ORGANOMETALLK

Volume **73,** *Number 9, September 7994*

0 Copyright 1994 American Chemical Society

Communications

Reactions of Manganese Pentadienoyl Complexes. Synthesis of $(n^4$ **-allyl-amide)Mn(CO)₃ Complexes: (g4-oxapentadienyl)Mn(** *C0)s* **Complexes**

Abdullah AbuBaker, Clinton D. Bryan, A. W. Cordes, and Neil T. Allison*

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701

Received March 2, 1994@

Summary: $(n^1-(2Z,4E)-5\text{-}phenyl pentadienoyl)Mn(CO)_{5}(2)$ *was prepared by the reaction of Li(CO)₅Mn and (2Z,4E)-5-phenylpentadienoyl chloride. Introduction of 2 to N-methylmorpholine N-oxide in the presence of selected amines gives the amine-substituted y4-oxapentadienyl* complexes $3a-d$, which may also be described as $(\eta^4$ *allyl-amide)Mn(C0)3 complexes. Reaction of 2 with trimethylamine N-oxide in the absence of nucleophiles gives the dimethylamine-#-oxapentadienyl complex 3e. X-ray crystallographic analysis of this complex corroborates that the oxapentadienyl ligand is bonded in an q4 fashion. Addition of CH3OH and N-methylmorpholine N-oxide to 2 forms the carbomethoxy ester substituted y3-allyl complex 6.*

We here report (1) the synthesis of amine-substituted $(n⁴$ -oxapentadienyl) $Mn(CO)$ ₃ complexes from the reaction of an $(\eta^1$ -pentadienoyl)Mn(CO)₅ complex with selected amines and N-methylmorpholine N-oxide, **(2)** the reaction of an $(\eta^1$ -pentadienoyl)Mn(CO)₅ complex with trimethylamine N -oxide to give a dimethylaminesubstituted $(\eta^4$ -oxapentadienyl) $Mn(CO)_3$ species, and (3) the reaction of an $(\eta^1$ -pentadienoyl)Mn(CO)₅ complex with N -methylmorpholine N -oxide and methanol to give a carbomethoxy ester substituted $(\eta^3$ -allyl)Mn(CO)₃ complex. To our knowledge, these reported oxapentadienyl complexes contain the first examples of η^4 coordinated pentadienyl ligands.

Recently we reported the characterization of (η^5-) C_5H_5)Fe(pentadienoyl) complexes where a terminal carbon of a pentadienyl ligand incorporated a cumulated carbonyl moiety.¹ These complexes exhibit an enhanced reactivity over pentadienyl complexes where electrocyclic ring closure followed by keto-enol tautomerization led to formation of hydroxyferrocenes.² In our efforts to initiate a study of the synthesis and chemistry of pentadienoyl complexes of manganese, we prepared $\overline{(CO)_5}$ -Mn(η ¹-(2Z,4E)-5-phenylpentadienoyl) (2) in 80% yield as red needles by the reaction of $Li(CO)_5Mn^3$ with **(22,4E)-5phenylpentadienoyl** chloride4 **(l),** as shown in eq 1.

Thermal and photochemical reaction attempts to affect loss of terminal carbonyl ligands from complex 2 to give n^3 - and n^5 -pentadienoyl complexes⁵ did not meet

0276-733319412313-3375\$04.50/0 *0* **1994** American Chemical Society

[@]Abstract published in *Advance* ACS *Abstracts,* August *1,* **1994.**

^{(1) (}a) Yongskulrote, W.; Bramlett, J. M.; Mike, C. A.; Durham, B.; Allison, N. T. Organometallics 1989, 8, 556. (b) Dawson, D. P.; Yongskulrote, W.; Bromlett, J. M.; Wright, J. B.; Durham, B.; Allison,

N. T. *Organometallics,* in press. **(2)** (a) Ernst, **R.** D. *Chem. Rev.* **1988,88(7), 1255-1291. (b)** Powell, P. Adv. Organomet. Chem. 26, 125–64; 1986, 6(6), 1367–1369. (c)
Ernst, R. D. Acc. Chem. Res. 1985, 18(2), 56–62. (d) Ernst, R. D.
Struct. Bonding (Berlin) 1984, 57, 1–53.

D. W.; Selover, J. *C. Inorg. Chem.* **1979,** *18,* **553-558. (3)** Gladysz, **J.** A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker,

with success; however, slow addition of N-methylmorpholine N-oxide (NMO) and selected amines to acyl complex 2 gave η^4 -coordinated oxapentadienyl complexes 3 as yellow solids, as shown in Table 1.^{6,7}

Table 1. $(\eta^4$ -oxapentadienyl)Mn(CO)₃ Products 3 and **Yields from the Reaction of 2 with NMO and Selected** Amines

The oxapentadienyl ligand's 'H *NMR* resonances in **3a** are typical for all complexes **3** and appear at *6* 7.33 (m, 4H, Ph), 7.23 (m, 1H, Ph), 5.16 (dd, $J_{23} = 7.05$ Hz, $J_{34} = 12.27$ Hz, 1H, HC(3)), 4.25 (d, $J_{23} = 7.05$ Hz, 1H, $HC(2)$, 3.08 (ddd, $J_{34} = 12.27$ Hz, $J_{45} = 4.83$ Hz, $J_{45'} =$ 8.51 Hz, HC(4)), 3.76 (dd, $J_{45} = 4.83$ Hz, $J_{55'} = -14.80$ Hz, 1H, HC(5)), 3.22 (dd, $J_{45'} = 8.51$ Hz, $J_{55'} = -14.80$ Hz, 1H, $HC(5')$). Other resonances include an N-H absorption at δ 5.24 (broad s) and diastereotopic proton absorptions attributed to the CH_2-N moiety at δ 2.98 Hz, 1H), and 2.89 (ddt, $J_{\text{gem}} = -13.6$ Hz, $J_{\text{HNCH}} = 6.9$ Hz, $J_{\text{HCCH}} = 6.5$ Hz, 1H). Other multiplets appearing at δ 1.375 (N-C-CH₂), 1.275 (N-C-C-CH₂), and 0.878 (t, $J = 7.2$ Hz, CH₃) are observed.^{8,9} (ddt, $J_{\text{gem}} = -13.6 \text{ Hz}$, $J_{\text{HNCH}} = 6.9 \text{ Hz}$, $J_{\text{HCCH}} = 6.8$)

The 13C NMR spectrum of **3a** gave resonances at *6* 225, 224, and 223 (terminal CO) and 168.60 (amide C=O), with allyl resonances at δ 51.17 (C(2)), 106.02 (C(3)), and 80.17 (C(4)). Other resonances appear at δ 40.71 and 39.02 (C-Ph and C-N), 142.50 (Phipso), 129.17 and 129.03 (Ph_{ortho}, Ph_{meta}), 126.79 (Ph_{para}), 31.37 $(C-CN)$, 19.80 $(C-CCN)$, and 13.49 $(C-CCCN)$. The IR spectrum (CH2C12) of **3a** gave strong terminal carbonyl resonances at ν 2019, 1936, and 1909 cm⁻¹. The absorption observed at 1573 cm^{-1} is consistent with that of a coordinated amide moiety.

(5) Lee, T. W.; Liu, R. S. *J. Organomet. Chem.* 1987,320(2), 211- 216.

purified by column chromatography (silica gel, CH₂Cl₂-hexane 1:2).
(8) Computer simulation of spectral data with the LAOCOON3 computer program gave the coupling constant and **shift** data. For LAOCOON3 cf.: Bother-By, A. A.; Castellano, S. In *Computer Programs for Chemistry;* DeTar, D. **F.,** Ed.; Beqjamin: New York, 1968, Vol. 1, Chapter 3; Program QCPE 111 from Quantum Chemistry Program Exchange, Bloomington, IN. The LBM-PC modified program by M. **Clark** and J. S. Thrasher, QCMP 013, was used.

A mechanism consistent with the formation of complexes **3** from acyl complex **2** is shown in Scheme 1. Decarbonylation of 2 leads to the η^3 -allylketene complex **4.** Nucleophilic attack of **4** with an amine results in formation of the coordinated amide complex **5.** Hydrogen migration from N to C(5) with concomitant coordination of the π system gives the η^4 -oxapentadienyl product 3.1°

To explore the effectiveness of a second decarbonylating reagent, we introduced trimethylamine N-oxide to acyl complex 2 *without* added amines.¹¹ In this case, we isolated the dimethyl complex 3e as a yellow solid in 19% yield (eq 2). **This** complex was recrystallized in pentane **to** give yellow needles of X-ray crystallographic quality. 12

X-ray crystallographic analysis of **3e** produced the structure shown in Figure $1¹³$ The planarity of the $C(1)$, N(1), $C(15)$, and $C(16)$ atoms and the fact that $C(1)$ is out of plane from the remaining coordinated pentadienyl ligand atoms are consistent with an amide moiety being incorporated in the oxapentadienyl structure. *As* is typical for amides, π donation from the nitrogen atom

⁽⁴⁾ The acid chloride 1 can be prepared from its corresponding
carboxylic acid using oxalyl chloride. The carboxylic acid is generated
from addition of CO_2 to 1-lithio-4-phenylbutadiene generated by
lithium-halogen exch *Lett.* 1976,18,4839-4842) from 1-bromo4phenylbutadiene (Matau-moto, M.; Kuroda, K *Tetrahedron Lett.* lSW, 21, 4021-4024).

⁽⁶⁾ No reactions are observed when **2** is introduced to amines in the absence of amine oxides.

⁽⁷⁾ The general pmcedure is **aa** follows: A Schlenk **tube** equipped with magnetic stirrer and septum was charged with 0.223 g (0.6 mmol) of **((2Z,4E)-5-phenylpentadienoyl)Mn(CO)**₆ and 10 mL of CH₂Cl₂. Two solutions, a solution of 0.16 g (1.4 mmol) of N-methylmorpholine N-oxide in 10 mL of CH₂Cl₂ and a solution of amine (0.7 mmol) in 10 mL of CHzCla, were simultaneously added over 3 h. **ARer** addition, the reaction mixture waa then refluxed for **5** h. The products were

⁽⁹⁾ Data for 3a: yellow solid, mp 50.5-51 °C. Anal. Calcd for C₁₈H₂₀MnNO₄·0.3C₅H₁₂ (pentane from recrystallization): C, 59.69; H,
5.99. Found: C, 60.05; H, 5.73. Data for 3b: yellow solid, mp 57.5– 58 "C. IH *NMR* (500 **MHz,** CDC13): d 7.34 (m, 4H, Ph), 7.23 (m, lH, Ph), 5.20 (dd, *523* = 7.1 Hz, *5%* = 12.2 Hz, lH, C(3)H), 4.36 (d, *523* = 17, Hz, 1H, C(2)H), 3.77 (dd, $J_{45} = 4.9$ Hz, $J_{55} = 14.6$ Hz, $1H$, C(5)H), 3.77 (dd, $J_{45} = 4.9$ Hz, $J_{55} = 14.6$ Hz, 1H, C(5)H), 3.45 (m, 1H, NCH), 3.25 (complex m, 2H, C(5)H' and NCH), 3.08 (complex multiplet, 3H, $(C(3))$, 80.81 $(C(4))$, 49.19 $(C(2))$, 41.85, 41.02, 39.57 $(C_{\text{baryi}}$, N-C_{cis}, N-C_{rism}), 13.64, 12.98 (N-C-C_{cis}, N-C-C_{trans}). IR (CH₂Cl₂): 2015, 1933, 1904 cm⁻¹ (terminal CO), 1568 cm⁻¹ (amide). Anal. Calcd $C_{18}H_{20}MnNO_4$: C, 58.54; H, 5.46. Found: C, 58.65; H, 5.48. Data for
3c: yellow solid, mp 94.5-95.5 °C. ¹H NMR (500 MHz, CDCl₃): 7.25 (m, 10H, Ph), 5.52 (br s, 1H, NH), 5.20 (dd, $J_{23} = 7.0$ Hz, $J_{34} = 12.1$ H Hz, $J_{gen} = 14.5$ Hz, 1H, NCH_{bonyi}), 4.05 (dd, $J_{H/CNH} = 5.5$ Hz, $J_{gen} = 14.5$ Hz, 1H, NCH_{bonyi}), 4.05 (dd, $J_{H/CNH} = 5.5$ Hz, $J_{gen} = 14.7$ Hz, 1H, NCH_{bonyi}), 3.78 (dd, $J_{45} = 4.76$ Hz, $J_{55'} = 14.56$ Hz, 1H, C(5)H), 224.2, 223.1, 219.8 (terminal CO), 167.54 (amide C=O), 142.54 (Ph_{ipso}), 100.93 , 125.36 , 126.30 (C_{bamp}), 194.1 (C_{bamp}), 10.92 ($C(20)$), 43.48 (C_{bamp}), N), 40.91 (C_{bamp}), IR ($CDCI_3$): 2019.9 , 1938.1 , 1910.6 cm⁻¹ (MCO), 1567.0 cm⁻¹ (amide). Anal C(2)H), 3.78 (dd, *J₄₅* = 14.6 *Hz*, *J₅₅* = 14.6 *Hz*, *iH*, C(5)*H*), 3.51 (complex m, 2H, NCH, NCH), 1.9 m, 2H, NCH, NCH), 3.1 (complex m, 3H, C(4)H, NCH, NCH), 1.9 (complex m, 4H, NCCH). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 224.1, $2(2)$ H), 3.78 (dd, $J_{45} = 4.6$ Hz, $J_{56} = 14.6$ Hz, 1H, $C(6)$ H), 3.51 (complex
m, 2H, NCH, NCH), 3.1 (complex m, 3H, $C(4)$ H, NCH, NCH), 1.9
complex m, 4H, NCCH). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 224.1,
222.8, 128.42 (Ph_{ortho}, Ph_{ranc}), 126.15 (Ph_{rana}), 105.92 (C(3)), 80.02 (C(4)), 50.53
(C(2)), 46.16 (N-C), 44.71 (N-C), 40.72 (C(5)), 25.37 (NC-C), 25.35
(NC-C). **IR (CHCk)**: 2016, 1933, 1906 cm⁻¹ (terminal CO), 1573 cm⁻¹ (amide). 143.3 (Ph_{ipco}), 129.28, 129.18 (Ph_{ortho} , Ph_{meta}), 126.87 (Ph_{para}), 106.24 $= 14.5$ Hz, 1H, NCH_{ben} 136.86 (Ph_{ipex}), 129.25, 128.91, 128.77, 128.22 (Ph_{ortho}, Ph_{ortho}, Ph_{meta},
Ph_{meta}), 128.38, 126.56 (Ph_{para}, Ph_{para}), 105.92 (C(3)), 80.55 (C(4)), 51.28 (dd, *J₂₃* = 7.1 Hz, *J₃₄* = 12.1 Hz, 1H, C(3)H), 4.28 (d, *J₂₃* = 7.1 Hz, 1H,

Figure 1. ORTEP drawing (30% probability ellipsoids) of the X-ray crystal structure of compound **3e,** and atomic labeling scheme. Hydrogen atoms are omitted for clarity. Selected interatomic distances (Å) are as follows: Mn-O- $(1), 2.114(9)$; Mn-C $(1), 2.49(2)$; Mn-C $(2), 2.15(1)$; Mn-C- $(3), 2.07(1);$ Mn-C(4), 2.19(1); Mn-C(12), 1.82(2); Mn-C- $(13), 1.76(2);$ Mn-C $(14), 1.75(2);$ C $(1)-O(1), 1.27(2);$ $C(1)-N(1), 1.29(2); C(1)-C(2), 1.48(2); C(2)-C(3), 1.42(2);$ C(3)-C(4), 1.38(2); C(4)-C(5), 1.53(2). C(1), N(1), C(15), and $C(16)$ are within 0.02 Å of the least-squares plane. C-(1) is displaced 0.48 A from the least-squares plane defined within 0.03 Å by $O(1)$, $C(2)$, $C(3)$, and $C(4)$.

increases the basicity of the carbonyl, thus enhancing the observed dative coordination. This electronic effect contrasts sharply with the bonding of manganese η^5 oxapentadienyl complexes that are similarly substituted by $-(OR$ groups.¹⁴

Initial attempts to investigate the scope of this reaction with other possible non-amine nucleophiles focused on the addition of methanol and **NMO** to acyl complex 2. The resulting η^3 -allyl complex 6 was isolated in a low (5%) yield $(eq 3)$.^{14,15}

Further work aimed at reactions of complexes **3** and other reactions of pentadienoyl complexes is being pursued.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial funding of this research. C.D.B. acknowledges a DOE/ASTA Traineeship. We also thank M. Leister for assistance in obtaining NMR data.

Supplementary Material Available: Tables **of** crystal and refinement data, atomic parameters for non-H atoms, anisotropic temperature factors, atomic parameters for H atoms, interatomic distances and angles and least-squares plane data **(7** pages). Ordering information is given on any current masthead page.

OM940163U

(12) Data for **3e**: yellow needles, mp 84.0-85.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.38 (m, 4H, Ph), 7.23 (m, 1H, Ph), 5.20 (dd, $J_{23} = 7.15$ Hz, $J_{34} = 12.2$ Hz, 1H, C(3)H), 4.37 (d, $J_{23} = 7$ Hz, 1H, C(2)H), 3.78 (dd, $J_{45} = 4.65$ Hz, $J_{55'} = 14.6$ Hz, 1H, C(5)H), 3.23 (dd, $J_{45'} =$ $8.12 \text{ Hz}, J_{55} = 14.6 \text{ Hz}, C(5)H', 3.05 \text{ (m and s, 4H, NCH₃, and C(5)H),}$
 $2.63 \text{ (s, 3H, NCH₃, and C(5)H, NCH₃, and C(5)H,}$
 $2.93 \text{ (s, m in ncl, O)} 157 \text{ q}H, NCH, 126 \text{ MHz}, CD121 \text{ g} 24, 224, 223, and C(5)H.}$ (Ph_{ortho,} Ph_{meta}), 125.84 (Ph_{para}), 105.11 (C(3)), 79.65 (C(4)), 47.92 (C(2)), 39.90 (C_{benzy}), 35.49, 32.98 (N-C_{cis}, N-C_{trans}). IR (CDCl₃): 2050, 1950, 1850, 1850, 1860, 1860, 1860, 1860, 1860, 1860, 187.
189

(13) X-ray data for 3e: monoclinic, space group P_{21}/c , with $a = 9.411(4)$ Å, $b = 18.35(1)$ Å, $c = 10.884(9)$ Å, $\beta = 115.10(4)$ °, $V = 1702-(2)$ Å³, $d_{calc} = 1.45$ g/cm³, $Z = 4$, and $\mu = 7.7$ cm⁻¹. Of 2356 reflectio Least-squares refinement of 199 parameters converged at $R_F = 0.057$.

(14) Compound *6* was the only isolated product from this reaction using a procedure identical to the preparation of compounds **3a-d7** except that methanol was substituted for the amine. A carbamethoxy $(\eta^3$ -allyl)Mn(CO)₄ complex has been reported. Under thermolytic conditions carbomethoxy $(\eta^3$ -allyl)Mn(CO)₄ complexes can convert to oxapentadienyl complexes. Cf.: Cheng, M. H.; Cheng, C. **Y.;** Wang, S. L.; Peng, S. M.; Liu, R. S. *Organometallics* 1990,9(6), 1853-1861.

(15) Data for **6**: yellow solid, mp 54-56 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.3 (m, 5H, Ph), 5.52 (ddd, $J_{23} = 10$ Hz, $J_{34} = 12$ Hz, $J_{35} =$ 0.7 Hz, 1H, C(3)H), 3.40 (m, 1H, C(4)H), 3.47 (dd, $J_{45} = 2.8$ Hz, $J_{56'} = 15$ Hz, 1H, C(5)H), 3.2 (dd, $J_{45} = 8$ Hz, $J_{56'} = 15$ Hz, 1H, C(5)H), 3.2 (dd, $J_{45} = 8$ Hz, $J_{56'} = 15$ Hz, 1H, C(5)H), 2.32 (d, $J_{45} = 8$ H MHz, CDCl₃): δ 216.7, 212.6, 211.0 (terminal CO), 172.5 (ester CO), 50.6 (allyl), 40.6, 39.3 (C_{benzyl}, CH₃O). IR (CH₂Cl₂) 2078, 1992, 1962
cm⁻¹ (terminal CO), 1705 cm⁻¹ (amide). MS: *m/z* 356 (M⁺), 328 (M⁺ 138.8 (Ph_{ipso}), 127.8, 127.4 (Ph_{ortho}, Ph_{meta}), 125.9 (Ph_{para}), 94.3, 69.8, $-$ CO), 300 (M⁺ $-$ 2CO), 272 (M⁺ $-$ CO), 271, 244 (M⁺ $-$ 4CO).

⁽¹⁰⁾ Zuniga Villarreal, N.; Paz-Sandoval, M. A.; Joseph-Nathan, P.; Esquivel, R. 0. *Organometallics* 1991,10,2616-2125.

⁽¹¹⁾ **For an** excellent discussion of the reaction chemistry of trimethylamine N-oxide with metal carbonyls cf.: Pearson, A. J.; Shively, R. J., Jr. *Organometallics* 1994, 13, 578-584.