- $PCH_2CH_2OMe \kappa^2 P, O)$] was formed.⁷ In the present paper we describe that with the phosphino ester iPr₂PCH₂CO₂-Me iridium(I) and iridium(III) compounds, including the vinylidene derivatives trans-[IrCl(=CHR)(iPr_2PCH_2 - $CO_2R-\kappa P)_2$], are obtained. In particular, under mild conditions (with Al₂O₃/H₂O as a support) a metal-assisted conversion of a P-coordinated iPr₂PCH₂CO₂Me to a chelating $iPr_2PCH_2CO_2^{-}$ ligand by cleavage of a CH₃-O bond takes place.

Results and Discussion

Preparation of (Ethene)-, Carbonyl-, and Vinylideneiridium(I) Complexes and of Alkynylhydridoiri-

dium(III) Complexes with $iPr_2PCH_2CO_2Me$ as Ligand. The chloro-bridged ethene complex $[IrCl(C_2H_4)_2]_2$ (1)

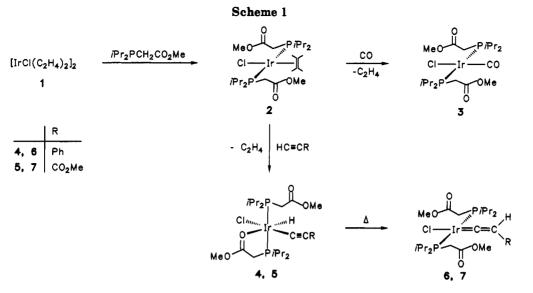
reacts with $iPr_2PCH_2CO_2Me$ in a pentane suspension at room temperature by partial displacement of the olefinic ligands to give the mononuclear compound *trans*-[IrCl-(C₂H₄)($iPr_2PCH_2CO_2Me \cdot \alpha P$)₂] (2) in almost quantitative yield. The ¹H and ³¹P NMR spectra of 2, which has been isolated as an orange, only slightly air-sensitive solid, reveal that the two phosphino ester ligands are equivalent and in positions *trans* to each other (see Scheme 1). Furthermore, the appearance of one band in the IR spectrum at 1732 cm⁻¹ for the C=O stretching frequency indicates⁸ that the ester groups of the phosphines are not involved in the coordination to the metal.

When CO is passed through a solution of 2 in benzene, a rapid displacement of ethene by carbon monoxide occurs and the carbonyl complex trans- $[IrCl(CO)(iPr_2PCH_2CO_2 Me - \kappa P_{2}$ (3) is formed again in excellent yield. Whereas in the IR spectrum of 3 the ν (C=O) band is observed at 1940 cm⁻¹, the C=O stretch appears at nearly the same position (1728 cm^{-1}) as in the spectrum of 2. In addition, treatment of 2 in benzene with HC = CPh and $HC = CCO_2 Me$ spontaneously leads to the substitution of the ethene ligand and to the formation of the alkynylhydridoiridium(III) compounds [IrH(C=CR)Cl(iPr₂- $PCH_2CO_2Me-\kappa P(iPr_2PCH_2CO_2Me-\kappa^2 P,O)] (R = Ph (4),$ CO_2Me (5)). If the reaction of 2 with HC=CCO_2Me in C_6D_6 is monitored by NMR spectroscopy, the temporary appearance of a singlet at δ 2.10, assigned to the HC=C proton, indicates that the coordination of the alkyne to the metal probably occurs initially (for comparison see refs 7a and 9). The subsequent intramolecular oxidative addition is accompanied by the chelation of one phosphino ester ligand, probably via the C=O oxygen of the ester unit. The IR spectra of 4 and 5 show two absorptions at about 1730 and 1650 cm^{-1} , which are assigned to the C=O

<sup>Abstract published in Advance ACS Abstracts, May 15, 1994.
(1) (a) Jeffrey, J. C.; Rauchfuss, T. B. Inorg. Chem. 1979, 18, 2658–2666. (b) Review: Bader, A.; Lindner, E. Coord. Chem. Rev. 1991, 108, 27–110.</sup>

Schulz, M.; Werner, H. Organometallics 1992, 11, 2790-2795.
 Werner, H.; Stark, A.; Schulz, M.; Wolf, J. Organometallics 1992,

 <sup>11, 1126–1130.
 (4)</sup> Stark, A. Dissertation, Universität Würzburg, to be submitted.
 (5) Windmüller, B. Diploma Thesis, Universität Würzburg, 1992.

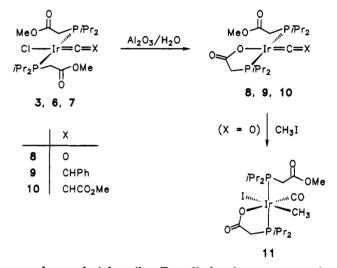

^{(6) (}a) Werner, H.; Hampp, A.; Peters, K.; Peters, E. M.; Walz, L.; von Schnering, H. G. Z. Naturforsch. 1990, 45B, 1548–1558. (b) Werner, H.;

 ^{(7) (}a) Schulz, M. Dissertation, Universität Würzburg, 1991. (b) Schulz,

M.; Werner, H. J. Am. Chem. Soc., to be submitted for publication.

⁽⁸⁾ Hesse, M.; Meier, H.; Zeeh, B. Spektroskopische Methoden in der organischen Chemie, 4th ed.; Georg Thieme Verlag: Stuttgart, Germany, 1991; p 47.

⁽⁹⁾ Höhn, A.; Werner, H. J. Organomet. Chem. 1990, 382, 255-272.



Scheme 2

stretching frequencies of the free and the coordinated CO₂R groups. At room temperature, both compounds 4 and 5 are fluxional in solution, as can be seen by the appearance of one broad singlet (doublet in off-resonance) in the ³¹P NMR spectra. The bond-breaking and bond-forming process is frozen out at low temperature, and thus in the spectrum of 5 at -80 °C the typical AB pattern (with two doublets at δ 18.68 and 34.33) is observed. From the coalescence temperature (-35 °C) and the difference in the chemical shifts of the two resonances a ΔG^* value of approximately 43 kJ/mol for the dynamic process can be calculated. The large P-P coupling constant of 355 Hz leaves no doubt that in the rigid octahedral molecule of 5 the two phosphorus atoms are in a *trans* disposition.

Warming benzene solutions of the alkynyl hydrido complexes to 80 °C for 15 h (4) or 60 h (5) gives the isomeric square-planar vinylideneiridium(I) compounds 6 and 7 in moderate to good yields. Both 6 and 7 are deep red, only slightly air-sensitive oils which readily dissolve in all common organic solvents. Similar to the ethene and the carbonyl complexes 2 and 3, the IR spectra of 6 and 7 each reveal only one ν (C=O) band at about 1730 cm⁻¹ and, therefore, the formation of a five-coordinated compound can be excluded. The most typical feature of the ¹H NMR spectra of 6 and 7 is the high-field signal of the =-CHR vinylidene proton at δ -2.46 and -2.05, which is reminiscent of the values found for the bis(triisopropylphosphine)iridium derivatives *trans*-[IrCl(=C=CHR)(PiPr_3)_2].^{9,10}

Conversion of a Phosphino Ester to a Phosphinoacetate Ligand. During our attempts to purify the carbonyl and vinylidene complexes 3, 6, and 7 by chromatographic techniques using deactivated basic Al₂O₃, we observed that a subsequent reaction occurs which by formal elimination of CH₃Cl gives the novel chelate compounds $[Ir(L)(iPr_2PCH_2CO_2Me-\kappa P)(iPr_2PCH_2CO_2-\kappa^2 P,O)]$ (L = CO (8), C=CHPh (9), C=CHCO₂Me (10)) in 80-90% yield. Since the starting materials 3, 6, and 7 are inert toward water, we assume that the basic aluminum oxide initiates the cleavage of the CH₃—O ester bond and that this process is followed by an intramolecular displacement of the chloride ligand by the phosphinoacetate unit. The carbonyl complex 8 forms bright yellow air-stable crystals, whereas the vinylidene derivatives 9 and 10 are isolated

as red or red-violet oils. For all the three compounds correct elemental analyses have been obtained. As far as the spectroscopic data of 8–10 are concerned, the common feature is that in the ¹H NMR spectra, in contrast to those of 3, 6 and 7, two doublets for the PCH₂ protons and four signals (doublets of doublets) for the PCH₂ and two are observed. In agreement with this, the ¹³C NMR spectra also show two resonances for the PCH₂ and two signals for the PCH₂CO₂ and PCH₂CO₂Me carbon atoms which not only differ in the chemical shift but, more significantly, in the size of the P—C coupling constant. Accordingly, the ³¹P NMR spectra of 8–10 reveal two resonances as part of an AB system, while in the IR spectra two C==O stretching frequencies attributable to the CO₂⁻ and the CO₂Me groups are observed.

The ester cleavage cannot be reversed upon treatment of the chelate complexes with methyl iodide. With a 2-fold excess of CH₃I, compound 8 reacts to give a colorless airstable oil of the composition [IrI(CH₃)(CO)(*i*Pr₂PCH₂-CO₂Me- κ P)(*i*Pr₂PCH₂CO₂- κ ²P,O)] (11), which is an uncharged octahedral iridium(III) complex (see Scheme 2). From the spectroscopic data for 11, it cannot be unambiguously decided whether the iodo and the methyl ligands are *trans* or *cis* to each other, even though the data would be consistent with a *trans* disposition. The IR as well as the ¹H and ³¹P NMR spectra leave no doubt that one phosphino ester and one phosphinoacetate ligand are

⁽¹⁰⁾ Werner, H.; Höhn, A.; Schulz, M. J. Chem. Soc., Dalton Trans. 1991, 777-781.

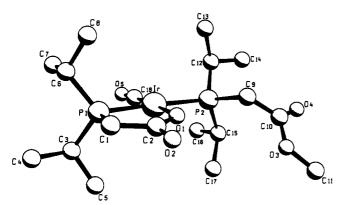


Figure 1. SCHAKAL plot of complex 8.

 Table 1. Selected Bond Distances and Angles with Esd's for 8

		-	
Bond Distances (Å)			
Ir P 1	2.281(1)	P2C15	1.839(5)
Ir-P2	2.328(1)	O1C2	1.300(5)
Ir–O1	2.060(3)	O2–C2	1.211(6)
Ir-C18	1.807(5)	O3C10	1.333(6)
P1-C1	1.824(5)	O3-C11	1.445(8)
P1-C3	1.844(5)	O4-C10	1.192(5)
P1-C6	1.842(6)	O5-C18	1.150(6)
P2C9	1.855(5)	C1–C2	1.518(7)
P2-C12	1.841(4)	C9C10	1.492(8)
	Bond Ang	iles (deg)	
P1–Ir–P2	174.39(4)	Ir-P2C9	112.8(1)
P1-Ir-O1	82.76(9)	Ir-P2-C12	112.7(2)
P1-Ir-C18	93.8(2)	Ir-P2-C15	114.4(1)
P2-Ir-O1	91.67(9)	Ir-01-C2	124.0(3)
P2-Ir-C18	91.7(2)	P1C1C2	111.7(3)
O1-Ir-C18	176.4(2)	O1-C2-O2	122.4(5)
Ir-P1-C1	102.4(2)	O1-C2-C1	118.7(4)
Ir-P1-C3	115.4(2)	O2C2C1	118.9(4)
Ir-P1-C6	118.5(1)	IrC18O5	177.1(4)

coordinated to the metal, and thus the formation of 11 is understood as an oxidative addition. Even when it is heated, the carbonylmethylmetal complex does not react by an intramolecular ligand-assisted insertion of CO into the Ir-CH₃ bond to give an acetyliridium(III) derivative.

Molecular Structure of 8. A single-crystal X-ray diffraction study of the carbonyl complex 8 confirms the structural proposal shown in Scheme 2. The SCHAKAL plot (Figure 1) reveals that the iridium is coordinated in a square-planar fashion with a P1-Ir-O1 bite angle (82.76(9)°) that slightly deviates from the 90° value. The phosphorus-metal-phosphorus axis (angle 174.39(4)°) is almost linear, and the same is true for the O1-Ir-C18-O5 arrangement. Although both phosphorus atoms are linked to three alkyl groups, the two Ir-P bond lengths differ by about 0.05 Å. A similar situation has been found by Podlahová et al. for the tetracoordinated rhodium complex $[Rh(CO)(Ph_2PCH_2CO_2H-\kappa P)(Ph_2PCH_2CO_2-\kappa^2P,O)],$ where the two Rh-P distances are 2.346(2) Å (monodentate phosphine) and 2.302(2) Å (chelating phosphine), respectively.¹¹ In this context we note that square-planar palladium(II) and platinum(II) compounds with phosphino esters $R_2PCH_2CO_2Et$ (R = tBu, Ph) have been described by both Shaw¹² and Braunstein et al.¹³ and that in some of these compounds the ester group cannot only undergo O-metalation (to yield phosphinoacetates) but also activate the adjacent CH_2 unit to give phosphino enolate ligands. With the iridium complexes reported in this work, a similar C-metalation has never been observed.

Experimental Section

All experiments were carried out under an atmosphere of argon using Schlenk-tube techniques. The starting materials 1¹⁴ and *i*Pr₂PCH₂CO₂Me¹⁵ were prepared as described in the literature. Melting points were determined by DTA. IR spectra were recorded on a Perkin-Elmer 1420 infrared spectrophotometer and NMR spectra on Varian EM 360 L, JEOL FX 90 Q, and Bruker AMX 400 instruments. Abbreviations used: s = singlet, d = doublet, t = triplet, m = multiplet, vt = virtual triplet; N = ${}^{3}J(PH) + {}^{5}J(PH)$, N' = ${}^{2}J(PH) + {}^{4}J(PH)$ for ¹H NMR; N = ${}^{1}J(PC) + {}^{3}J(PC)$, N' = ${}^{2}J(PC) + {}^{4}J(PC)$ for ¹³C NMR.

Preparation of trans-[IrCl(C₂H₄)(iPr₂PCH₂CO₂Me-\kappa P)₂] (2). A suspension of 1 (101 mg, 0.18 mmol) in 5 mL of pentane was treated with iPr_2PCH_2CO_2Me(140\,\muL, 0.71 mmol) and stirred for 30 min at room temperature. An orange solid precipitated, which was separated from the solution, repeatedly washed with small amounts of pentane, and dried under vacuum: yield 206 mg (91%); mp 78 °C. Anal. Calcd for C₂₀H₄₂ClIrO₄P₂: C, 37.76; H, 6.65. Found: C, 37.77; H, 6.79. IR (KBr): \nu(C==O) 1732 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): \delta 3.22 (s, 6H, CO₂CH₃), 2.85 (m, 4H, PCHCH₃), 2.43 (vt, N' = 5.6 Hz, 4H, PCH₂), 1.60 (t, J(PH) = 4.5 Hz, 4H, C₂H₄), 1.38 (dvt, N = 15.5, J(HH) = 7.1 Hz, 12H, PCHCH₃), 1.20 (dvt, N = 13.9, J(HH) = 7.0 Hz, 12H, PCHCH₃). ³¹P NMR (162.0 MHz, C₆D₆): \delta 20.16 (s).

Preparation of trans-[IrCl(CO)($iPr_2PCH_2CO_2Me-\kappaP_2$] (3). A slow stream of carbon monoxide was passed through a solution of 2 (56 mg, 0.09 mmol) in 5 mL of benzene for ca. 15 s. A change of color from orange to bright yellow occurred. The solvent was removed under vacuum, and the remaining lemon yellow air-stable solid was repeatedly washed with pentane: yield 50 mg (90%); mp 77 °C. Anal. Calcd for C₁₉H₃₈ClIrO₅P₂: C, 35.87; H, 6.02. Found: C, 35.65; H, 5.93. IR (C₆H₆): ν (CO) 1940, ν (C=O) 1728 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 3.32 (vt, N' = 7.6 Hz, 4H, PCH₂), 3.21 (s, 6H, CO₂CH₃), 2.67 (m, 4H, PCHCH₃), 1.31 (dvt, N = 16.5, J(HH) = 7.1 Hz, 12H, PCHCH₃), 1.19 (dvt, N = 14.7, J(HH) = 7.0 Hz, 12H, PCHCH₃). ³¹P NMR (162.0 MHz, C₆D₆): δ 35.54 (s).

Preparation of [IrH(C=CPh)Cl(iPr2PCH2CO2Me-xP)-(*i*Pr₂PCH₂CO₂Me- $\kappa^2 P, O$)] (4). A solution of 2 (48 mg, 0.08 mmol) in 5 mL of benzene was treated with phenylacetylene (8 μ L, 0.08 mmol) and stirred for 5 min at room temperature. A change of color from orange to red occurred. The solvent was removed under vacuum, and the red-brown residue was repeatedly washed with small amounts of pentane and thoroughly dried: yield 44 mg (83%). Anal. Calcd for C₂₈H₄₄ClIrO₄P₂: C, 43.97; H, 6.24. Found: C, 43.63; H, 6.11. IR (C₆H₆): v(IrH) 2272, v(C==C) 2105, v(C==O) 1729, 1655 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.29 (m, 5H, C₆H₅), 3.41 (vt, br, 4H, PCH₂), 3.20 (s, 6H, CO₂CH₃), 3.02 (m, 2H, PCHCH₃), 2.84 (m, 2H, PCHCH₃), 1.40 $(dvt, N = 15.4, J(HH) = 6.9 Hz, 12H, PCHCH_3), 1.32 (dvt, N =$ 14.8, J(HH) = 7.3 Hz, 6H, PCHCH₃), 1.20 (dvt, N = 15.0, J(HH)= 7.1 Hz, 6H, PCHCH₃), -30.03 (s, br, 1H, IrH, transitional dynamic regime; at 60 MHz t, J(PH) = 13.5 Hz, high-temperature limit at this spectrometer frequency). ³¹P NMR (162.0 MHz, C_6D_6): δ 25.65 (s, br; d in off-resonance).

Preparation of [IrH(C=CCO₂Me)Cl($iPr_2PCH_2CO_2Me$ - κP)($iPr_2PCH_2CO_2Me$ - κ^2P , O)] (5). The preparation is analogous to that described for 4, using 2 (48 mg, 0.08 mmol) and HC=CCO₂-Me (7 μ L, 0.08 mmol) as starting materials. A red, only moderately air-sensitive oil is obtained: yield 44 mg (84%). Anal. Calcd for C₂₂H₄₂ClIrO₆P₂: C, 38.17; H, 6.12. Found: C, 38.24; H, 5.88. IR (C₆H₆): ν (IrH) 2275, ν (C=C) 2099, ν (C=O) 1731, 1681, 1648

⁽¹¹⁾ Jegorov, J.; Kratochvil, B.; Langer, V.; Podlahová, J. Inorg. Chem. 1984, 23, 4288-4291.

⁽¹²⁾ Empsall, H. D.; Hyde, E. M.; Pawson, D.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1977, 1292-1298.

⁽¹³⁾ Braunstein, P.; Matt, D.; Dusausoy, Y.; Fischer, J.; Mitschler, A.; Ricard, L. J. Am. Chem. Soc. 1981, 103, 5115-5125.

⁽¹⁴⁾ Onderdelinden, A. L.; van der Ent, A. Inorg. Chim. Acta 1972, 6, 420-426.

⁽¹⁵⁾ Burkart, W. Diploma Thesis, Universität Würzburg, 1990.

cm^{-1.} ¹H NMR (400 MHz, C₆D₆): δ 3.43 (s, 3H, C=CCO₂CH₃), 3.35 (vt, N' = 7.3 Hz, 4H, PCH₂), 3.13 (s, 6H, CO₂CH₃), 2.95 (m, 2H, PCHCH₃), 2.81 (m, 2H, PCHCH₃), 1.36 (dvt, N = 15.7, J(HH) = 7.8 Hz, 6H, PCHCH₃), 1.32 (dvt, N = 16.3, J(HH) = 8.0 Hz, 6H, PCHCH₃), 1.28 (dvt, N = 15.3, J(HH) = 7.5 Hz, 6H, PCHCH₃), 1.13 (dvt, N = 14.9, J(HH) = 7.5 Hz, 6H, PCHCH₃), -29.02 (s, br, 1H, IrH, transitional dynamic regime; at 60 MHz t, J(PH) = 13.0 Hz, high-temperature limit at this spectrometer frequency). ³¹P NMR (36.2 MHz, toluene-d₈, 25 °C): δ 25.83 (s, br; d in offresonance); at -80 °C AB system, δ (P) 34.33 and 18.68 (both d, J(PP) = 355.3 Hz).

Preparation of trans-[IrCl(=C=CHPh)(iPr₂PCH₂CO₂- $Me \cdot RP_{2}$ (6). A solution of 4 (67 mg, 0.09 mmol) in 5 mL of benzene was warmed with stirring to 80 °C for 60 h. After the solution was cooled to room temperature. the solvent was removed and the oily residue dissolved in 2 mL of benzene. The solution was chromatographed on Al_2O_3 (neutral, activity grade V). With benzene, a red fraction was eluted which was brought to dryness under vacuum. A deep red, only slightly air-sensitive oil was obtained; yield 32 mg (48%). Anal. Calcd for C₂₆H₄₄ClIrO₄P₂: C, 43.97; H, 6.24. Found: C, 44.38; H, 6.09. IR (C₆H₆): ν (C==O) 1728, ν(C=C) 1652 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.16 (m, 5H, C_6H_5), 3.40 (vt, N' = 7.2 Hz, 4H, PCH₂), 3.16 (s, 6H, CO_2CH_3), 2.94 (m, 4H, PCHCH₃), 1.35 (dvt, N = 16.3, J(HH) = 7.1 Hz, 12H, PCHCH₃), 1.20 (dvt, N = 14.3, J(HH) = 7.0 Hz, 12H, PCHCH₃), -2.46 (t, J(PH) = 2.9 Hz, 1H, C=-CH). ¹³C NMR (100.6 MHz, C_6D_6): δ 265.17 (t, J(PC) = 13.2 Hz, Ir=C), 170.65 $(vt, N' = 4.1 \text{ Hz}, CO_2CH_3)$, 128.74, 128.35, 125.46, 125.03 (all s, $C_{6}H_{5}$), 111.06 (t, J(PC) = 3.6 Hz, C=CHPh), 51.26 (s, $CO_{2}CH_{3}$), 24.34 (vt, N = 18.3 Hz, PCH₂), 23.18 (vt, N = 27.8 Hz, PCHCH₃), 19.17, 18.17 (both s, PCHCH₈). ³¹P NMR (162.0 MHz, C₆D₆): δ 27.01 (s).

Preparation of trans-[IrCl(=C=CHCO₂Me)(iPr₂PCH₂- $CO_2Me-\kappa P_{2}$ (7). The preparation is analogous to that described for 6, using 5 (76 mg, 0.11 mmol) as starting material. The reaction mixture, however, was warmed to 80 °C for 15 h (not for 60 h). A red-violet, almost air-stable oil was obtained; yield 59 mg (77%). Anal. Calcd for $C_{22}H_{42}CllrO_6P_2$: C, 38.17; H, 6.12. Found: C, 38.86; H, 6.03. IR (C_6H_6): ν (C=O) 1729, 1695, ν (C=C) 1617 cm⁻¹. ¹H NMR (400 MHz, C_6D_6): δ 3.47 (s, 3H, CHCO₂CH₃), $3.40 (vt, N' = 8.6 Hz, 4H, PCH_2), 3.22 (s, 6H, PCH_2CO_2CH_3), 2.87$ (m, 4H, PCHCH₃), 1.30 (dvt, N = 16.8, J(HH) = 7.1 Hz, 12H, $PCHCH_3$), 1.19 (dvt, $N = 14.0, J(HH) = 7.0 Hz, 12H, PCHCH_3$), -2.05 (t, J(PH) = 2.3 Hz, 1H, C=CH). ¹³C NMR (100.6 MHz, $C_{\theta}D_{\theta}$): δ 256.61 (t, J(PC) = 12.4 Hz, Ir=C), 170.45 (m, CH_2CO_2 -CH₃), 151.54 (s, CHCO₂CH₃), 103.20 (t, J(PC) = 2.5 Hz, C=CHCO₂CH₃), 51.43 (s, PCH₂CO₂CH₃), 50.42 (s, CHCO₂CH₃), 24.19 (vt, N = 18.9 Hz, PCH₂), 23.31 (vt, N = 29.2 Hz, PCHCH₃), 18.86, 18.03 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, C₆D₆): δ 29.71 (s).

Preparation of [Ir(CO)(iPr2PCH2CO2Me-KP)(iPr2PCH2- $CO_2 - \kappa^2 P, O$] (8). A solution of 3 (86 mg, 0.14 mmol) in 5 mL of benzene was chromatographed on Al₂O₃ (basic, activity grade V). With CH₂Cl₂, a yellow fraction was eluted which was brought to dryness under vacuum. A bright yellow air-stable solid was obtained, which was repeatedly washed with pentane and dried: yield 68 mg (87%). Anal. Calcd for C₁₈H₃₅IrO₅P₂: C, 36.92; H, 6.02. Found: C, 36.69; H, 6.11. IR (C₆H₆): ν (CO) 1945, ν (C=O) 1730, 1670 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 3.25 (s, 3H, CO_2CH_3), 3.11 (d, J(PH) = 8.5 Hz, 2H, PCH_2), 2.47 (m, 2H, $PCHCH_{3}$), 2.38 (d, J(PH) = 8.9 Hz, 2H, PCH_{2}), 1.73 (m, 2H, $PCHCH_3$, 1.25 (dd, J(PH) = 16.5, J(HH) = 7.1 Hz, 6H, $PCHCH_3$), $1.13 (dd, J(PH) = 14.6, J(HH) = 7.0 Hz, 6H, PCHCH_3), 0.99 (dd, J(PH) = 14.6, J(HH) = 7.0 Hz, 6H, PCHCH_3)$ $J(PH) = 16.9, J(HH) = 7.0 Hz, 6H, PCHCH_3), 0.84 (dd, J(PH))$ = 14.8, J(HH) = 6.9 Hz, 6H, PCHCH₃). ¹³C NMR (100.6 MHz, C_6D_6): δ 181.42 (dd, J(PC) = 14.8 and 8.4 Hz, PCH_2CO_2Ir), 176.79 (t, J(PC) = 9.7 Hz, IrCO), 169.88 (dd, J(PC) = 7.8 and 3.3 Hz, $PCH_2CO_2CH_3$, 51.41 (s, $PCH_2CO_2CH_3$), 25.10 (dd, J(PC) = 14.4and 2.0 Hz, PCH_2), 24.97 (dd, J(PC) = 26.9 and 1.3 Hz, $PCHCH_3$), 24.58 (dd, J(PC) = 30.6 and 2.0 Hz, PCHCH₃), 23.91 (d, J(PC) = 27.7 Hz, PCH₂), 18.77 (d, J(PC) = 3.8 Hz, PCHCH₃), 18.54 (d, J(PC) = 3.4 Hz, PCHCH₃), 18.12, 17.92 (both s, PCHCH₃). ³¹P

NMR (162.0 MHz, C_6D_6): AB system, $\delta(P)$ 42.92 and 37.34 (both d, J(PP) = 291.1 Hz).

Preparation of [Ir(=C=CHPh)(iPr2PCH2CO2Me-xP)- $(i Pr_2 PCH_2 CO_2 - \kappa^2 P, O)$] (9). The preparation is analogous to that described for 8, using 6 (73 mg, 0.10 mmol) as starting material. A red, only slightly air-sensitive oil was obtained: yield 54 mg (80%). Anal. Calcd for $C_{25}H_{41}IrO_4P_2$: C, 45.51; H, 6.26. Found: C, 45.79; H, 6.41. IR (C₆H₆): ν (C=O) 1728, 1668, ν (C=C) 1655 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.00 (m, 5H, C₆H₅), 3.23 $(d, J(PH) = 7.5 Hz, 2H, PCH_2), 3.22 (s, 3H, CO_2CH_3), 2.69 (m,$ 2H, PCHCH₃), 2.48 (d, J(PH) = 8.8 Hz, 2H, PCH₂), 1.91 (m, 2H, $PCHCH_3$, 1.31 (dd, J(PH) = 16.3, J(HH) = 6.9 Hz, 6H, $PCHCH_3$), $1.16 (dd, J(PH) = 14.1, J(HH) = 7.0 Hz, 6H, PCHCH_3), 1.03 (dd, J(PH) = 14.1, J(HH) = 7.0 Hz, 6H, PCHCH_3)$ $J(PH) = 16.5, J(HH) = 6.9 Hz, 6H, PCHCH_3), 0.88 (dd, J(PH))$ $= 14.5, J(HH) = 7.0 Hz, 6H, PCHCH_3, -1.70 (t, J(PH) = 2.8 Hz)$ 1H, CHPh). ¹³C NMR (100.6 MHz, C_6D_6): δ 274.68 (t, J(PC) =11.7 Hz, Ir=C), 182.93 (dd, J(PC) = 13.2 and 7.1 Hz, PCH₂CO₂-Ir), 170.29 (dd, J(PC) = 8.1 and 3.1 Hz, $PCH_2CO_2CH_3$), 128.33, 124.95, 124.75, 120.67 (all s, C_6H_5), 111.56 (t, J(PC) = 4.1 Hz, CHPh), 51.35 (s, CO_2CH_3), 24.51 (dd, J(PC) = 14.2 and 2.0 Hz, PCH_2), 24.34 (d, J(PC) = 25.4 Hz, PCH_2), 23.73 (dd, J(PC) =28.6 and 2.8 Hz, PCHCH₃), 23.65 (dd, J(PC) = 25.4 and 2.0 Hz, $PCHCH_3$, 19.10 (d, J(PC) = 4.1 Hz, $PCHCH_3$), 18.68 (d, J(PC)= 4.1 Hz, PCHCH₃), 18.09, 18.04 (both s, PCHCH₃). ³¹P NMR (162.0 MHz, C_6D_6): AB system, $\delta(P)$ 31.63 and 26.42 (both d, J(PP) = 330.0 Hz).

Preparation of [Ir(=C=CHCO₂Me)(*i*Pr₂PCH₂CO₂Me- κP (*i*Pr₂PCH₂CO₂- $\kappa^2 P$, O)] (10). The preparation is analogous to that described for 8, using 7 (94 mg, 0.14 mmol) as starting material. A red-violet, only slightly air-sensitive oil was obtained; yield 72 mg (83%). Anal. Calcd for C₂₁H₃₉IrO₆P₂: C, 39.31; H, 6.13. Found: C, 39.27; H, 6.17. IR (C₆H₆): ν(C=O) 1725, 1690, ν (C=C) 1615 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 3.50 (s, 3H, $CHCO_2CH_3$, 3.24 (s, 3H, $CH_2CO_2CH_3$), 3.18 (d, J(PH) = 8.4 Hz, $2H, PCH_2$, 2.65 (m, 2H, PCHCH₃), 2.43 (d, J(PH) = 8.9 Hz, 2H, PCH_2), 1.94 (m, 2H, PCHCH₃), 1.26 (dd, J(PH) = 16.5, J(HH)= 7.0 Hz, 6H, PCHCH₃), 1.14 (dd, J(PH) = 14.3, J(HH) = 7.0Hz, 6H, PCHCH₃), 1.03 (dd, J(PH) = 16.9, J(HH) = 7.1 Hz, 6H, $PCHCH_3$, 0.86 (dd, J(PH) = 14.7, J(HH) = 6.9 Hz, 6H, $PCHCH_3$), -1.34 (t, J(PH) = 2.4 Hz, 1H, $CHCO_2CH_3$). ¹³C NMR (100.6) MHz, C₆D₆): δ 268.64 (t, J(PC) = 11.2 Hz, Ir=C), 182.20 (dd, J(PC) = 13.3 and 8.1 Hz, PCH₂CO₂Ir), 170.05 (dd, J(PC) = 7.7and 3.4 Hz, PCH₂CO₂CH₃), 153.10 (s, CHCO₂CH₃), 103.72 (t, br, $J(PC) \approx 2.0$ Hz, $CHCO_2CH_3$), 51.43 (s, $PCH_2CO_2CH_3$), 50.25 (s, CHCO₂CH₃), 24.28 (dd, J(PC) = 15.7 and 1.6 Hz, PCH₂), 24.01 $(d, J(PC) = 26.6 \text{ Hz}, PCH_2), 23.83 (dd, J(PC) = 29.5 \text{ and } 2.8 \text{ Hz},$ PCHCH₃), 23.77 (dd, J(PC) = 26.0 and 2.0 Hz, PCHCH₃), 18.81 $(d, J(PC) = 3.8 Hz, PCHCH_3), 18.46 (d, J(PC) = 3.1 Hz, PCHCH_3),$ 17.94 (s, PCHCH₃). ³¹P NMR (162.0 MHz, C₆D₆): AB system, $\delta(P)$ 35.10 and 30.43 (both d, J(PP) = 310.4 Hz).

Preparation of [IrI(CH₃)(CO)(iPr₂PCH₂CO₂Me-κP)(iPr₂- $PCH_2CO_2 - \kappa^2 P, O$] (11). A solution of 8 (71 mg, 0.12 mmol) in 5 mL of benzene was treated with CH₃I (15 μ L, 0.24 mmol) and stirred for 20 h at room temperature. The solvent was removed, the oily residue was dissolved in 3 mL of benzene, and the solution was chromatographed on Al_2O_3 (neutral, activity grade V). With benzene, a light yellow fraction was eluted, which gave after removal of the solvent under vacuum a colorless air-stable oil: yield 66 mg (63%). Anal. Calcd for C₁₉H₃₈HrO₅P₂: C, 31.37; H, 5.26. Found: C, 31.06; H, 4.99. IR (C₆H₆): v(CO) 2020, v (C=O) 1732, 1672 cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 3.44 (dvt, N = $11.1, J(HH) = 16.2 \text{ Hz}, 1H, PCH_2), 3.43 (m, 1H, PCHCH_3), 3.37$ $(dvt, N = 8.7, J(HH) = 14.7 Hz, 1H, PCH_2), 3.24 (s, 3H, CO_2CH_3),$ $3.17 \text{ (dvt, } N = 8.7, J(\text{HH}) = 14.7 \text{ Hz}, 1\text{H}, \text{PCH}_2\text{)}, 3.03 \text{ (m, 1H,}$ $PCHCH_3$, 2.91 (dvt, N = 5.2, J(HH) = 16.2 Hz, 1H, PCH_2), 2.90 $(m, 1H, PCHCH_3), 2.08 (m, 1H, PCHCH_3), 1.31 (dvt, N = 16.5),$ $J(HH) = 7.2 \text{ Hz}, 3H, PCHCH_3), 1.27 (dvt, N = 16.6, J(HH) =$ 7.1 Hz, 3H, PCHCH₃), 1.14 (dvt, N = 17.0, J(HH) = 7.2 Hz, 6H, $PCHCH_3$, 1.13 (t, J(PH) = 4.8 Hz, 3H, $IrCH_3$), 1.08 (dvt, N =14.8, J(HH) = 7.1 Hz, 3H, PCHCH₃), 0.88 (dvt, N = 15.5, J(HH)= 8.1 Hz, 3H, PCHCH₃), 0.86 (dvt, N = 15.4, J(HH) = 6.9 Hz, 3H, PCHCH₃), 0.79 (dvt, N = 14.6, J(HH) = 7.1 Hz, 3H, PCHCH₃).

³¹P NMR (81.0 MHz, CDCl₃): AB system, δ (P) 3.40 and 2.47 (both d, J(PP) = 323.3 Hz).

Crystal Structure Analysis of 8. Single crystals were grown from acetone/pentane. Crystal data (from 23 reflections, 10° < $\theta < 15^{\circ}$): triclinic, space group $P\overline{1}$, (No. 2); a = 9.124(5) Å, b =11.301(7) Å, c = 12.126(6) Å, $\alpha = 79.34(3)^{\circ}$, $\beta = 78.92(4)^{\circ}$, $\gamma =$ 71.56(5)°, V = 1153.6 Å³, Z = 2, $d_{calcd} = 1.69$ g cm⁻³, μ (Mo K_a) = 59.2 cm⁻¹; crystal size $0.4 \times 0.4 \times 0.2$ mm; Enraf-Nonius CAD4 diffractometer, Mo K α radiation (0.709 30 Å), graphite monochromator, zirconium filter (factor 16.4); T = 293 K; $\omega/2\theta$ scan, $2\theta(\max) = 46^\circ$; 3425 reflections measured, 3187 independent reflections, 3073 regarded as being observed $(F_0 > 3\sigma(F_0))$. Intensity data were corrected for Lorentz and polarization effects, and an empirical absorption correction (ψ -scan method) was applied (minimum transmission 45.3%). The structure was solved by direct methods (SHELXS-86). Atomic coordinates and anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least squares (unit weights, Enraf-Nonius SDP). The positions of the hydrogen atoms were found by a final Fourier synthesis and refined isotropically. R = 0.017, $R_w = 0.021$: reflex/parameter ratio 8.19; residual electron density +0.74/-0.65 e Å⁻³.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (SFB 347) and the Fonds der Chemischen Industrie for financial support. We also gratefully acknowledge support by Mrs. R. Schedl und C. P. Kneis (elemental analysis and DTA), Mrs. M. L. Schäfer and B. Stempfle (NMR spectra), and Degussa AG (chemicals).

Supplementary Material Available: Tables of crystal data, bond lengths and angles, positional and thermal parameters, and least-squares planes and a molecular structure drawing for 8 (8 pages). Ordering information is given on any current masthead page.

OM9308203