Effects of π -Coordinated Transition-Metal Groups on **Fluorene Acidities and Homolytic Bond Dissociation Enthalpies**

Shizhong Zhang and Frederick G. Bordwell*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received February 25, 1994[®]

Summary: The pK_{HA} values of the fluorene complexes (η^6 - $FlH)Cr(CO)_3$, $(\eta^6-FlH)Mn(CO)_3^+PF_6^-$, and $(\eta^6-FlH) FeCp^+PF_6^-$ were determined in DMSO solution to be 17.0, 5.7, and 14.6, respectively. When these pK_{HA} values were combined with the oxidation potentials of their conjugate bases, the homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bond in the fluorene ligands were determined and shown to be unaffected by π -coordination.

In earlier work from our laboratory the equilibrium acidities in DMSO solution of a variety of 2-, 3-, and 9-substituted fluorenes have been measured, and the relative effects of these substituents on the homolytic bond dissociation enthalpies (BDEs) of the acidic C-Hbonds in these fluorenes have been assessed by combination of the pK_{HA} values with the oxidation potentials of their conjugate bases (eq 1).¹ The BDEs estimated in this way are empirically derived gas-phase BDEs.

$$BDE_{HA} = 1.37 pK_{HA} + 23.1E_{ox}(A^{-}) + 73.3 \text{ kcal/mol}$$
(1)

We have now extended these studies to three transition-metal groups π -coordinated to the fluorene ring. π -Coordination of Cr(CO)₃ to the benzene ring of benzoic acid or phenylacetic acid has been shown to cause increases in acidities in 50% aqueous ethanol of 0.9 and $0.6 \text{ pK}_{\text{HA}}$ units, respectively. These effects are nearly identical with that of a p-NO₂ group.² Also, a Hammett plot of pK_{HAS} in 50% aqueous ethanol of phenols π -coordinated to Cr(CO)₃ has been shown to be comparable to that of a Hammett plot for uncomplexed phenols, but with a slope that is less than half as large.³ Little or no quantitative information is available, however, that will allow a comparison of the relative effects of various transition-metal groups on the acidities and on BDEs of the acidic C-H bonds in a ligand.

Our objective in the present study was to obtain quantitative information concerning the effects of π -coordination of transition-metal complexes on the equilibrium acidities and BDEs of the acidic C-H bonds in the fluorene ligands of complexes 1-3.

The transition metals in $Cr(CO)_3$, $Mn(CO)_3^+$, and $Fe(C_5H_5)^+$ groups are isoelectronic, with 12 electrons

around each metal. The fluorene ligand provides 6 more electrons to each metal to complete the 18-electron shell. Qualitative estimates, based on deprotonations with Et_3N and *t*-BuOK, have suggested that the conjugate base of **3** has a basicity similar to that of the fluorenide carbanion, whereas the conjugate base of 2 is about 10 orders of magnitude weaker.⁶ Differences in the equilibrium acidities of these compounds in DMSO should provide a quantitative measure of their relative anion basicities. Also, combination of the pK_{HA} values obtained for 1-3 with the oxidation potentials of their conjugate bases, according to eq 1, should provide quantitative information concerning the BDEs of the acidic C-H bonds and the stability of the corresponding radicals.4

Complexes 1-3 were prepared according to literature procedures.⁵⁻⁷ Deprotonation of 2 and 3 gave the corresponding conjugate bases, zwitterionic (η^6 -Fl)Mn- $(CO)_3$ (5)⁵ and (η^6 -Fl)FeCp (6),⁶ which were isolated in crystalline form. Both 5 and 6 are stable in DMSO; 5 is deep red, and 6 is dark blue. Deprotonation of complex 1 by $CH_3S(O)CH_2^-K^+$ produced its conjugate anion $(\eta^6$ -Fl)Cr(CO)₃⁻ (4). Anion 4 has been shown to

undergo rapid haptotropic rearrangement to form (η^5 - $Fl)Cr(CO)_3^-$ (4').^{6,7} From NMR experiments it was estimated that the time for this isomerization to reach equilibrium was about 5 min in DMSO- d_6 at room temperature, however, which is long enough for a reliable pK_{HA} measurement of 1.

The pK_{HA} values of 1-3 were measured in DMSO by an overlapping indicator method.⁸ Since complexes 2 and 3 and their conjugate bases 5 and 6 could be isolated, 2 and 5 or 3 and 6 were mixed in DMSO in known concentrations and the mixtures were titrated with DMSO solutions of standard acids. The pK_{HA} of 1 was measured by adding a DMSO solution to a solution of $CH_3S(O)CH_2^-K^+$ to generate its conjugate base 4 and

- (4) Bordwell, F. G.; Zhang, X.-M.; Alnajjar, M. S. J. Am. Chem. Soc.
 1992, 114, 7623.
 (5) Treichel, P. M.; Johnson, J. W. Inorg. Chem. 1977, 16, 749.
 (6) (a) Nesmeyanov, A. N.; Vol'Kenau, N. A.; Bolesnova, I. n. Dokl.
 Akad. Nauk SSSR 1966, 166, 607. (b) Johnson, J. W.; Treichel, P. M.
 J. Am. Chem. Soc. 1977, 99, 1427. (c) Nesmeyanov, A. N.; Ustynyuk, N. A.; Makarova, L. G.; Andre, S.; Ustynyuk, Y. A.; Novikova, L. N.;
 Luzikov, Y. N. J. Organomet. Chem. 1978, 154, 45.
 (7) Ceccon. A.: Gambaro. A. J. Organomet. Chem. 1981, 217, 79.
- (7) Ceccon, A.; Gambaro, A. J. Organomet. Chem. 1981, 217, 79.
 (8) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

^{*} Abstract published in Advance ACS Abstracts, June 15, 1994. (1) Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.-M. J. Am. Chem. Soc. 1991, 113, 9790.

⁽²⁾ Nicholls, B.; Whiting, M. C. J. Chem. Soc. 1959, 551.

⁽³⁾ Wu, A.; Biehl, E. R.; Reeves, P. C. J. Chem. Soc., Perkin Trans. 2 1972, 449.

⁽⁴⁾ Bordwell, F. G.; Zhang, X.-M.; Alnajjar, M. S. J. Am. Chem. Soc.

 Table 1. Equilibrium Acidities and Homolytic Bond

 Dissociation Enthalpies for the Acidic C—H Bonds in

 Substituted Fluorenes

group on Fl	pK _{HA} ^a	$E_{ox}(A^{-})^{e}$	BDE (kcal/mol)	ref
9-Н	22.6	-1.050	80	g
π -Cr(CO) ₃ (1)	17.0*	-0.720	80	
π -+Mn(CO) ₃ (2)	5.7°	0.009	81	
π -+FeCp (3)	14.6 ^d	-0.565	80	
2-NO ₂	17.0	-0.684	81	8
2-CN	18.2	-0.813	80	ğ
2-PhSO ₂	18.1	-0.792	80	g
2-MeO	22.7	-1.056	80	ĥ
2-Me	23.1	-1.08	80	h
9-Me ₃ N ⁺	17.8	-0.563	79	i
9-Ph₃P ⁺	6.6	-0.044	81	i

^a pK_{HA} values were measured in DMSO by the method described earlier.⁸ ^b A solution of 1 was added to a potassium dimsyl solution in DMSO to generate its conjugate base 4. The mixture then was titrated at 570 nm with a solution of diethyl malonate ($pK_{HA} = 16.4$). Each run was completed within 5 min, and the average of three runs (17.0, 17.1, 17.0) was 17.0. ^c Solutions of 2 and its conjugate base 5 were mixed to give a concentration where the absorbance reading at 610 nm was between 1 and 0.1 Titration of the mixture was carried out at 610 nm by adding aliquots of a solution of $Ph_3P^+CH_2COPh(PF_6^-)$ ($pK_{HA} = 6.0$). The average of three runs (5.7, 5.7, 5.6) was 5.7. ^d Solutions of 3 and its conjugate base 6 were mixed in a concentration that gave an absorbance reading at 740 nm of between 1 and 0.1. Titration was carried out at 740 nm by adding aliquots of a solution of bis(methylsulfonyl)methane ($pK_{HA} = 15.0$). The average of three runs (14.6, 14.3, 14.7) was 14.6. Irreversible oxidation potentials referenced to the ferrocene/ferrocenium couple in DMSO. / Calculated according to eq 1. 8 Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1992, 114, 9787. ^h Bordwell, F. G.; Cheng, J. P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867. ⁱ Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968.

then titrating with a standard acid. Irreversible oxidation potentials of the anions, $E_{ox}(A^-)$ values, for 4-6 in DMSO were determined by cyclic voltammetry and referenced to ferrocene-ferrocenium couple. Despite the irreversibility of the oxidation potentials, it has been shown that BDEs estimated by eq 1 agree to within ± 2 kcal/mol with the best known gas-phase data for the C-H bonds in 19 hydrocarbons and related heterocycles.¹

Examination of Table 1 shows that the presence of the π -Cr(CO)₃ group has caused an acidity increase for the acidic hydrogen atom in the fluorenide ligand of 5.6 pK_{HA} units (7.7 kcal/mol). This large effect, which is due partially to the field/inductive effects of the three carbonyl groups, is as large as that for a 2-NO₂ group (Table 1), which agrees with the effects for a π -Cr(CO)₃ group observed on benzoic and phenylacetic acids.² The π -+FeCp effect is somewhat larger ($\Delta p K_{HA} = 8.0 \ p K_{HA}$ units), indicating that the stabilizing effects on the anion of the field/inductive and polarizability effects of the positive charge are greater than the effects of the carbonyl groups in $Cr(CO)_3$. The acidifying effect of the π -+FeCp group is somewhat larger than that of a Me₃N+ group attached at the C-9 position of fluorene ($\Delta p K_{HA}$ = 5.1 units)⁹ but much smaller than that of a 9-Ph₃P⁺ group $(\Delta p K_{HA} = 16.3 \text{ units})$.⁹ The effect of the π -+Mn- $(CO)_3$ group on the acidity of the fluorene ligand is even larger than that of the 9-Ph₃P⁺ group ($\Delta p K_{HA} = 16.9$ units), which is understandable because the ⁺Mn(CO)₃ group has not only large field/inductive and polarizability acidifying effects associated with the positive charge but also field/inductive effects associated with the carbonyl groups.

Examination of the BDEs in Table 1 reveals that the three transition-metal groups, like other electronwithdrawing groups, have little or no effect on the homolytic bond dissociation enthalpies of the acidic C-H bonds in fluorene. In other words, there is no evidence to indicate that these groups can stabilize a remotely situated carbon-centered radical.

Acknowledgment. This research was supported by the National Science Foundation.

OM940147X

(9) Statistically corrected for the number of acidic hydrogen atoms.