Cyclopentadienyldicarbonyliron Halides as Electrophiles: Reactions of $(\eta^5\text{-}C_5H_5)Fe(CO)_2X$ **with RLi in the Presence of** PPh_3 To Produce $(\eta^4$ -exo-RC₅H₅)Fe(CO)₂(PPh₃) and **Preparation of** $[(n^5-C_5H_5)Fe(CO)C(O)Me](\mu n^1 n^1-dppf)[(n^4-exp-MeC_5H_5)Fe(CO)_2]$

Ling-Kang Liu* and Lung-Shiang Luh

Institute *of* Chemistry, Academia Sinica, Taipei, Taiwan *11529,* Republic *of* China, and Department *of* Chemistry, National Taiwan University, Taipei, Taiwan *10767,* Republic *of* China

Received March *14, 1994"*

The reaction of $(r^5-C_5H_5)Fe(CO)_2X$ (X = Cl, Br, I) with RLi (R = Me, n-Bu, s-Bu, Ph) in the presence of PPh₃ at low temperature changes the η^5 -C₅H₅ bonding mode in (η^5 -C₅H₅)Fe(CO)₂X to an η^4 -RC₅H₅ bonding mode in $(\eta^4$ -RC₅H₅)Fe(CO)₂(PPh₃). The X-ray results of $(\eta^4$ -BuC₅H₅)- $Fe(CO)₂(PPh₃)$ reveal an exo -Bu group at the cyclopentadiene ring. The nucleophilic addition of R⁻ is therefore a direct one, without the Fe mediation. Generated in situ, $[(\eta^5 - C_5H_5)Fe(CO)_2]_2$ is believed to be the catalyst in the conversion of $(\eta^5$ -C₅H₅)Fe(CO)₂X and PPh₃ to the cationic intermediate $[(\eta^5 - C_5H_5)Fe(CO)_2(PPh_3)]^+$ which is much more electrophilic toward R⁻to produce $(\eta^4-\epsilon x \cdot R\mathbf{C}_5\mathbf{H}_5)\mathbf{F}\mathbf{e}(\mathbf{C}\mathbf{O})_2(\mathbf{P}\mathbf{P}\mathbf{h}_3)$. The conformation of $(\eta^4-\epsilon x \cdot R\mathbf{C}_5\mathbf{H}_5)\mathbf{F}\mathbf{e}(\mathbf{C}\mathbf{O})_2(\mathbf{P}\mathbf{P}\mathbf{h}_3)$ may be described **as** a pseudo-square-pyramid with one of the CO ligands at the apical position. Refluxing 1:2 $(\eta^5$ -C₅H₅)Fe(CO)₂Me, and dppf gives $(\eta^5$ -C₅H₅)Fe(CO)(η^1 -dppf)C(O)Me which, upon treatment of MeLi at low temperature, yields $[(\eta^5-C_5H_5)Fe(CO)C(O)Me](\mu,\eta^1,\eta^1\text{-dppf})[(\eta^4-exo-MeC_5H_5)-$ Fe(CO)₂], a complex with a dppf linking two iosmeric, methylated $[(C_5H_5)Fe(CO)_2]$ units, one end in the form of $(\eta^6$ -C₅H₅)Fe(CO)C(O)Me and the other end in the form of $(\eta^4$ -exo-MeC₅H₅)- $Fe(CO)₂$.

Introduction

Treatment of carbon nucleophiles such **as** alkyl anion R-with the half-sandwich compounds $(\eta^5$ -C₅H₅)Fe(CO)₂X $(X = Cl, Br, I)$ produces metal alkyls $(\eta^5$ -C₅H₅)Fe(CO)₂R.¹ The PR'_3 [R'_3 = Ph_3 , Ph_2Me , $PhMe_2$ (OPh)₃, etc.] induced alkyl migration of $(\eta^5$ -C₅H₅)Fe(CO)₂R (R = Me, Et, *i*-Pr, etc.) gives high yields of metal acyls $(\eta^5-C_5H_5)Fe(CO)$ - $(PR'_{3})C(O)R$, Fe becoming a chiral center.² Being configurationally stable3 and readily resolvable into optically pure forms,⁴ $(\eta^5$ -C₅H₅)Fe(CO)(PPh₃)C(O)CH₂R has been used extensively in organic synthesis and in mechanistic studies.⁵

In our attempts, the reactions of $(\eta^5$ -C₅H₅)Fe(CO)₂X with RLi in the presence of PPh₃ at low temperature have been studied. The reaction pattern found is a facile threecomponent reaction of $(\eta^5$ -C₅H₅)Fe(CO)₂X, PPh₃, and RLi,

***Abstract published in** *Advance ACS Abstracts,* **June 1, 1994.**

(3) Pannell, K. H. J. Chem. Soc., Chem. Commun. 1969, 1346.

(4) For example: Case-Green, S. C.; Costello, J. F.; Davies, S. G.; Heaton,

N.; Hedgecock, C. J. R.; Prime, J. C. J. Chem. Soc., Chem. Commun.

1993, 1621.

(5)

1986,108, 6328. (b) Davies, 5. G. *Organotransition Metal Chemistry: Applications to Organic Synthesis;* **Pergamon Press: Oxford, 1982. (c) Davies, S. G.** *Aldrichimica Acta* **1990,23, 31.**

which effectively changes the η^5 -C₅H₅ bonding mode in $(\eta^5$ -C₅H₅)Fe(CO)₂X to an η^4 -RC₅H₅ bonding mode in $(\eta^4$ - $RC_5H_5)Fe(CO)_2(PPh_3)$, instead of a summation of the metal-halide exchange and the phosphine-assisted migratory insertion mentioned above.

Results and Discussion

Product Analysis. Treatment of an equimolar amount of $(\eta^5$ -C₅H₅)Fe(CO)₂X and PPh₃ in THF at -78 °C dropwise with slightly more than **1** molar equiv of RLi produces an array of products: $(\eta^4$ -RC₅H₅)Fe(CO)₂(PPh₃) (1R), $(\eta^5$ - C_5H_5)Fe(CO)(PPh₃)C(O)R (2R), $[(\eta^5-C_5H_5)Fe(CO)_2]_2(3)$, ⁶ and a trace amount of $(\eta^5$ -C₅H₅)Fe(CO)(PPh₃)X (4).⁷ The

results of the three-component reaction are listed in Table 1, varying halides $(\eta^5$ -C₅H₅)Fe(CO)₂X (X = Cl, Br, I) and organolithium reagents RLi $(R = Me, n-Bu, s-Bu, Ph)$. All

^{(1) (}a) Koemer von Guetorf, E. A., Grevele, F.-W., Fischler, I., Eds. *The Organic Chemistry of Iron,* **Volume 1; Academic Press: New York,** 1978; p 352. (b) Davies, S. G. Organotransition Metal Chemistry:
Applications to Organic Synthesis; Pergamon Press: Oxford, 1982; pp **Sons: Chichestar, 1986, p 333. (d) Piper, T. S.; Wilkinson, G.** *J. Znorg. Nucl. Chem.* **1966,3,104. (e) Li, H.-J.; Turnbull, M. M.** *J. Organomet.* Chem. 1991, 419, 245. (f) Chukwu, R.; Hunter, A. D.; Santarsiero, B. D.; Bott, S. G.; Atwood, J. L.; Chassaignac, J. Organometallics 1992, 11, 589. (g) Akita, M.; Terada, M.; Moro-oka, Y. Organometallics 1992, 11, 589. (2)

⁽⁶⁾ (a) Adams, R. D.; Cotton., F. A. *J. Am. Chem. SOC.* **1973, %,6589.** (7) **Treichel, P. M.; Shubkin, R. L.; Barnett, K. W.; Reichard, D.** *Inorg.* **(b) Manning, A. R.** *J. Chem. SOC. A* **1968,1319.**

Chem. **1966,5,** 1177.

Table 1. Yields for Products Obtained in the Reaction of 1:l (n⁵-C₅H₅)Fe(CO)₂X/PPh₃ with RLi

		product ^a			
halide	RLi	1R	2R	3	
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Cl	MeLi	63.7	6.3	trace	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Br	MeLi	69.8	3.8	trace	trace
$(n^5$ -C ₅ H ₅)Fe(CO) ₂ I	MeLi	77.8	1.2	trace	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Cl	n-BuLi	58.2	11.5	5	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Br	n-BuLi	68.8	3.5	5	trace
$(n^5$ -C ₅ H ₅)Fe (CO) ₂ I	n-BuLi	82.9	<1	5	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Cl	s-BuLi	53.0	0.7	5.7	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Br	s-BuLi	57.2	0.9	4.8	trace
$(n^5-C_5H_5)Fe(CO)_2I$	s-BuLi	64.9	0.7	4.3	trace
$(n^5$ -C ₅ H ₅)Fe(CO) ₂ Cl	PhLi	47.2	19.1	trace	trace
$(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ Br	PhLi	59.1	7.8	trace	trace
$(n^5-C_5H_5)Fe(CO)_2I$	PhLi	70.9	3.6	trace	trace

In addition to the array of products **lR, 2R,** 3, and **4,** sometimes $(\eta^5$ -C₅H₅)Fe(CO)R was also collected in trace amount.

entries conform to a very similar reaction pattern, indicating that the reaction is a general one for a wide range of lithiated carbon nucleophiles, among which PhLi is the least favorable. Complex **1R** is always the major product with yields in the range from 47.2% to 82.9% whereas complex **2R** is a byproduct with yields between less than 1% and 19.1% . Complex 3 is isolated in a trace amount to less than 5.7% yield. For $(\eta^5$ -C₅H₅)Fe(CO)₂I, the reaction produces mostly 1R whereas for $(\eta^5$ -CsHs)Fe(CO)zCl, the yield of **1R** decreases and that of **2R** increases. For $(\eta^5$ -C₅H₅)Fe(CO)₂Br, the results are between those for $(\eta^5$ -C₅H₅)Fe(CO)₂I and $(\eta^5$ -C₅H₅)Fe(CO)₂-C1. Apparently, the yield of **2R** increases at the expense of **1R** in changing from I to Br to C1.

All complexes **1R** and **2R** have been characterized by spectroscopic methods. The lH NMR data of **1R** generally shows three peaks for five-ring protons of RC_5H_5 , i.e., the chemical shifts of the inner diene H atoms, the outer diene H atoms, and the endo H atom with ratios 2:2:1. Since the electron-donating tendency of substituents increases in the order $Ph < Me < n$ -Bu $< s$ -Bu, the chemical shift of the neighboring endo H atom in **1R** should clearly reveal such an electronic influence. Parallel to the electrondonating tendency, the observed **6** values of the endo H atoms are in the following order **1Ph** > **1Me** > **1Bu** > **1s-Bu,** with that of **1s-Bu** being at the most upfield. Compounds **1Bu** and **2Bu** have been studied with X-ray diffraction to establish the molecular connectivities of **1R** and **2R.** Complex **1Bu** has an Fe center coordinated by η^4 -BuC₅H₅, PPh₃, and two CO ligands. On the other hand, **2Bu** has an Fe center coordinated by η^5 -C₅H₅, PPh₃, CO, and $C(0)$ Bu. If the nucleophile R⁻ attacks the Fe center followed by a rearrangement to the n^5 -C₅H₅ ring, the resulting $1\mathbf{R}$ should be $(\eta^4\text{-}endo\text{-}\mathrm{RC}_5\mathrm{H}_5)\mathrm{Fe(CO)_2(PPh_3)}$. A direct attack at the η^5 -C₅H₅ ring should result in an $(\eta^4$ -exo-RC₅H₅)Fe(CO)₂(PPh₃). The exo/endo ambiguity of **1R** has also been cleared with the results of X-ray structure of **1Bu. As** seen in Figure 1, compound **1Bu** has an exo-Bu group at the cyclopentadiene ring. Retrochemically, the nucleophilic addition of **'R-** is therefore a direct one, without the Fe mediation.

Out of a handful of $(\eta^4$ -RC₅H₅)Fe(CO)₂(PPh₃) complexes known in the literature, complex **1Ph** has been synthesized via the reaction of $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]$ ⁺I-with PhLi in 14% yield.8 Compounds **lMe, lBu,** and **1s-Bu** have not been reported, however. Compound **2Me** has been

Figure 1. Molecular plot of $(\eta^4\text{-}BuC_5H_5)Fe(CO)_2(PPh_3)$ **(1Bu).** Selededbondlengtlw Fe-P 2.211(1);Fe-C(10) 1.796- (5); Fe-C(11) 1.752(6); O(10)-C(10) 1.129(5); O(11)-C(11) 1.158(7) A. Selected bond angles: P-Fe-C(10) 98.35(13); P-Fe-C(11) 92.06(15); Fe-C(10)-O(10) 178.9(4); Fe-C(11)-O(11) 178.4(4)°. Selected interplanar angle: $[C1, C2, C3,$ C4]-[C1, C4, C5] $34.9(4)$ °.

Figure 2. Molecular plot of $(n^5 \text{-} C_5H_5)Fe(CO)(PPh_3)C(O)Bu$ **(2Bu).** Selected structural parameters: **Fe-P** 2.198(2), Fe C(6) 1.723(9), Fe-C(7) 1.992(8), O(6)-C(6) 1.158(10), O(7)-C(7) 1.221(10), C(7)-C(8) 1.503(12) Å; P-Fe-C(6) 95.9(3), P-Fe-C(7) 91.3(3), C(6)-Fe-C(7) 92.1(4), Fe-C(6)-O(6) 177.1-(7), Fe-C(7)-O(7) 121.0(6), Fe-C(7)-C(8) 118.9(6)°; P-Fe- $C(7)-O(7) -48.4(4)$, P-Fe-C(7)-C(8) 134.9(6), C(6)-Fe-C(7)-O(7) $-144.4(7)$, C(6) $-Fe-C(7)-C(8)$ 38.9(5)°.

synthesized easily *via* the PPh₃-assisted methyl migration reaction of $(\eta^5$ -C₅H₅)Fe(CO)₂Me.² Complex 2Bu has previously been synthesized *via* deprotonation of $(\eta^5$ - C_5H_5)Fe(CO)(PPh₃)C(O)Me with n-BuLi and then trapped with n -PrBr⁹ or *via* repetitive catalytic hydrosilylation.¹⁰ Complex $2s-Bu$ has been synthesized from $(\eta^5-C_5H_5)Fe$ - $(CO)(PPh₃)C(O)$ Me deprotonation with n-BuLi, trapping with MeI, deprotonation with n-BuLi one more time, and then trapping with EtI.¹¹ Complex 2Ph has been synthesized *via* the PPhs-assisted migratory insertion reaction of $(\eta^5$ -C₅H₅)Fe(CO)₂Ph or *via* the PPh₃ substitution of CO in $(\eta^5$ -C₅H₅)Fe(CO)₂C(O)Ph.¹²

X-ray Structures. A molecular plot of **1Bu** is **shown** in Figure 1. The original η^5 -C₅H₅ bonding in $(\eta^5$ -C₅H₅)-

Green, M. L. H.; Whiteley, R. N. J. Chem. Soc. A 1971, 1943. **(8) (a)** Treichel, P. M.; Shubkin, R. L. *Znorg. Chem.* **1967,6,1328. (b)**

⁽⁹⁾ Baehiardee, G.; **Collingwood,** S. P.; Davies, S. G.; Preton, S. **C.** J. **(11)** *Akita, M.; Mitani, O.; Sayama, M.; Moro-oka, Y. Organometallics* (10) *Akita, M.; Mitani, O.; Sayama, M.; Moro-oka, Y. Organometallics* (1991, *10, 1394.*

⁽¹¹⁾ Baird, **G. J.;** Bandy, J. A.; Davies, S. G.; Prout, K. J. *Chem.* **SOC.,** *Chem. Commun.* **198.3, 1202.**

⁽¹²⁾ Nesmeyanov, A. **N.; Chapovsky,** Yu. A.; Polovyanyuk, I. V.; Makarova, **L. G.** J. *Organomet. Chem.* **1967, 7,329.**

 $Fe(CO)₂X$ changes to η ⁴-BuC₅H₅ bonding in 1Bu. C1, C2, C3, and C_4 are coplanar within 0.001 Å. The plane of C_5 , C_6 , Fe, C10, and O10 (deviations within 0.026 \AA) is perpendicular to the plane of Cl-C4, the interplanar angle being $90.6(2)$ °. The distance between C5 and the plane of $C1-C4$ is 0.582(9) \AA . The three atom plane of C1, C4, and C5 is tilted by 34.9(4)° away from Fe to the other side of the diene plane. The available $(\eta^4\text{-RC}_5H_5)Fe(CO)_{2-}$ (PPh₃) structures for comparison are $1Ph^{13}$ and $(η⁴-exo-$ PhCH₂C₅H₅)Fe(CO)₂(PPh₃),¹⁴ the latter being obtained from a photolytic reaction of $(\eta^5$ -C₅H₅)Fe(CO)₂CH₂Ph with PPh3.15 The corresponding angles are 34.1' in **1Ph** and 34.7' and 32.9' in the two independent molecules of *(q4* $exo\text{-}PhCH₂ChH₅)Fe(CO)₂(PPh₃)$. Both structures also show a planar diene skeleton which is orthogonal to the plane made of the unique C atom of the cyclopentadiene ring, the neighboring exo-C atom, Fe, and one of the CO groups-86.4(1)' for **1Ph** and 93.1' and 89.8' for two the independent molecules of $(\eta^4$ -exo-PhCH₂C₅H₅)Fe(CO)₂-(PPh3). On the basis of the structural parameters of **lBu,** 1Ph, and $(\eta^4$ -exo-PhCH₂C₅H₅)Fe(CO)₂(PPh₃), the minimum energy conformation of $(\eta^4\text{-RC}_5H_5)Fe(CO)_2(PPh_3)$ may reasonably be described **as** a pseudo-square-pyramid with one of the CO ligands at the apical position, $PPh₃$ in the basal plane trans to one of the double bonds, and the second CO ligand *trans* to the second double bond.

Shown in Figure 2, the acyl compound **2Bu** has the Bu group placed away from PPh_3 . The torsion angle of P-Fe-C7-C8 is 134.9(6)°. Because of the dipole-dipole repulsion, the acyl CO group is in an anti position to the carbonyl CO group where the torsion angle of C6-FeC7-07 is -144.4(7)', smaller than that in **2Ph,'&** 158.0(3)', and that in **(qS-C~Hs)Fe(CO)(PPh3)C(0)Me,'6** -168'. The coordination sphere around Fe atom conforms to a piano stool with the bonding geometry characteristic to a pseudooctahedron, the n^5 -C₅H₅ ring occupying the fac sites.¹⁷ The angles of P-Fe-C6, P-Fe-C7, and C6-Fe-C7 are **95.9(** 3) **O,** 91.3(3) *O,* and 92.1 (4)', respectively-closer to **90'** than 109.5'. Out of 24 crystal structures having the common fragment of $(\eta^5$ -C₅H₅)Fe(CO)(PR'₃)(acyl) as retrieved from the Cambridge Structural Database¹⁸ together with the crystal structure of **2Ph,** details about the bond angles among the piano stool legs and the torsion angles of $P-Fe-C7-O7$ and $C6-Fe-C7-O7$ are given in Table 2. The medians of the bond angles are 93.0', 90.3', and 94.6', respectively, and the medians of the torsion angles are 63.0 and 155.9°, respectively. These values compare well with the structural parametera of **2Bu.**

Reaction Pathways. The electrophile $(\eta^5$ -C₅H₅)Fe- $(CO)₂X$ is expected to receive RLi at the coordinated CO

(13) (a) Luh, L.4.; Liu, L.-K. *Bull. Znst. Chem. Academia Sinica* **1994, 41,39. (b) The structure of CpFe(CO)(PPh&(O)Ph was also reportad earlier in a different space group: Semion, V. A.; Struchkov, Yu. T.** *Zh.*

Strukt. Khim. **1969,10,664. (14) Sim, 0. A.; Woodhouse, D. I.; Knox, G. R.** *J. Chem. SOC., Dalton*

Trans. 1979, 629.

(15) Blaha, J. P.; Wrighton, M. S. J. Am. Chem. Soc. 1985, 107, 2694.

(16) X-ray of CpFe(CO)(PPh₉)C(O)Me. (a) Davies, S. G.; Dordor-

Hedgecock, I. M.; Warner, P.; Jones, R. H. J. Organomet. Chem. 198 Prout, K. J. Chem. Soc., Chem. Commun. 1986, 607. (d) Bernal, I.;
Brunner, H.; Muschiol, M. Inorg. Chim. Acta 1988, 142, 235. (e) Marsh,
R. E. Inorg. Chim. Acta 1989, 157, 1. (f) Liu, H. Y.; Koh, L. L.; Eriks,
K.; Giering,

(17) Seeman, J. **I.; Davies, S. G.** *J. Am. Chem. SOC.* **1986,107,6522 and references** within.

(18) *Cambridge Structural Database* **and the aeeociated software** *Cambridge Structural Database System.* **Version 4. Cambridge Cryastallographic Data Centre: Cambridge, 1991.**

site rather than the Fe center or the η^5 -C₆H₅ ligand initially.¹⁹ If followed by the Fe-X bond cleavage, the immediately product $(n^5-C_5H_5)Fe(CO)C(O)R$ —or its alkyl migrated, 18-e- equivalent, $(\eta^5$ -C₅H₅)Fe(CO)₂R-is then attacked by a second **R-** resulting in 3, with reduction probably via a direct coupling, an Fe hydride mechanism, or an Fe radical pathway.20

A neutral $(\eta^5$ -C₅H₅)Fe skeleton is resistive to modification in bonding such that an anionic alkyl usually deprotonates, not adds to, a n^5 -C₆H₆ ring. One example is the reaction of *n*-BuLi and $(\eta^5$ -C₅H₅)₂Fe, the product being $(\eta^5$ -C₅H₄Li)Fe(η^5 -C₅H₅)²¹ or, in the presence of **TMEDA,** $(\eta^5$ -C₅H₄Li)₂Fe.²² The carbonyl systems $(\eta^5$ - C_5H_5)Fe(CO)₂R giving evidence to the activity of $(\eta^5-C_5H_5)$ -Fe deprotonations are reported in the literature **as** well, e.g., the numerous migrations via such a deprotonation.²³ Generated in situ, 3 is believed to be the catalyst triggering the above-mentioned one-flask reaction in which the aromatic η^5 -C₅H₅ in $(\eta^5$ -C₅H₅)Fe(CO)₂X changes to the nonaromatic cyclopentadiene in **1R.** The catalytic property of **3 has** been reported in the replacement reaction of CO or I- of $(\eta^5$ -C₅H₆)Fe(CO)₂I with ligands, e.g., PPh₃, t -BuNC.²⁴ Shown in Scheme 1, complex 3 catalyzes the formation of cation $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]^+$ from $(\eta^5 C_5H_5$)Fe(CO)₂X and PPh₃. In this catalytic cycle, complex 3 is considered a better electrophile toward $PPh₃$ than $(\eta^5$ -C₆H₆)Fe(CO)₂X and the resulting $(\eta^5$ -C₅H₅)Fe(CO)₂is considered a better nucleophile toward $(\eta^5$ -C₆H₆)Fe- $(CO)₂X$ than PPh₃. The radical mechanism is not ruled out, however. The cation $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]^+$ is much more electrophilic toward R⁻ than the neutral complex $(\eta^5$ -C₅H₅)Fe(CO)₂X. The cationic complexes $(\eta^5$ - C_5H_5)FeL₃⁺, where L₃ = (CO)₃, (CO)₂(PPh₃), or [P(OPh)₃]₃, have been reported to undergo the nucleophilic addition on η^5 -C₅H₅ ring with PhLi or NaBH₄ to give η^4 -cyclopentadiene complexes.8

The IR spectrum of an equimolar mixture of $(n^5-C_5H_5)$ -Fe(CO)₂I and PPh₃ in THF at -78 °C (Figure 3b) is identical with that of only $(\eta^5$ -C₅H₅)(Fe(CO)₂I $(\nu_{CO}$ 2035, 1988 cm-l in THF, Figure 3a), that is, there is no detectable concentration of the cation $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]^+$ $(\nu_{\rm CO} 2058(s), 2013(s)$ cm⁻¹ in THF) in the 1:1 mixture before n-BuLi is added.

When a few drops of n-BuLi are added to the mixture of 1:1 $(\eta^5$ -C₅H₅)Fe(CO)₂I/PPh₃, complex 3 $(\nu_{\text{CO}} 1994, 1957,$ 1781 cm-l in THF) rapidly builds up to an observable concentration **as** shown in Figure 3c. Also exhibited are the small bands due to the cation $[(\eta^5-C_5H_5)Fe(CO)_2$ - $(PPh₃)$ ⁺, giving evidence to the presence of the cation shortly after the initial introduction of n-BuLi. To test the catalytic activity of 3, a mixture of $(\eta^5$ -C₅H₅)Fe(CO)₂I, PPb, and 0.05 mol % of 3 in THF **has** been found to

(21) Okuhara, K. J. Org. Chem. 1976, 41, 1487.

(22) Bishop, J. J.; Davison, A.; Katcher, M. L.; Lichtenberg, D. W.; Merrill, R. E.; Smart, J. C. J. Organomet. Chem. 1971, 27, 241.

(23) (a) Berryhill, **S. R.; Clevengeq G. L.; Burdurlu, F. Y.** *Organo- metallics* **1986,4,1609. (b) Pannell, K. H.; Cervantes,** J.; **Hernandez, C.; Cassias,** J.; **Vincenti, 5.** *Organometallics,* **1986,6,1056. (c) Cervantes,** J.; **Vincenti, S. P.; Kapoor, R. N.; Pannell, K. H.** *Organometallics* **1989, 8,744.**

(24) **(a) Coville, N.** J.; Albers, **M. 0.; Ashworth, T. V.; Singleton, E.** *J. Chem. Soc., Chem. Commun.* **1981,408. (b) Coville, N.** J.; **Darling, E. A.; Hearn, A. W.; Johton, P.** *J. Organomet. Chem.* **1987,328,375.**

⁽¹⁹⁾ Wong, A; Pawlick, R V.; Thomas, C. G.; Leon, D. R.; Liu, L.-K. *Organometallics* **1991,** *IO, 630.* **(20) Wmn, G., Stone, F. G. A., Abel, E. W., Eds.** *Comprehensive*

Organometallic Chemistry. The Synthesis, Reactions, and Structures of Organometallic Compounds, **Volume 4; Pergamon: Oxford, 1982; pp 331413.**

ACMPFE = **acetylcarbonyl(~5-l-methyl-3-phenylcyclopentadienyl)(triphenylphosphine)iron:** Attig, T. G.; Teller, R. G.; Wu, S.-M.; Bau, R.; Wojcicki, A. J. Am. Chem. Soc. 1979, 101, 619. ^b BAPYEW = acetylcarbonyl(n^5 -cyclopentadienyl)((1-(phenylethyl)amino)diphenylphosphine)iron: Korp, J. D.; Bernal, I. *J. Organomet. Chem.* 1981, 220, 355. CALWAN = (sec-butylcarbonyl)carbonyl(n⁵-cyclopentadienyl)(triphenylphosphine)iron: Baird, G. J.; Bandy, J. A.; Davies, S. G.; Prout, K. *J. Chem. Soc.*, Chem. Comm. 1983, 1202. d CUXBIG = carbonyl(n⁵-cyclopentadienyl)(3-hydroxy**l-oxo-3-phenylpropyl)(triphcnylphosphine)iron:** Liebeskind, L. **S.;** Welker, M. E. *Tetrahedron Lett.* 1984,25,4341. **e** DAWDUA = (Rs,SR)-carbonyl(\$ **cyclopentadienyl)((3-hydroxybutylcarbonyl-C)(triphenylphosphine)iron:** Bro*n, S. L.; Davies, S. G.; Warner, P.; Jones, R. H.; Prout, K. *J. Chem. SOC., Chem. Commun.* 1985, 1446. *Γ* DOKHOA = carbonyl(η⁵-cyclopentadienyl)(α,β-dimethylcinnamoyl)(triphenyl phosphite)iron: Reger, D. L.; Mintz, E.; Lebioda, L. *J. Am. Chem. SOC.* 1986,108,1940. 8 DUHXOT = **(R,S)-(E)-carbonylcrotonyl(q5-cyclopentadienyl)(triphenylphosphine)iron:** Davics, **S.** G.; Dordor-Hedgecock, **I.** M.; Sutton, K. H.; Walker, J. C.; Jones, R. H.; Prout, K. *Tetrahedron* 1986, 42, 5123. * FAMNAI = carbonyl(\$ **cyclopentadienyl)(3-phenyl-3-(phenylamino)- l-oxopropionyl)(triphenylphosphine)iron:** Liebeskind, L. S.; Welker, **M.** E.; Fcngl, R. W. *J. Am. Chem.* **Soc.** 1986, 108, 6328. FEHTUH = **carbonyl(~5-cyclopentadicnyl)(2-cyclopropylacetyl)(triphenylphosphine)iron:** Pannell, K. H.; Kapoor, R. N.; Wells, M.; Giasolli, T.; Parkanyi, L. *Organometallics* 1987, 6, 663. FELFOR = cis-(RS)-(Z)-carbonylcrotonyl(n⁵-cyclopentadienyl)(triph enylphosphine)iron: Davies, S. G.; Easton, R. C. J.; Sutton, K. H.; Walker, J. C.; Jones, R. H. J. *Chem. Soc., Perkin Trans. 1* 1987, 489. * FUXHUB
= carbonyl(η⁵-cyclopentadienyl)((2-methyl-1-(methoxymethyl)-2-phenyleth = carbonyl(η ⁵-cyclopentadienyl)((2-methyl-1-(methoxymethyl)-2-phenylethenyl)carbonyl)(triphenylphosphite)iron: Reger, D. L.; Klaeren, S. A.; Babin, J. E.; Adams, R. D. *Organometallics* 1988, 7, 181. ^{*I*}GADWEN2 = ac Koh, L. L.; Eriks, K.; Giering, W. P.; Prock, A. *Acta Crystallogr.* 1990, *C46*, *S1.* "GAKJEH = rac-(S*,S*,S*)(n⁵-cyclopentadienyl)carbonyl-**(triphenylphosphine)(3'-(benzoyloxy)-2'-mcthyl-1'-oxohept-6'-cnyl)iron:** Capon, R. J.; MacLeod, J. K.; Coote, S. J.; Davies, S. G.; Gravatt, G. L.; Dordor-Hedgecock, I. M.; Whittaker, M. *Tetrahedron* 1988, 44, 1637. ⁿ GEGHEF = acetylcarbonyl(7⁵-cyclopentadienyl)(dimethylphenylphosphine)iron: Herndon, J. W.; Wu, C.; Ammon, H. L. *J. Org. Chem.* 1988, 53, 2873. GIBTUG = carbonyl(n⁵-cyclopentadienyl)(triphenylphosphine)((6-methyl-
3-cyclohexene-4,5-dicarboxylic anhydride)acetyl)iron: Lee, G.-H.; Peng, S.-M.; Lu = (n⁵-cyclopentadienyl)benzoylcarbonyl(triphenylphosphine)iron: Krajewski, J. W.; Gluzinski, P.; Zamojski, A.; Mishnyov, A.; Kemme, A.; Guo, Z.-W. *J. Cryst. Spectrosc.* 1992, 22, 213. *q* KALTOG = $(\mu^2:\pi^5$ -(diphenylphosphino)cyclopentadienyl)acetyl(π^5 -cyclopentadienyl)methyltetracarbonylirontungsten: Stille, J. K.; Smith, C.; Anderson, O. P.; Miller, M. M. *Organometallics* 1989, 8, 1040. KAVVOS = acetylcarbonyl(η ⁵-methylcyclopentadienyl)-**(diphenylethy1phosphine)iron:** Liu, H. Y.; Rahman, M. **M.;** Koh, L. L.; Eriks, K.; Giering, W. P.; Prock, A. *Acta Crystallogr.* 1989, C45, 1683. \cdot KEWSEK = (2-phenyl-4-oxo-1-oxabutane-1,4-diyl)(carbonyl(η^5 -cyclopentadienyl)(triphenylphosphine)iron)-chlorobis(η^5 -cyclopentadienyl)titanium: Berno, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Organometallics 1990, 9, 1995. 'KITVEO = (R)-(+)-carbonyl(n⁵-cyclopentadienyl)nicotinoyl-**(((-)-menthy1oxy)diphenylphosphinc)iron:** Davies, S. G.; Edwards, A. J.; Skerlj, R. T.; Sutton, K. H.; Whittaker, M. *J. Chem.* **Soc.,** *Perkin Trans. I*¹⁹⁹¹, 1027. "SOGXOB = $(\eta^5$ -cyclopentadienyl)methoxyacetyl(triphenylphosphine)iron: Krajewski, J. W.; Gluzinski, P.; Zamojski, A.; Mishnyov, A.; Kemme, A.; Guo, Z.-W. *J. Cryst. Spectrosc.* 1991, 21, 271. ^p SOTYEF = acetylcarbonyl(η^5 -methylcyclopentadienyl)(methyldiphenylphosphine)iron: Liu, H. Y.; Rahman, M. M.; Eriks, K.; Giering, W. P.; Prock, A. *Acta Crystallogr.* 1992, C48, 433. * VIVTEZ = $(\eta^5$ -cyclopentadienyl)carbonyl-**((diphenylphosphino)acetyl)(triphenylphosphine)iron:** Berno, P.; Braunstein, P.; Floriano, C.; Chiesi-Villa, A,; Guastini, C. *Inorg. Chem.* 1991, *30,* 1407. v VOWVAE = (2-(benzyloxy)-2-methylheptanoyl)(η ⁵-cyclopentadienyl)carbonyl(triphenylphosphine)iron(II): Stolz, F.; Strazewski, P.; Tamm, C.; Neuberger, M.; Zehnder, M. *Angew. Ckem., In?. Ed. Engl.* 1992, *31,* 193.

produce yellow precipitates of $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]+I-$ **(70%)** after being stirred for 2 h. The 1:l mixture without externally added 3 gave only **4** even after a prolonged stirring, although it would give both 4 and $[(\eta^5 - C_5H_5)Fe$ - $(CO)₂(PPh₃]+I⁻$ under refluxing conditions.²⁵ Figure 3d shows the IR spectrum at the end of addition of 1 molar equiv of n-BuLi. Besides the *vco* stretching frequencies due to 3, the dominating v_{CO} bands at 1962, 1902 cm⁻¹ are due to the product **1Bu.**

In varying the halides, the product ratios of **1R/2R** have been found to decreasedrastically (I > Br > C1) **as** revealed in Table 1. Since the bond energy of Fe-I is the smallest (in complexes $FeX₂$, 279, 340, and 400 KJ/mol for Fe-I, Fe-Br, and Fe-Cl, respectively),²⁶ the catalytic process to shift $(\eta^5$ -C₅H₅)Fe(CO)₂I to the cation $[(\eta^5$ -C₅H₅)Fe(CO)₂- (PPh_3) ⁺ is the easiest one among three halides $(\eta^5$ -C₅H₅)- $Fe(CO)₂X$. The possibility of the R⁻ attack at CO of the cation $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_3)]^+$ to produce 2R is likely of less importance, judged from the $(\eta^5$ -C₅H₅)Fe(CO)₂I results. The initial R⁻ attack at a CO site of $(\eta^5$ -C₅H₆)- $Fe(CO)₂X$, followed by PPh₃ ligation with simultaneous Fe-X bond dissociation, would also produce **2R.** For *(~5-*

Figure 3. IR monitoring for the reaction of 1:1 $(\eta^5-C_5H_5)Fe(CO)_2I/PPh_3$ with n-BuLi. (a) IR spectrum of $(\eta^5-C_5H_5)Fe(CO)_2I$ in THF at -78 °C. (b) IR spectrum of an equimolar mixture of $(\eta^5$ -C₆H₆)Fe(CO)₂I and PPh₃ in THF at -78 °C. (c) Adding a few drops of n-BuLi to (b). (d) Adding **1** molar equiv of n-BuLi to (b).

 C_5H_5)Fe(CO)₂Cl, with its higher barrier in steps involving Fe-Cl bond dissociation, the rate of 3-catalyzed reaction is lowered, making the associative ligand substitution of Cl⁻ in the intermediate $(\eta^5$ -C₅H₆)Fe(CO)C(O)R-Cl⁻ by PPhs competitive, giving an additional, important route to the increased production of 2R. The PPh₃ ligand in the cation $[(p^5-C_5H_5)Fe(CO)_2(PPh_3)]^+$ directs the incoming nucleophile R^- to the η^5 -C₅H₆ site. Without PPh₃, $[(\eta^5 C_5H_5\overline{F}e(CO)_2(THF)$ ⁺ simply reacts with a nucleophilic alkyl R^- to give $(\eta^5$ -C₅H₅)Fe(CO)₂R in enhanced yields.^{1e}

Preparation of $[(\eta^5-C_5H_5)Fe(CO)C(O)Me](\mu,\eta^1,\eta^1 \text{dppf}[(\eta^4\text{-}exc\text{-}MeC_5H_5) \text{Fe(CO)}_2]$. The unidentate complex $(\eta^5$ -C₅H₅)Fe(CO)(η^1 -dppf)C(O)Me has been produced in reluxing $1:2 \frac{(\eta^5 - C_5 H_5) \cdot \text{Fe(CO)}_2 M_e}{\text{He and dppf [dppf]}}$ $(\eta^5$ -C₅H₄PPh₂)₂Fe]. A small amount of the bridging product $[(\eta^5-C_5H_5)Fe(CO)C(O)Me]_2(\mu,\eta^1,\eta^1\text{-dppf})$ is also obtained. Contrasted to the dppf-assisted methyl migration reaction, those of $\text{PPh}_2(\text{CH})_n\text{PPh}_2$ ($n = 2-4$) have been found to easily yield complexes derived from double assistance instead, i.e., the bridging products $[(\eta^5-C_5H_5)$ - $Fe(CO)C(O)MeJ_2[\mu,\eta^1,\eta^1-PPh_2(CH)_nPPh_2]$ being major.²⁷ The 1:1 $(\eta^5$ -C₅H₅)Fe(CO)(η^1 -dppf)C(O)Me and (η^5 -C₅H₅)-Fe(C0)zI are allowed to slowly react with dropping MeLi at -78 °C to create the novel complex $[(\eta^5-C_5H_5)Fe(CO)C (0)$ Me] $(\mu, \eta^1, \eta^1-\text{dppf})[(\eta^4-\text{exc}-\text{MeC}_5H_5)Fe(CO)_2]$ **(5)**, whose molecular connectivity is readily derived from the spectroscopic data. the IR *YCO* bands of **1908** and **1596** cm-' and a 31P **NMR** chemical shift of *6* **71.3** are typical of a $(\eta^5$ -C₅H₅)Fe(CO)C(O)Me linked to dppf; on the other hand,

(27) Ni, €2. **S.; Luh, L. S.; Liu, L.-K. Manuscript in preparation.**

^{(25) (}a) Zahwmeki, J.J. *Orgmmet.* **Chem. lsS1,412,C23. (b)** Alv, D. G.; Barnett, K. W. In *Inorganic and Organometallic Photochemistry* (Adv. Chem. Ser. 168); Wrighton, M. S., Ed.; American Chemical Society: Washington, DC, 1978; pp 115–131. (c) Pandey, V. N. *Inorg. Chim. Acta* 1977, 2

⁽²⁸⁾ Huhwy, J. E. Inorganic Chemistry: Principles *of* **Structure and Reactivity, 3rd** *ed.;* **Harper and** Row: **New York, 1983, Appendix 3.**

Cyclopentadienyldicarbonyliron Halides as Electrophiles

the IR ν_{CO} bands of 1966 and 1908 (overlapped) cm⁻¹, a ³¹P NMR chemical shift of δ 67.2, and the ¹H NMR shifts at **6 4.92, 2.52,** and **2.11** (integration **2:1:2)** are indicative for the presence of a $(\eta^4$ -RC₅H₅)Fe(CO)₂(PR₃) fragment in 5 as well, in good comparison with $(\eta^4 \text{-} \text{MeC}_5 H_5) \text{Fe(CO)}_2$ -(PPhs) which shows relevant IR *vco* bands of **1964** and **1904** cm-1 and chemical shifts at **6 73.2** (3'P) and *6* **5.03, 2.72,2.41** (lH, integration **2:1:2).** Thus, adppf linking two isomeric, methylated $[(C_5H_5)Fe(CO)_2]$ units has been obtained, one end in the form of $(\eta^5$ -C₅H₅)Fe(CO)C(O)Me and the other end in the form of $(\eta^4 \text{-} \text{MeC}_5\text{H}_5)\text{Fe(CO)}_2$.

The elaboration of the acyl Me group in $(\eta^5$ -C₅H₅)Fe- $(CO)(PPh₃)C(O)$ Me is well known.⁵ With a similar chirality center on the half sandwich Fe, $(\eta^5$ -C₅H₅)Fe(CO)- $(n¹-dppf)C(O)$ Me has been expected to proceed with a deprotonation by MeLi to give the anionic intermediate $(\eta^5$ -C₅H₅)Fe(CO)(η^1 -dppf)C(O)CH₂⁻ to be trapped by the electrophile $(\eta^5$ -C₅H₅)Fe(CO)₂I. On the basis of the results, the deprotonation pathway has been judged to be less important than the three-component reaction. Treating $(\eta^5-C_5H_5)Fe(CO)(\eta^1-dppf)C(O)$ Me sequentially with MeLi and then $(n^5\text{-}C_6H_6)Fe(CO)_2$ has produced very complex Fe-containing species which are not resolved. Within reasonable extension, Scheme **2** is a plausible mechanism toward the preparation of 5 —the dangling PPh₂ group of $(\eta^5-C_5H_5)Fe(CO)(\eta^1-dppf)C(O)$ Me coordinates to $(\eta^5-dppf)C(O)$ C_5H_5)Fe(CO)₂I to first form a cationic intermediate that is attacked by Me⁻ immediately, the methylation on η^5 - C_5H_5 occurring via an exo direction.

Experimental Section

General. *All* manipulations were performed under an atmosphere of prepurified nitrogen with standard Schlenk techniques, and **all** solvents were distilled from an appropriate drying agent.²⁸ Infrared spectra were recorded in CH_2Cl_2 using CaF_2 optics on aPerkin-Elmer 882 spectrophotometer. The 'H NMR spectra were obtained on Bruker AC200/AC300 spectrometers, with chemical shifts reported in δ values relative to the residual solvent resonance of CDCl_3 (7.24 ppm). The ^{31}P {¹H} NMR spectra were obtained on Bruker MSL200/AC200/AC300 spectrometers using 85 $\%$ H₂PO₄ as an external standard. The halides ($\eta^5\text{-C}_5\text{H}$ $\text{Fe}(\text{CO})_2\text{X}$ (X = Cl, Br, I) and ($\eta^5\text{-C}_5\text{H}_5\text{)}\text{Fe}(\text{CO})_2\text{Me}$ were prepared according to the literature procedures.²⁹ Other reagents were obtained from commercial sources, e.g., Aldrich, Merck, and wed without further purification.

Reaction of 1:1 $(\eta^5\text{-}C_5H_5)Fe(CO)_2X$ **and PPh₃ with MeLi.** $(\eta^5-C_5H_5)Fe(CO)_2X$ (X = Cl, Br, or I, respectively, 5 mmol) and $PPh₃$ (1.312 g, 5 mmol) were dissolved in THF (150 mL) and maintained at -78 °C. MeLi (1.6 M, 3.75 mL, 6 mmol) in 30 mL of ether at -78 "C was added dropwise to the solution. The mixture was stirred for an additional 1 h before being warmed up to room temperature and stirred overnight. The solution was then quenched with water. The organic layer was combined with the benzene extracts of the water layer, dried over MgSO4, and then evaporated to dryness under vacuum. The resulting oillike concentrates were mixed well with 5 **g** of silica gel and 10 mL of CH2Cl2 and then pumped dry before being packed to the top of a Si02 column. The purification by column chromatography eluting with 1:10-1:7 EtOAc/n-hexane gave, according to the order of appearance, four products: the yellow $(\eta^4 \text{-} MeC_5H_6)Fe(CO)_2$ - $(PPh₃)$ **(iMe), the orange** $(\eta^5-C_5H_5)Fe(CO)(PPh_3)C(O)Me$ **(2Me,**⁵ the purple **3,** and a trace amount of greenish **4.** The product distribution and the respective yields are listed in Table 1.

1Me: mp 131-133 °C; IR (CH₂Cl₂) ν_{CO} 1964 **(s)**, 1904 **(s)** cm⁻¹; ¹H NMR (CDCl₃) δ 0.33 (d, $J = 6$ Hz, 3H, Me), 2.41 (b, 2H, --CH=CHCHMe--), 2.72 (b, 1H, --CH=CHCHMe--), 5.03 (b, 2H, -CH=CHCHMe-), 7.32-7.42 (m, 15H, Ph); *'8c* NMR (CDCls) 6 28.2 **(8,** Me), **50.8** *(8,* -CH=CHCHMe-1, 57.6 *(8,* CH=CHCHMe--), 82.0 (s, -CH=CHCHMe--), 128.0-136.7 $(m, Ph), 219.8$ (d, ${}^{2}J_{P-C} = 10.1$ Hz, CO); ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR (CDCl₃) δ 73.2(s); MS (m/z) M⁺ 454 (parent ion). Anal. Calcd for $C_{26}H_{23}FeO_2P: C, 68.74; H, 5.10.$ Found: C, 69.04; H, 5.19.

 $\textbf{Reaction of 1:}$ $1 \left(\frac{\pi}{6} \textbf{-C}_5 \textbf{H}_5 \right) \textbf{Fe(CO)}_2 \textbf{X}$ and PPh₃ with *n*-BuLi. $(\eta^5$ -C₅H₅)Fe(CO)₂X (X = Cl, Br, or I, respectively, 2 mmol) and PPh₃ (525 mg, 2 mmol) were dissolved in THF (75 mL) and maintained at -78 "C. n-BuLi (1.6 M, 1.5 **mL,** 2.4 mmol) in 20 **mL** of n-hexane at -78 "C was added dropwise to the solution. The mixture was stirred for an additional 1 h before being warmed up to room temperature and stirred overnight. The solution was then fiitered and the fitrate **was** evaporated to dryneee under vacuum. The resulting oil-like concentrates were mixed with **5 g** of silica gel and 10 mL of CH2C12 and pumped *dry* before being packed to the top of a SiO₂ column. The purification by column chromatography eluting with 1:15-1:lO EtOAc/n-hexane gave, according to the order of appearance, four products: the yellow $(\eta^4\text{-}BuC_5H_5)Fe(CO)_2(PPh_3)$ (1Bu), the orange $(\eta^5\text{-}C_5H_5)Fe(CO)$ - $(PPh₃)C(O)Bu (2Bu), the purple 3, and trace amount of greenish$ **4.** The product distribution and the respective yields are listed in Table 1. For **1Bu** and **2Bu,** the crystals suitable for X-ray diffraction were grown from CH_2Cl_2/n -hexane by a slow evaporation method.

^{~~ ~} *(28)* **Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R.** *Purification of Loboratory Chemicals;* **Pergamon Press: Oxford, 1981.**

^{(29) (}a) Dombek, B. D.; Angelici, R. J. *Inorg. Chim. Acta* 1973, 7, 345.
(b) Meyer, T. J.; Johnson, E. C.; Winterton, N. *Inorg. Chem.* 1971, *10*, 1673. (c) *Inorg. Synth.* 1971, *19*, 36. (d) *Inorg. Synth.* 1963, 7, 11 **King, R. B.; Bisnette, M. B.** *J. Organomet. Chem.* **1964,2, 15.**

1Bu: mp 123-124 °C; IR (CH₂Cl₂) ν_{CO} 1962 **(s)**, 1902 **(s)** cm⁻¹; 1H NMR (CDCls) 6 0.73-1.11 (m, 9H, Bu), 2.46 (b, 2H, 2H, -CH=CHCHBu-), 7.36-7.44 (m, 15H, Ph); ¹³C NMR *(CDCl₃)* δ 14.0 *(s, CH₂CH₂CH₂Me), 22.7 <i>(s, CH₂CH₂CH₂Me), 28.3* $(k, CH_2CH_2CH_2Me)$, 42.9 $(d, J = 5 Hz, CH_2CH_2CH_2Me)$, 56.0 $(k,$ $-CH=CHCHBu-$), 128.0-136.7 (m, Ph), 219.8 (d, ${}^{2}J_{P-C}=10.1$ (parent ion). Anal. Calcd for $C_{29}H_{29}FeO_2P$: C, 70.17; H, 5.89. Found: C, 70.16; H, 5.81. -CH=CHCHBu--), 2.61 (b, 1H, -CH=CHCHBu--), 5.06 (b, -CH=CHCHBu-), 56.5 **(s, --CH=CHCHBu-)**, 82.3 **(s,** Hz, CO); 3lP(lH) NMR (CDCls) 6 73.32 **(e);** MS *(m/z)* M+ 496

2Bu: mp 126-127 "C; IR (CH2C12) **YCO** 1912 **(a),** 1602 (m) cm-l; 31P(lH) NMR (CDCb) 6 76.24 **(e);** MS *(m/z)* M+ 496 (parent ion). Anal. Calcd for $C_{29}H_{29}FeO_2P$: C, 70.17; H, 5.89. Found: C, 70.19; H, 5.86.

Reaction of 1:1 (η^5 -C₅H₅)Fe(CO)₂I and PPh₃ and 0.05 Equiv of 3. Under a N_2 atmosphere, $(n^5-C_6H_5)Fe(CO)_2I(1.52g, 5mmol)$, $PPh₃(1.312 g, 5 mmol), and 0.05 equiv of 3 were mixed completely$ and stirred for 2 h in THF (100 mL). The color of solution changed from black to green **4,** producing at the same time yellow precipitates that were later filtered, washed with THF for several times, and then dried in *uacuo.* The yellow crystallines of *[(q6-* C6H6)Fe(CO)z(PPha)]+I- were colleced *(ca.* 2 g, 70% yields): IR (CH2C12) **YCO** 2058 **(s),** 2013 **(8)** cm-1 (lit. 2045,2005 cm-1 in CHCb); mp 203-204 °C (lit.⁷ mp 205 °C). Reactions running at -78 °C and room temperature gave similar results, the rate for the latter being faster. The same reaction without 0.05 equiv of externally added 3 in the reaction mixture was **also** performed and mainly resulted in green $(\eta^5$ -C₅H₅)Fe(CO)(PPh₃)I under prolonged stirring.

Reaction of 1:1 $(\eta^5-C_5H_5)Fe(CO)_2X$ and PPh₃ with s-BuLi. $(\eta^5$ -C₅H₅)Fe(CO)₂X (X = Cl, Br, or I, respectively, 5 mmol) and PPhs (1.312 g, *5* mmol) were dissolved in THF (150 mL) and maintained at -78 "C. s-BuLi (1.3 M in cyclohexane, 4.0 mL, 5.2 mmol) in 30 mL of n-hexane at -78 °C was added dropwise to the solution. The mixture was stirred for an additional 1 h before being warmed up to room temperature and stirred overnight. The solution was then quenched with water. The organic layer was combined with the benzene extracts of the water layer, dried over MgSO4, and then evaporated to dryness under vacuum. The resulting oil-like concentrates were mixed with 5 g of silica gel and 10 mL of $CH₂Cl₂$ and pumped dry before being packed to the top of a $SiO₂$ column. Purification by column chromatography eluting with $1:10 EtoAc/n$ -hexane gave, according to the order of appearance, four products: the yellow $(\eta^4$ -s-BuC₅H₅)Fe(CO)₂-(PPha) (1s-Bu), the orange **(q6-C5H6)Fe(CO)(PPh)C(O)s-Bu** (2s-Bu),11 the purple 3,and a trace amount of greenish **4.** The product distribution and the respective yields are listed in Table 1.

1s-Bu: mp 125-126 °C; IR (CH₂Cl₂) ν_{CO} 1969 (s), 1909 (s) cm-1; 1H NMR (CDCls) **6** 0.48-1.26 (m, 9H, s-Bu), 2.36 (b, lH, (b, 2H, **-CH=CHCHs-Bu-),7.30-7.44** (m, 15H, Ph); 13C NMR (CDCl₃) δ 11.3 (s, CHMeCH₂Me), 15.2 (s, CHMeCH₂), 25.6 (s, CHMeCH₂Me), 46.2 (d, $J = 5$ Hz, CHMeCH₂Me), 54.6 (s, $-CH=CHCHs-Bu-$), 128.0–136.8 (m, Ph), 219.7 (d, $^{2}J_{P-C}$ = 10.1 Hz, CO); ³¹P{¹H} NMR *(CDCl₃)* δ 73.21 *(8)*; MS *(m/z)* M⁺ 516 (parent ion). Anal. Calcd for $C_{31}H_{25}FeO_2P$: C, 72.11; H, 4.88. Found: C, 72.01; H, 4.70. -CH=CHCHs-Bu-), 2.51 (b, 2H, -CH=CHCHs-Bu), 5.03 -CH=CHCHs-Bu--), 62.4(s, -CH=CHCHs-Bu-), 82.5 (s,

Reaction of 1:1 $(\eta^5-C_6H_6)Fe(CO)_2X$ and PPh₃ with PhLi. $(\eta^5$ -C₅H₅)Fe(CO)₂X (X = Cl, Br, or I, respectively, 5 mmol) and PPha (1.312 g, *5* mmol) were dissolved in THF (100 mL) and maintained at -78 °C. PhLi (1.8 M in 3:7 ether/cyclohexane, 3.0 mL, **5.4** mmol) in 20 mL of ether/cyclohexane at -40 "C was added dropwise to the solution. The mixture was stirred for an additional 1 h before being warmed up to room temperature and stirred overnight. The solution **was** then quenched with water. The organic layer was combined with the benzene extracts of the water layer, dried over MgSO4, and then evaporated to dryness under vacuum. The resulting oil-like concentrates were mixed with $5 g$ of silica gel and $10 mL$ of $CH₂Cl₂$ and pumped dry before being packed to the top of a $SiO₂$ column. Purification by column

 $a R = \sum |F_{\rm o}| - |F_{\rm o}| / \sum |F_{\rm o}|$. $b R_{\rm w} = [\sum w(|F_{\rm o}| - |F_{\rm o}|)^2 / \sum w |F_{\rm o}|^2]^{1/2}$. $c GOF$ $= [\sum w(|F_d - |F_d|)^2/(n-v)]^{1/2}$, $n =$ no. of observations, $v =$ no. of parameters.

chromatography eluting with $1:20 \text{ EtOAc}/n$ -hexane gave, according to the order of appearance, four products: the yellow $(\eta^4$ - $PhC_6H_6)Fe(CO)_2(PPh_3)$ (1Ph), the orange $(\eta^6-C_6H_6)Fe(CO)$ - $(PPh₃)C(O)Ph (2Ph)$, the purple 3, and a trace amount of greenish **4.** The product distribution and the respective yields are listed in Table 1.

1Ph: mp 179-180 °C (lit.^{8a} mp 172 °C); IR (CH₂Cl₂) $\nu_{\rm CO}$ 1969 (s), 1909 (s) cm⁻¹;¹H NMR (CDCl₃) δ 2.63 (b, 2H), 3.88 (b, 1H), 5.18 (b, 2H), 6.91-7.42 (m, 20H); ¹³C NMR (CDCl₃) δ 55.2 (s, -CH=CHCHPh--), 59.7 (s, -CH=CHCHPh--), 82.5 (s, -CH=CHCHPh--), 128.0-147.7 **(m, Ph), 219.4 (d, ²J**_{P-C} = 15.1 Hz, CO); ³¹P{¹H} NMR *(CDCl*₃) δ 73.21 (8); MS (m/z) M⁺ 516 (parent ion). Anal. Calcd for $C_{31}H_{25}FeO_2P$: C, 72.11; H, 4.88. Found: C, 72.01; H, 4.70.

2PH: mp 170-171 °C (lit.¹² mp 164 °C); IR (CH₂Cl₂) ν_{CO} 1919 **(s), 1558 (m) cm⁻¹;** ³¹P{¹H} NMR (CDCl₃) δ 75.42 **(s)**; **IR (CH₂Cl₂) YCO** 1919 **(a),** 1558 (m) cm-1; MS *(m/z)* M+ 516 (parent ion). Anal. Calcd for C31H25FeO2P: C, 72.11; H, 4.88. Found: C, 71.98; H, 5.10.

Preparation of $(\eta^5-C_8H_5)Fe(CO)(\eta^1-dppf)C(O)Me.$ $(\eta^5-dppf)C(O)Me.$ C_5H_5)Fe(CO)₂Me (0.32 g, 1.7 mmol) and dppf (1.83 g, 3.3 mmol) were dissolved in a mixture of THF (10 mL) and MeCN *(50* mL) and then refluxed for 48 h to give an orange-red solution. The solvent was removed, column chromatography $(SiO₂,$ eluting with 1:2 EtOAc/ n -hexane) was applied to separate the unidentate

in 1Bu Table 4. **Fractional Coordinates for Non-Hydrogen Atoms**

atom	x	y	z	$B_{\rm iso}$
Fe	0.51470(8)	0.38684(5)	0.21370(4)	3.86(3)
P	0.53409(13)	0.24393(8)	0.32462(8)	3.37(5)
O10	0.3657(4)	0.2405(3)	0.0215(2)	6.9(2)
011	0.8514(4)	0.4095(3)	0.2292(3)	7.5(2)
C ₁	0.4616(7)	0.5488(3)	0.1459(4)	5.2(3)
C ₂	0.5277(6)	0.5634(3)	0.2550(4)	5.1(3)
C ₃	0.4210(6)	0.4951(4)	0.2971(3)	4.9(3)
C ₄	0.2924(6)	0.4406(4)	0.2126(4)	4.9(3)
C ₅	0.2843(6)	0.5148(4)	0.1201(3)	5.3(3)
C6	0.1852(6)	0.6188(4)	0.1144(4)	6.3(3)
C7	0.1820(7)	0.6928(4)	0.0246(4)	7.9(4)
C8	0.0701(8)	0.7883(5)	0.0062(5)	9.4(4)
C9	0.1062(11)	0.8769(6)	0.0845(5)	15.3(7)
C10	0.4231(6)	0.2960(3)	0.0962(3)	4.7(3)
C11	0.7174(7)	0.3987(4)	0.2231(3)	5.0(3)
C ₁₂	0.3540(5)	0.2057(3)	0.3619(3)	3.8(2)
C13	0.3387(6)	0.2365(4)	0.4577(4)	5.7(3)
C14	0.1950(7)	0.2105(6)	0.4781(4)	8.1(4)
C15	0.0638(7)	0.1548(6)	0.4043(5)	8.4(4)
C16	0.0770(6)	0.1224(5)	0.3085(4)	6.8(3)
C ₁₇	0.2182(6)	0.1481(4)	0.2865(3)	5.1(3)
C18	0.5641(4)	0.0985(3)	0.2778(3)	3.2(2)
C19	0.5130(5)	$-0.0080(3)$	0.3153(3)	4.3(2)
C ₂₀	0.5343(6)	$-0.1163(3)$	0.2775(3)	5.3(3)
C ₂₁	0.6105(6)	$-0.1204(4)$	0.2020(4)	5.5(3)
C ₂₂	0.6614(5)	$-0.0165(4)$	0.1631(3)	5.0(2)
C ₂₃	0.6395(5)	0.0932(3)	0.2005(3)	4.1(2)
C ₂₄	0.6897(5)	0.2719(3)	0.4505(3)	3.6(2)
C ₂₅	0.7607(5)	0.3882(4)	0.4804(3)	4.8(2)
C ₂₆	0.8780(6)	0.4127(4)	0.5766(4)	6.0(3)
C ₂₇	0.9219(6)	0.3238(5)	0.6409(3)	6.1(3)
C ₂₈	0.8521(6)	0.2067(5)	0.6109(4)	6.2(3)
C ₂₉	0.7351(5)	0.1816(4)	0.5156(3)	4.8(2)

complex $(\eta^5$ -C₅H₅)Fe(CO)(η^1 -dppf)C(O)Me $(0.49g, 40\%)$ and the byproduct $[(\eta^5-C_5H_6)Fe(CO)C(O)Me]_2(\mu,\eta^1,\eta^1-dppf)$ (6.19 mg, 0.4%).

 $(\eta^5\text{-}C_6H_5)Fe(CO)(\eta^1\text{-}dppf)C(O)Me: mp 140-141 °C; IR (CH₂$ Clz) YCO 1912 **(e),** 1598 (m) cm-l; 3lP NMR (CDCh) **6** 71.2, -17.26. Anal. Calcd for C₄₂H₃₆O₂Fe₂P₂: C, 67.59; H, 4.86. Found: C, 67.18; H, 4.88.

 $[(\eta^5 \text{-} C_5 H_5) \text{Fe(CO)C(O)} \text{Me}]_2(\mu, \eta^1, \eta^1 \text{-dppf})$: mp 175-176 °C; **IR** (CH_2Cl_2) ν_{CO} 1912 (s), 1597 (m) cm⁻¹; ³¹P NMR (CDCl₃) δ 71.50, 71.38. Anal. Calcd for C₅₀H₄₄O₄Fe₃P₂: C, 64.0; H, 4.73. Found: C, 63.84; H, 4.93.

Preparation of $[(\eta^5-C_5H_5)Fe(CO)C(O)Me](\mu, \eta^1, \eta^1-dppf)$ **-** $[(\eta^4-\text{exc-MeC}_5H_5)Fe(CO)_2]$. $(\eta^5-C_5H_5)Fe(CO)(\eta^1-\text{dppf})C(\bar{O})$ Me $(1.493 \text{ g}, 2 \text{ mmol})$ and $(\eta^5 \text{-} C_5 H_5) \text{Fe} (CO)_2$ I $(0.608 \text{ g}, 2 \text{ mmol})$ were dissolved in THF (100 mL) and maintained at -78 °C. MeLi (1.6 M, 1.5 **mL,** 2.4 mmol) in 20 mL of ether at -78 "C was added dropwise to the solution. The mixture was stirred for an additional 1 h before being warmed to room temperature and stirred overnight. The solution was then quenched with water. The organic layer was combined with the benzene extracts of the water layer, dried over MgSO₄, and then evaporated to dryness under vacuum. The resulting oil-like concentrates were mixed with 5 g of silica gel and 10 mL of CH_2Cl_2 and pumped dry before being packed to the top of a $SiO₂$ column. The purification by column chromatography eluting with $1:6$ EtOAc/n-hexane gave, according to the order of appearance, two producte: the yellow $[(\eta^5-C_5H_5)Fe(CO)C(O)Me](\mu,\eta^1,\eta^1\text{-}{dppf})[(\eta^4\text{-}exc\text{-}MeC_5H_5)Fe-$ (CO)2l **(5)** in 80.7% yield and a trace amount of purple 3.

6 mp 177-178 "C; IR (CH2Cl2) *vco* 1966 **(a),** 1908 **(a),** 1596 (w) cm-1; 1H NMR (CDCh) **S** 0.26 (b, 3H, Me), 2.11 (b, 2H, $-CH = CHCHM$ e $-$), 2.44 (b, 3H, C(O)Me), 2.56 (b, 1H, -CH=CHCHMe-), 3.83 (b, 8H, c&),4.21 **(b,** 5H, C&), 4.92 (b, 2H, -CH=CHCHMe), 7.30 (b, 20H, Ph); **1%** NMR (CDCh) 6 28.0 *(8,* Me), 50.7 (8, -CH=CHCHMe-), 51.9 *(8,* C(O)Me), 57.7 **(s, --CH=CHCHMe-)**, 72.8-81.5 **(m, C₅H₄)**, 82.2 **(s**, -CH=CHCHMe--), 85.2 *(s, C₅H₅)*, 127.6-133.6 *(m, Ph), 220.1* $(d_3^2J_{P-C} = 15.1 \text{ Hz}, \text{CO}), 275.7 \text{ (s, } -C(O)\text{Me}); \text{ }^{31}\text{P}^{\{1}\text{H}\} \text{ NMR}$ (CDCh) 6 71.26 **(a),** 67.24 *(8);* MS *(m/z)* M+ 938 (parent ion).

Organometallics, *Vol. 13, No.* **7,** *1994* **2023**

Table 5. Fractional Coordinates for Non-Hydrogen Atoms of 2Bu

atom	x	у	z	$B_{\rm iso}$
FE	0.76633(8)	0.17985(11)	0.06432(7)	5.03(6)
P	0.73278(13)	0.37880(18)	0.11441(10)	3.65(9)
O ₆	0.5896(4)	0.0872(5)	0.0339(3)	6.0(3)
О7	0.8132(4)	0.1516(5)	0.2285(3)	8.0(3)
C ₁	0.8255(9)	0.0410(12)	$-0.0128(8)$	10.0(8)
C ₂	0.8066(7)	0.1610(16)	$-0.0568(6)$	8.8(7)
C ₃	0.8498(7)	0.2667(10)	$-0.0211(7)$	7.7(6)
C ₄	0.8998(6)	0.2116(13)	0.0451(7)	8.4(7)
C ₅	0.8844(8)	0.0737(13)	0.0487(7)	9.9(8)
C6	0.6599(6)	0.1265(7)	0.0476(4)	4.8(4)
C7	0.7721(6)	0.0971(8)	0.1734(5)	6.8(5)
C8	0.7290(7)	$-0.0380(9)$	0.1859(6)	10.4(7)
C9	0.7423(7)	$-0.1013(9)$	0.2745(6)	9.0(7)
C10	0.8236(7)	$-0.1600(10)$	0.2778(7)	10.5(8)
C11	0.8388(8)	$-0.2172(11)$	0.3665(5)	13.7(9)
C ₁₂	0.6656(5)	0.3875(7)	0.2042(4)	3.7(4)
C13	0.6014(5)	0.2900(18)	0.2158(4)	4.6(4)
C14	0.5448(5)	0.3002(9)	0.2792(5)	6.1(5)
C15	0.5527(6)	0.4093(11)	0.3318(5)	6.6(6)
C16	0.6156(6)	0.5052(9)	0.3206(5)	6.2(5)
C17	0.6730(5)	0.4964(7)	0.2581(4)	4.9(4)
C18	0.6681(5)	0.4928(7)	0.0460(4)	3.6(4)
C19	0.6340(5)	0.4429(7)	$-0.0276(4)$	4.4(4)
C ₂₀	0.5834(5)	0.5269(8)	$-0.0761(4)$	5.3(4)
C ₂₁	0.5681(5)	0.6588(9)	-0.0539(4)	5.6(5)
C ₂₂	0.6024(6)	0.7098(7)	0.0170(5)	5.7(5)
C ₂₃	0.6520(5)	0.6266(7)	0.0677(4)	4.9(4)
C ₂₄	0.8289(5)	0.4822(7)	0.1415(4)	4.2(4)
C ₂₅	0.8614(6)	0.5770(8)	0.0898(4)	5.3(5)
C ₂₆	0.9389(7)	0.6443(9)	0.1071(6)	7.2(6)
C27	0.9863(6)	0.6148(10)	0.1767(7)	7.9(7)
C ₂₈	0.9543(6)	0.5231(10)	0.2293(5)	6.8(6)
C ₂₉	0.8759(6)	0.4538(7)	0.2128(4)	5.0(4)

Anal. Calcd for C₅₀H₄₄Fe₃O₄P₂: C, 64.00; H, 4.73. Found: C, 64.36; H, 4.54.

X-ray Structure Analysis. The single-crystal X-ray diffraction measurements were performed on a Noniue CAD-4 automated diffractometer *using* graphite-monochromated Mo $K\alpha$ radiation; 25 high-angle reflections were used in a least-squares fit to obtain accurate cell constants. Diffraction intensities were collected up to $2\theta < 45^{\circ}$ using the $\theta/2\theta$ scan technique, with background **counts** made for half the total **scan** time on each side of the peak. Three standard reflections, remeasured every hour, showed no significant decrease in intensity during data collection. The reflections with $I_0 > 2.5\sigma(I_0)$ were judged as observations and were used for solution and structure refinement. Data were corrected for Lorentz-polarization factom. **An** empirical absorp tion correction based on a series of ψ scans was applied to the data. The structure was solved by direct methods³⁰ and refined by a full-matrix least-squares routine³¹ with anisotropic thermal parameters for all non-hydrogen atoms (weight = $1/[\sigma(F_o)^2 +$ $0.0001(F_0)^2$, $\sigma(F_0)$ from counting statistics). All of the hydrogen atoms were placed isotropically at their calculated positions (C-H = 1.00 **A)** and fixed in the calculations. Atomic scattering factor curves f_0 , $\Delta f'$, and $\Delta f''$ of Fe, P, O, and C and f_0 of H were taken from International Tables.³² For a summary of crystal data and refinement details, see Table 3. Selected bond distances and angles for **1Bu** and **2Bu** are given in the captions of Figures 1 and 2, respectively, with respective final atomic fractional coordinates in Tables 4 and 5.

⁽³⁰⁾ Main, **P.** In *Crystallographic Computing 3 Data Collection, Structure Determination, Proteins and Databases;* Sheldrick, **G.** *M.,* Krueger, C., Goddard, R., Eds.; Charendon Press: Oxford, **1996;** pp **206-**

^{215.} (31) (a)Gabe,E.J.;LaPage,Y.;Whita,P.S.;Lee,F.L.ActaCystallogr. 1987,A43,5294. (b)Gabe,E.J.;LePage,Y.;Lee,F.L.InCrystal&graphic *Computing* **3:** *Data Collection, Structure Determination, Proteins and*

Databases; Sheldrick, G. M., Krueger, C., Goddard, R., Eds.; Charendon
Press: Oxford, 1985, pp 167-174.
(32) Ibers, J. A.; Hamilton, W. C. International Tables for X-ray
Crystallography, Vol. 4; Kynoch: Birmingham (Current Reidel, Dordrecht), **1974;** Tables **2.2A, 2.3.1D.**

2824 *Organometallics, Vol. 13, No.* **7,** *1994 Liu and Luh*

Acknowledgment. The partial financial support from the National Science Council, R.O.C., is acknowledged. We thank Mr. Y.-S. Wen for assistance with single-crystal X-ray diffraction data collection. We also thank Ms. M.-M. Chen for detection of $31P\{1H\}$ NMR spectra using a MSL200 spectrometer. **OM940200H**

Supplementary Material Available: For the structures of **1Bu** and **2Bu,** listings of crystallographic data, positional **and** anisotropicthermal parameters, and bond distances, angles, **and** structural parameters (19 pages). Ordering information is given
on any current masthead page.