Effects of π -Coordinated Transition-Metal Groups on **Fluorene Acidities and Homolytic Bond Dissociation Enthalpies**

Shizhong Zhang and Frederick G. Bordwell*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received February 25, 1994@

Summary: The pK_{HA} values of the fluorene complexes $(\eta^6 FH)Cr(\overline{CO})_3$, $(\eta^6\text{-}FlH)Mn(\overline{CO})_3+PF_6$ ⁻, and $(\eta^6\text{-}FlH)$ -*FeCp+PFG- were determined in DMSO solution to be* 17.0, 5.7, and 14.6, respectively. When these pK_{HA} values *were combined with the oxidation potentials of their Conjugate bases, the homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bond in the fluorene ligands were determined and shown to be unaffected by n-coordination.*

In earlier work from our laboratory the equilibrium acidities in DMSO solution of a variety of **2-, 3-,** and 9-substituted fluorenes have been measured, and the relative effects of these substituents on the homolytic bond dissociation enthalpies $(BDEs)$ of the acidic $C-H$ bonds in these fluorenes have been assessed by combination of the pK_{HA} values with the oxidation potentials of their conjugate bases (eq 1).¹ The BDEs estimated in this way are empirically derived gas-phase BDEs.

$$
BDE_{HA} = 1.37pK_{HA} + 23.1E_{ox}(A^{-}) + 73.3 \text{ kcal/mol}
$$
\n(1)

We have now extended these studies to three transition-metal groups π -coordinated to the fluorene ring. π -Coordination of Cr(CO)₃ to the benzene ring of benzoic acid or phenylacetic acid has been shown to cause increases in acidities in 50% aqueous ethanol of 0.9 and 0.6 p K_{HA} units, respectively. These effects are nearly identical with that of a p -NO₂ group.² Also, a Hammett plot of pK_{HAS} in 50% aqueous ethanol of phenols π -coordinated to $Cr(CO)_3$ has been shown to be comparable to that of a Hammett plot for uncomplexed phenols, but with a slope that is less than half as large.3 Little or no quantitative information is available, however, that will allow a comparison of the relative effects of various transition-metal groups on the acidities and on BDEs of the acidic $C-H$ bonds in a ligand.

Our objective in the present study was to obtain quantitative information concerning the effects of π -coordination of transition-metal complexes on the equilibrium acidities and BDEs of the acidic $C-H$ bonds in the fluorene ligands of complexes **1-3.**

The transition metals in $Cr(CO)₃$, $Mn(CO)₃$ ⁺, and $Fe(C_5H_5)^+$ groups are isoelectronic, with 12 electrons

around each metal. The fluorene ligand provides 6 more electrons to each metal to complete the 18-electron shell. Qualitative estimates, based on deprotonations with $Et₃N$ and t -BuOK, have suggested that the conjugate base of **3** has a basicity similar to that of the fluorenide carbanion, whereas the conjugate base of **2** is about 10 orders of magnitude weaker.⁶ Differences in the equilibrium acidities of these compounds in DMSO should provide a quantitative measure of their relative anion basicities. Also, combination of the pK_{HA} values obtained for **1-3** with the oxidation potentials of their conjugate bases, according to eq 1, should provide quantitative information concerning the BDEs of the acidic C-H bonds and the stability of the corresponding radicals.⁴

Complexes **1-3** were prepared according to literature Deprotonation of **2** and **3** gave the corresponding conjugate bases, zwitterionic $(\eta^6\text{-F1})$ Mn- $(CO)_3$ (5)⁵ and $(\eta^6$ -Fl)FeCp (6),⁶ which were isolated in crystalline form. Both *6* and **6** are stable in DMSO; *6* is deep red, and **6** is dark blue. Deprotonation of complex 1 by $CH_3S(O)CH_2-K^+$ produced its conjugate anion $(\eta^6\text{-Fl})\text{Cr}(\text{CO})_3^-$ (4). Anion 4 has been shown to

undergo rapid haptotropic rearrangement to form *(q5-* $F1)Cr(CO)₃⁻$ (4').^{6,7} From NMR experiments it was estimated that the time for this isomerization to reach equilibrium was about 5 min in DMSO- d_6 at room temperature, however, which is long enough for a reliable pK_{HA} measurement of 1.

The pK_{HA} values of $1-3$ were measured in DMSO by an overlapping indicator method.8 Since complexes **2** and **3** and their conjugate bases *6* and **6** could be isolated, **2** and *6* or **3** and **6** were mixed in **DMSO** in known concentrations and the mixtures were titrated with DMSO solutions of standard acids. The pKHA of 1 was measured by adding a DMSO solution to a solution of CH3S(O)CH2-K+ to generate its conjugate base **4** and

- (5) Treichel, P. M.; Johnson, J. W. *Inorg. Chem.* 1977, 16, 749.

(6) Treichel, P. M.; Johnson, J. W. *Inorg. Chem.* 1977, 16, 749.
 Akad. Nauk SSSR 1966, 166, 607. (b) Johnson, J. W.; Treichel, P. M.
 J. Am. Chem. So
- - **(7)** Ceccon, A.; Gambaro, A. *J. Organomet. Chem.* **1981,217, 79.** *(8)* Bordwell, **F.** G. *Acc. Chem.* Res. **1988,21, 456.**

[@]Abstract published in *Advance ACS Abstracts,* June 15, **1994.** (1) Bordwell, **F. G.;** Cheng, J.-P.; Ji, G.4.; Satish,A. V.; Zhang, **X.-** M. *J.Am. Chem. SOC.* **1991,113,9790.**

⁽²⁾ Nicholls, B.; Whiting, M. C. *J. Chem. SOC.* **1969, 551.**

⁽³⁾ Wu, A.; Biehl, E. R.; Reeves, P. C. *J. Chem. SOC., Perkin Trans.* **2 1972,449.**

⁽⁴⁾ Bordwell, **F. G.;** Zhang, X.-M.; Alnajjar, M. S. *J. Am. Chem. SOC.*

Table **1.** Equilibrium Acidities **and** Homolytic **Bond** Dissociation Enthalpies **for** the Acidic **C-H Bonds** in Substituted Fluorenes

group on Fl	pK_{HA}^a	$E_{\rm ox}(A^-)^e$	BDE (kcal/mol)	ref
9-H	22.6	-1.050	80	g
π -Cr(CO) ₃ (1)	17.0^{b}	-0.720	80	
π - ⁺ Mn(CO) ₃ (2)	5.7 ^c	0.009	81	
π - ⁺ FeCp (3)	14.6^{d}	-0.565	80	
$2-NO2$	17.0	-0.684	81	ደ
2 -CN	18.2	-0.813	80	8
2 -PhSO ₂	18.1	-0.792	80	8
$2-MeO$	22.7	-1.056	80	h
$2-Me$	23.1	-1.08	80	h
$9-Me_3N^+$	17.8	-0.563	79	
$9-Ph_3P^+$	6.6	-0.044	81	

 a pK_{HA} values were measured in DMSO by the method described earlier.⁸ A solution of **1** was added to a potassium dimsyl solution in DMSO to generate its conjugate base **4.** The mixture then was titrated at 570 nm with a solution of diethyl malonate ($pK_{HA} = 16.4$). Each run was completed within *5* **min,** and the average of three **runs** (17.0, 17.1, 17.0) was 17.0. *^E*Solutions of **2** and its conjugate base **5** were mixed to give a concentration where the absorbance reading at 610 nm was between 1 and 0.1 Titration of the mixture **was** carried out at 610 nm by adding aliquots of a solution of $Ph_3P^+CH_2COPh(PF_6^-)$ (p $K_{HA} = 6.0$). The average of three runs (5.7, 5.7, 5.6) was 5.7. ^d Solutions of 3 and its conjugate base 6 were mixed in a concentration that gave an absorbance reading at 740 nm of between 1 and 0.1. Titration was carried out at 740 nm by adding aliquots of a solution of bis(methylsulfonyl)methane ($pK_{HA} = 15.0$). The average of three runs (14.6, 14.3, 14.7) was 14.6. ^{*e*} Irreversible oxidation potentials referenced **to** the ferrocendferrocenium couple in DMSO. **f** Calculated according to *eq* 1. **8** Zhang, **X.-M.;** Bordwell, F. G. *J.* Am. *Chem.* **SOC.** 192,114,9787. *Bordwell, F. G.; Cheng, J. P.; Bausch, M. **J.** J. Am. *Chem. SOC.* 1988, 110, 2867. **'Bang,** X.-M.; Bordwell, F. G. J. Am. *Chem.* **SOC. 1994,** 116, 968.

then titrating with a standard acid. Irreversible oxidation potentials of the anions, $E_{ox}(A^-)$ values, for $4-6$ in DMSO were determined by cyclic voltammetry and referenced to ferrocene-ferrocenium couple. Despite the irreversibility of the oxidation potentials, it has been shown that BDEs estimated by eq 1 agree to within ± 2 kcaVmol with the best known gas-phase data for the C-H bonds in 19 hydrocarbons and related heterocycles.'

Examination of Table 1 shows that the presence of the π -Cr(CO)₃ group has caused an acidity increase for the acidic hydrogen atom in the fluorenide ligand of 5.6 **pKHA** units **(7.7** kcal/mol). **This** large effect, which is due partially to the field/inductive effects of the three carbonyl groups, is as large as that for a 2-NO₂ group (Table 1), which agrees with the effects for a π -Cr(CO)₃ group observed on benzoic and phenylacetic acids.2 The π ⁺FeCp effect is somewhat larger $(\Delta pK_{HA} = 8.0 pK_{HA})$ units), indicating that the stabilizing effects on the anion of the field/inductive and polarizability effects of the positive charge are greater than the effects of the carbonyl groups in $Cr(CO)_{3}$. The acidifying effect of the π ⁺FeCp group is somewhat larger than that of a Me₃N⁺ group attached at the C-9 position of fluorene (ΔpK_{HA}) $\epsilon = 5.1$ units)⁹ but much smaller than that of a 9-Ph₃P⁺ group ($\Delta pK_{HA} = 16.3$ units).⁹ The effect of the π -⁺Mn- (CO) ₃ group on the acidity of the fluorene ligand is even larger than that of the 9-Ph₃P⁺ group ($\Delta pK_{HA} = 16.9$ units), which is understandable because the $^+$ Mn(CO)₃ group has not only large field/inductive and polarizability acidifying effects associated with the positive charge but also field/inductive effects associated with the carbonyl groups.

Examination of the BDEs in "able 1 reveals that the three transition-metal groups, like other electronwithdrawing groups, have little or no effect on the homolytic bond dissociation enthalpies of the acidic C-H bonds in fluorene. In other words, there is no evidence to indicate that these groups **can** stabilize a remotely situated carbon-centered radical.

Acknowledgment. This research was supported by the National Science Foundation.

OM940147X

(9) Statistically corrected for the number of **acidic** hydrogen atoms.