Reaction of "Floriani's Metallaoxirane" $[(Cp_2ZrCl)₂(\mu:\eta^1(O),\eta^2(C,O)\text{-}CH₂O)]$ with Isonitriles

Maximilian Bendix, Matthias Grehl, Roland Frohlich, and Gerhard Erker*

Organisch-Chemisches Institut der Universitat Miinster, Corrensstrasse 40, 0-48149 Miinster, Germany

Received February 23, 1994@

Summary: The $(\mu$ *-formaldehyde)(Cp₂ZrCl)₂ complex 1 reacts with alkyl isocyanides RNC* $(R = -CH_2SiMe_3)$ *, -CMed with insertion into the Zr-C bond and opening of the metallaoxirane unit by cleavage of the adjacent* Zr–O bond to give the "N-inside" (n^2 -iminoacyl)zircono-

cene complexes $2(a, b)$ *[(Cp₂ZrCl)C(CH₂OZrCp₂Cl)=NR]. This insertion behavior of 1* **is** *unusual as compared to the (9-forma1dehyde)zirconocene dimer 4 that reacts with Me₃SiCH₂NC without Zr*-O bond cleavage to give *a four-membered metallacyclic* (η ¹-iminoacyl)zirconocene *complex. The isonitrile insertion product 2a was characterized-by X-ray dimaction. It crystallizes in the space group PI with cell parameters* $a = 10.884(2)$ *Å,* $b =$ *12.326(1)* \AA , $c = 13.611(4)$ \AA , $\alpha = 70.33(1)^\circ$, $\beta = 72.57$ - $(2)^\circ$, $\gamma = 86.43(1)^\circ$, $Z = 2$, $R = 0.045$, $R_\mu^2 = 0.125$. The $C=N$ bond length in **2a** is 1.257(2) **A**. The adjacent $Z = C(\text{iminsse}u)$ hand is 2.198(4) **Å**. *ZrC(iminoacy1) bond is 2.198(4) A.* four-membered me

pmplex. The isonit

cterized by X-ray di

coup PI with cell

2.326(1) Å, $c = 13$.
 l)°, $\gamma = 86.43(1)$ °, $2 = N$ bond length i

r—C(iminoacyl) bo

Zirconium complex
 $\lbrack r \rbrack - O - CH_2$ somewhele the chemi

Zirconium complexes containing metallaoxirane units

 $[Zr]-O-CH_2$ sometimes undergo reactions that resemble the chemistry of methylene groups on a metal oxide surface.¹ A typical example is the cyclodimeric $(\eta^2$ -formaldehyde)zirconocene complex 4 which is readily available from the carbon monoxide hydrozirconation product 1 ("Floriani's metallaoxirane") by treatment with 2 molar equiv of methyllithium (see Scheme 1).² Complex **4** can be looked at as a molecular metal oxide $(Zr₂O₂)$ containing edge-bridging methylene units. The (n^2 -formaldehyde)zirconocene dimer 4 shows molecular Fischer-Tropsch behavior: when exposed to a catalytic quantity of R_3B , repetitive transfer and coupling of CH_2 occurs with formation of a Poisson-distributed mixture of linear saturated hydrocarbon chains $(7).3$ With a variety of stoichiometric reagents $(X-Y or Y=Z)$ insertion into the metalloxirane Zr-C bond takes place. Typically, the central four-membered Zr_2O_2 core is retained in most of these reactions; the obtained products usually exhibit dimetallabicyclic structures (e.g. **5, 6, 8**.4 The starting material of the $[(\eta^2 - CH_2O)ZrCp_2]_2$ (4) synthesis, the dinuclear CO-hydrozirconation product 1, also contains a $(\mu:\eta^1(O), \eta^2(C,O))$ -formaldehyde) subunit. Comparison of typical structural data has revealed a pronounced metallaoxirane character of the

@Abstract published in *Advance ACS Abstracts,* June **1, 1994.**

 Cp_2Zr-CH_2-O -unit in 1 similar to 4 [1(4)]: $Zr-C 2.19-$ (1) A **(2.243(3)** A); Zr-0 **2.13(1)** A **(2.103(2)** A); C-0 **1.43(2)** A **(1.395(4)** A)]. **This** posed the question whether insertion reactions of Floriani's metallaoxirane $(1)^5$ take a course similar to that observed for **4,** i.e. lead to cyclic coupling products with retaining the strong $Zr-O-Zr$ linkage of the starting material. It is conceivable that 1 might undergo insertion reactions (similar to 4) expected for a chemistry of methylene on the intact $[Zr]$ -O- $[Zr]$ metal oxide surface-like backbone. Alternatively, it may be possible that such a reaction type is only observed at the rigid cyclic $(ZrO)_n$ $(n = 2, 3)$ frameworks. We have tried to find out by a suitable experiment whether CC coupling of the Zr-0 bound CH2 group is generally taking place with keeping the strong metal-oxygen template intact or if $Zr-O$ cleavage can prevail if a suitable energetic compensation is provided. *As* depicted in Scheme **1** the controlled insertion of isonitriles⁶ may be suited to answer this question. We have therefore reacted the metallaoxirane complex 1 with the isonitriles $CN-R$ $[R = -CH_2(Si (CH₃)₃$) and $-C(CH₃)₃$] and determined the preferred structure of the 1,l-insertion products.

Results and Discussion

The $(\mu$ -formaldehyde) $(ZrCp_2Cl)_2$ complex (1) was treated with **1** molar equiv of (trimethylsily1)methyl isocyanide. Periodic ¹H NMR measurements indicated that this insertion reaction is complete within ca. **1** day at room temperature and affords a single product. From a reaction on a preparative scale this was isolated in ca. 80% yield. The product $(2a, R = CH₂SiMe₃)$ exhibits cyclopentadienyl resonances in the ${}^{1}H/{}^{3}C$ NMR spectra at 6 **6.40,5.04/113.8,** and **109.3.** The lH *NMR* resonance of the $Zr-O-CH_2$ group appears at δ 5.04 (s). The ¹³C NMR signal of the corresponding methylene carbon atom is at δ 79.2 $(^1J_{CH} = 140 \text{ Hz})$. The presence of an iminoacyl functionality in **2a** is indicated by the 13C *NMR resonance at* δ *234.8 and an infrared band at 1639* cm^{-1} . The reaction of 1 with tert-butyl isocyanide proceeds similarly to give **2b.**

⁽¹⁾ Fischer, **F.; Tropsch,** H. *Brennst.-Chem.* **1926,7,97;** *Chem. Ber.* (1) Fischer, F.; Iropsch, H. Brennst.-Chem. 1926, 7, 97; Chem. Ber.
1926, 59, 830. Brady, R. C., III; Pettit, R. J. Am. Chem. Soc. 1980,
102, 6181; 1981, 103, 1287. Kropp, K.; Skibbe, V.; Erker, G.; Krüger,
C. J. Am. Chem

⁽²⁾ Erker, G.; Hoffmann, U.; Zwettler, R.; Betz, P.; Krüger, C. *Angew.*
Chem. 1989, 101, 644; *Angew. Chem., Int. Ed. Engl.* 1989, 28, 630.
See also: Curtis, C.; Haltiwanger, R. C. *Organometallics* 1991, 10, **3220.**

⁽³⁾ Erker, G.; Schmuck, **S.;** Hohann, U. J. *Am. Chem. SOC.* **1991,** 113, 2330. For related reactions see: Köster, R.; Yalpani, M. Angew.
Chem. 1985, 97, 600; Angew. Chem., Int. Ed. Engl. 1985, 24, 572.
Erker, G.; Dorf, U.; Atwood, J. L.; Hunter, W. E. J. Am. Chem. Soc.
1986, 108, 2251. Erk *Organomet. Chem.* **1988,353, C27.**

⁽⁴⁾ (a) Erker, **G.;** Mena, M.; Kriiger, C.; Noe, R. *Organometallics* **1991,10, 1201. (b)** Erker, **G.;** Hohann, U.; Zwettler, R.; Kriiger, C. J. *Organomet. Chem.* **1989,367, C15.** Erker, **G.;** Mena, M.; Werner, S.; Kriiger, C. J. *Organomet. Chem.* **1990,390,323.** Erker, *G.;* Mena, 5.; Kruger, C.J. Noe, R. J. Organomet. Chem. 1990, 320, Sz. Erker, G.; Neena, ISB. Erker, G.; Noe, R. J. Organomet. Chem. 1991, 402, 67. (c) See also: Erker, G.; Sosna, F.; Hoffmann, U. J. Organomet. Chem. 1989, 372, 41. E

Valero, **C.;** Grehl, M.; Wingbermiihle, **D.;** Kloppenburg, L.; Carpenetti, **D.;** Erker, G.; Petersen, J. L. *Organometallics* **1994, 13, 415.**

Scheme 1

The spectroscopic data for the isonitrile insertion products of **1** are very similar to those of the fourmembered metallacyclic η^1 -iminoacyl complex 8^{4a} (see Scheme 1) $[-CH_2C=N-(8):$ ¹³C NMR δ 65.7 (¹J_{CH} = 143 Hz), 233.0; ¹H NMR δ 4.88 (⁵ J_{HH} = 1.6 Hz)]. Because these spectroscopic data cannot readily differentiate between an η^1 - or η^2 -coordinated iminoacyl moiety,⁷ an X-ray crystal structure analysis of **2a** was performed to establish its mode of coordination. Suitable crystals were obtained from benzene. The X-ray diffraction study has revealed that one of the $Zr-O$ linkages of 1 was broken during the reaction with (Me₃-Si) CH_2 ⁻NC and a $(\eta^2$ -iminoacyl)zirconocene complex was formed. In **2a** the iminoacyl C(2)-N bond length is 1.257(5) Å, consistent with a C=N double bond.⁸ The bond angles around the iminoacyl carbon atom are 126.1(4)° [N-C(2)-C(1)], 159.9(3)° [Zr(2)-C(2)-C(1)], and $73.8(2)°$ [Zr(2)-C(2)-N]. These values are very typical of $(\eta^2$ -iminoacyl)metal complexes. Related $(\eta^2$ iminoacy1)zirconocene complexes show very similar bonding parameters.⁷ It should be noted, however, that the pertinent bonding features of the η^1 -iminoacyl group

Figure 1. View of the molecular geometry of the $(\eta^2 - \eta^2)$ iminoacy1)zirconocene complex **2a** in the crystal (with atom numbering scheme).

in 8 are not enormously different $[d(C=N) 1.274(2)$ Å; angles at the iminoacyl carbon atom $118.6(1)^\circ$ (N-C-CH₂), 147.8(1)[°] (N-C-Zr), 93.6(1)[°] (Zr-C-CH₂)]. In **2a** the C(2)-C(1) distance is 1.481(6) Å. The C(1)-O-Zr(1) linkage is almost linear $[162.6(3)^\circ; C(1)-O$ 1.369(5) A, $O-Zr(1)$ 1.917(3) A; angle $C(2)-C(1)-O$ 113.3(3)^o]. The $O-Zr(1)-Cl(1)$ angle is 97.6(1)^o. The

⁽⁷⁾ Review: Durfee, L. D.; Rothwell, I. P. *Chem. Rev.* **1988**, 88, 1059. Selected representative examples: Adams, R. D.; Chodosh, D. F. *Inorg.*
Chem. 1978, 17, 41. Elsner, F. H.; Tilley, T. D. J. Organomet. Chem.
1988, 358, 169. Erker, G.; Zwettler, R.; Krüger, C. Chem. Ber. 1989,
122, 1377. B **P.; Huffman, J. C.** *Organometallics* **1990, 9, 2375. Lemke, F. R.; Szakla, D. J.; Bullock, R. M.** *Organometallics* **1992,11,876. See also references cited in these articles.**

⁽⁸⁾ Allen, F. H.; Kennard, *0.;* **Watson, D.** *G.;* **Brammer, L.; Orpen, A.** *G.;* **Taylor, R. J.** *Chem. SOC., Perkin Trans 2* **1987,** S1.

 $C(2)-Zr(2)-C1(2)$ angle at the five-coordinate zirconium center is much larger at $115.7(1)°$ $[Zr(2)-Cl(2) 2.551(1)$ A]. The η^2 -iminoacyl coordination at $Zr(2)$ results in very small $C(2)-Zr(2)-N [33.2(1)^{\circ}]$ and $C(2)-N-Zr(2)$ $[73.1(2)^\circ]$ angles. The $Zr(2)-C(2)$ bond is very short at 2.198(4) Å. The $Zr(2)-N$ distance is 2.206(3) Å [C(3)-N 1.464(5) Å; angles C(2)-N-C(3) 129.8(4)°, Zr(2)-N- $C(3)$ 156.7(3)°]. The central (iminoacyl)zirconium unit is coplanar with Cp-metal-Cp bisecting the major plane at $Zr(2)$ [including C(1), C(2), N, C(3), $Zr(2)$, and Cl(2); maximum deviation from planarity -0.043 Å (N)]. The nitrogen center of the $(\eta^2$ -iminoacyl)zirconocene moiety is located at the central coordination site in the σ -ligand plane of the bent metallocene unit.⁹ Of the two possible positional isomers,1°J3 complex **2a** attains the "N-inside" η^2 -iminoacyl orientation, which is probably thermodynamically preferred over the "N-outside" n^2 iminoacyl alternative.

Contrary to what is observed with **4** the alkyl isocyanide insertion of the metallaoxirane complex **1** proceeds with overall cleavage of the Zr-0-Zr backbone. We assume that the addition of an isonitrile molecule to the five-coordinate zirconium center requires opening of the adjacent Zr-O linkage.¹¹ After insertion and CC coupling is complete, there are two alternatives for stabilization: either the Zr-0 bond is re-formed or the iminoacyl nitrogen center is coordinated to zirconium. It appears that the latter predominates in the reaction starting with Floriani's metallaoxirane **(11,** whereas the former alternative¹² is favored during the insertion reactions starting from the **(v2-formaldehyde)zirconocene** dimer **4.** The structural outcome of these insertion reactions seems to be thermodynamically controlled. It appears that there is a high tendency of the central $(ZrO)_n$ frameworks to be retained, which is potentially due to an oxametallacyclic chelate effect, when reactions are taking place with groups attached at their edges, whereas linear $Zr-O-Zr$ backbones are more likely to be cleaved and ultimately lost in related reaction sequences.

Experimental Section

All reactions were carried out **in an inert atmosphere (argon) using Schlenk-type glassware or in a glovebox. Solvents were dried and distilled under argon prior to use. For a description of additional general experimental conditions including a**

Soc., Dalton Trans. 1991, 685. Erker, G.; Dehnicke, S.; Rump, M.; Krüger, C.; Werner, S.; Nolte, M. Angew. Chem. 1991, 103, 1371; Angew. Chem., Int. Ed. Engl. 1991, 30, 1349. Erker, G. In Selective Reactions of Metal-Activ *Acta* **1992,198, 679 and references cited therein.**

(12)For a related example see: Askham, F. R.; Carroll, K. M.; **Alexander, S. J.; Rheingold, A. L.; Haggerty, B. S.** *Organometallics* **1993, 12, 4810.**

(13) Erker, *G.;* **Schlund, R.; Kniger, C.** *Organometallics* **1989, 8, 2349.**

listing of spectrometers used for characterization see ref 13. Complex 1 was prepared by a modified literature procedure.^{5,14}

Reaction of 1 with (Trimethylsilyl)methyl Isocyanide. **(Me3Si)CHzNC (62 mg, 0.55 mmol) was added to a suspension of 300 mg (0.55 mmol) of 1 in 10** mL **of toluene. The mixture was stirred for 1 day at ambient temperature and then concentrated in vacuo to a volume of ca. 2 mL. The mixture was kept for 2 days at -18 "C. The precipitated product was collected by filtration and dried in vacuo to give 283 mg (78%)** of **2a.** Mp: 191 °C (DSC). Anal. Calcd for C₂₆H₃₃NCl₂OSiZr₂ **(626.89): C, 47.53; H, 5.06; N, 2.13. Found: C, 47.45; H, 4.93; N, 2.01. IR (KBr):** *I* = **3085,2966,1636 (C=N), 1439,1413, 1331, 1260, 1133, 1123, 1084, 1013, 857, 840, 802, 775, 738 cm-l. lH** *NMR* **(CDCl3): 6 6.40** (s,lOH, **Cp), 5.87 (s,lOH, Cp), 5.04** *(8,* **2H, [ZrOCH2]), 3.20** *(8,* **2H, SiCHa), 0.11** *(8,* **9H,** SiMe₃). ¹³C NMR (benzene- d_6): δ 234.8 (s, C=N), 113.8 (¹J = 173 Hz) and 109.3 $(^1J = 173$ Hz, Cp), 79.2 $(^1J = 140$ Hz, $[ZrOCH_2]$), 42.4 ($^1J = 129$ Hz, SiCH₂), -1.5 ($^1J = 120$ Hz, SiMe₃).

X-ray *Crystal* **Structure Analysis of 2a. Crystals from** benzene: $C_{26}H_{33}Cl_2NOSiZr_2C_6H_6$, $MW = 735.07$, space group $P\bar{1}$, $a = 10.884(2)$ Å, $b = 12.326(1)$ Å, $c = 13.611(4)$ Å, $\alpha =$ **70.33(1)**^o, $\beta = 72.57(2)$ ^o, $\gamma = 86.43(1)$ ^o, $V = 1639.0(6)$ Å³, d_{calc} $= 1.489$ g cm⁻³, $\mu = 8.6$ cm⁻¹, $Z = 2$, $\lambda = 0.710$ 69 Å, measured **reflections 6304** (+h, $\pm k, \pm l$), (sin θ)/ $\lambda_{\text{max}} = 0.62 \text{ Å}^{-1}$, 5085 observed reflections, 356 refined parameters, $R = 0.045, R_w^2$ $= 0.125, \Delta \varrho = 0.88 (-1.24) e \textbf{A}^{-3}$ (near Zr). The structure was

⁽⁹⁾ Lauher, J. W.; Hofhann, R. *J. Am. Chem. Soc.* **1976,88,1729.** (10) Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stauffert, P.; Hoffmann, R. *J. Am. Chem. Soc.* 1985, 107, 4440. Hofmann, P.; Stauffert, **P.; Tatsumi,** K.; **Nakamura, A.; Hofhann, R.** *Organometallics* **1986, 4,404. For related experimental work see: Erker,** *G.;* **Rosenfeldt, F.** Angew. Chem. 1978, 90, 640; Angew. Chem., Int. Ed. Engl. 1978, 17, 605. Erker, G.; Rosenfeldt, F. J. Organomet. Chem. 1980, 188, C1. Erker, G. Acc. Chem. Res. 1984, 17, 103. See also: Hofmann, P.; Stauffert, P.; Frede, M.; **Roddick, D. M.; Bercaw, J. E.** *Chem. Ber.* **1989,122, 1579. (11) Related ring opening reactions: Erker,** *G.;* **Noe, R.** *J. Chem.*

⁽¹⁴⁾ Erker, *G.;* **Kropp,** K. *Chem. Ber.* **1982,115,2437.**

Reaction of 1 with tert-Butyl Isocyanide. To a suspension of **1 (300** mg, **0.55** mmol) in *5* mL toluene was given **46** mg (0.55 mmol) of tert-butyl isocyanide. The mixture was stirred for **3** days at room temperature. The precipitated product was collected by filtration and dried in vacuo to give **³¹¹**mg **(90%)** of **2b. Mp: 229** "C (DSC). **A** preliminary X-ray crystal structure analysis (crystals from toluene, *R* = **11%)** has confirmed the N-inside $(n^2$ -iminoacyl)zirconocene type structure of 2b, analogous to 2a. Anal. Calcd for C₂₆H₃₁NCl₂OZr₂ **(626.89):** C, **49.82; H, 4.98;** N, **2.23.** Found: C, **49.18; H, 5.04;** N, **2.14. IR** (KBr): *ij* = **3098,2960,2869,2854,1653** (C=N), **1437,1362, 1262,1200,1115,1014, 779,738** cm-l. **'H** *NMR* $[ZrOCH₂]$), 1.31 (s, 9H, CMe₃). ¹³C NMR (CDCl₃): δ 236.3 (s, (CDC13): *6* **6.42 (s, 10H,** Cp), **5.87** *(8,* **10H,** Cp), **5.25** *(8,* **2H,** $C=N$), **113.9** $(^{1}J = 173 \text{ Hz}, \text{Cp})$, **108.9** $(^{1}J = 173 \text{ Hz}, \text{Cp})$, **78.2** $(^{1}J = 141$ **Hz, [ZrOCH₂]), 62.3 (s, CMe₃), 29.3** $(^{1}J = 123$ **Hz,** $CMe₃$).

Acknowledgment. Financial support from the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft, and the Alfried **Krupp** von Bohlen und Halbach-Stiftung is gratefully acknowledged.

Supplementary Material Available: For **2a,** tables of detailed information of the X-ray crystal structure determination, final atomic positional parameters, final thermal parameters, and interatomic distances and angles (7 pages). Ordering information is given on any current masthead page.

OM940140F