Intramolecular [4 + 2] Diels-Alder Cycloadditions of 2-Substituted Phosphabenzene and Arsabenzene in **Triosmium Clusters**

Alejandro J. Arce,^{*,†} Antony J. Deeming,^{*,‡} Ysaura De Sanctis,[†] Ana M. García,[§] Jorge Manzur,[§] and Evgenia Spodine[§]

Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A, Venezuela, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, Great Britain, and Departamento de Química, Universidad de Chile, Av. Tupper 2069, Casilla 2777, Santiago, Chile

Received April 13, 1994[®]

Summary: 2-(Trimethylsilyl)-1-phosphabenzene and -1arsabenzene, $Me_3SiC_5H_4E$ (E = P, As), react with $[Os_3H_2(CO)_{10}]$ to give the clusters $[Os_3H_2(Me_3SiC_5H_4E)$ - $(CO)_{9}$, which contain σ -bonded, four-electron-donating μ_3 -heterocyclic ligands, and the products $[Os_3H\{(Me_3 Si_{2}C_{10}H_{9}E_{2}$ (CO)₉, having tricyclic μ_{3} -ligands derived from [4+2] Diels-Alder cycloadditions.

Phosphabenzene and arsabenzene can coordinate through the heteroatom lone pairs as do pyridine and tertiary phosphines and arsines, through the π -system, or through both simultaneously.¹⁻³ We recently reported a new bonding mode for phosphabenzene as a σ -bonded, four-electron-donating μ_3 -ligand in the cluster $[Os_3H_2(\mu_3-\eta^2-C_5H_5P)(CO)_9].^4$ Pyridine behaves very differently in triosmium clusters and gives predominantly 2-pyridyl ligands by ortho metalation.^{4,5}

We have now examined the corresponding reactions of 2-trimethylsilyl-substituted phosphabenzene and arsabenzene and have found a novel intramolecular [4 +2] Diels-Alder cycloaddition process. Intramolecular [6+4] cycloaddition was observed in the reaction of 3,5diphenylphosphinine or $1,3\lambda^3$ -azaphosphinines with diazomethanes^{6,7} to yield diphosphachiropteradienes and diazadiphosphachiropteradienes, respectively. Also $[(3,5-diphenylphosphinine)M(CO)_5]$ complexes (M = Cr,Mo, W) react with nitrilimines, nitrile oxides, and 1,3dienes to give Diels-Alder cycloadducts.8 Reactions of $[Os_3H_2(CO)_{10}]$ with 2-(trimethylsilyl)-1-phosphabenzene or -1-arsabenzene⁹ (2 mol/mol of Os₃) in refluxing octane each give two major products, the clusters [Os₃H₂(Me₃-

* Abstract published in Advance ACS Abstracts, August 1, 1994.
(1) Vahrenkamp, H.; Nöth, H. Chem. Ber. 1973, 106, 2227. Deberitz, J.; Nöth, H. J. Organomet. Chem. 1973, 49, 453. Nainan, K. C.; Sears,
C. T. J. Organomet. Chem. 1978, 148, C31. Nief, F.; Charrier, C.;
Mathey, F.; Simalty, M. J. Organomet. Chem. 1980, 187, 277.
(2) Märki, G. In Multiple Bonds and Low Coordination in Phospho(2) Märki, G. In Multiple Bonds and Low Coordination in Phospho-

- (2) Marki, G. In Multiple Bonds and Low Coordination in Prosphorus Chemistry; Regitz, M., Scherer, O. J., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1990; pp 220-257.
 (3) Elschenbroich, C.; Nowotny, M.; Metz, B.; Massa, W.; Graulich, J.; Biehler, K.; Sauer, W. Angew. Chem., Int. Ed. Engl. 1991, 30, 547.
 (4) Arce, A. J.; Deeming, A. J.; De Sanctis, Y.; Manzur, J. J. Chem. Soc., Chem. Commun. 1993, 325.
- (5) Choo Yin, C.; Deeming, A. J. J. Chem. Soc., Dalton Trans. 1975, 2091
- (6) Märkl, G.; Beckh, H. J.; Mayer, K. K.; Ziegler, M. L.; Zahn, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 236.
- (7) Märkl, G.; Dörges, Ch.; Nöth, H.; Polborn, K. Tetrahedron Lett. 1990, 31, 6999.
- (8) Märkl, G.; Beckh, H. J. Tetrahedron Lett. 1987, 28, 3475. (9) Ashe, A. J., III; Chan, W.-T.; Perozzi, E. Tetrahedron Lett. 1975, 1083.
 Ashe, A. J., III; Chan, W.-T. J. Org. Chem. 1979, 44, 1409.

Figure 1. X-ray structure of the cluster [Os₃H₂(Me₃- $SiC_5H_4P(CO)_9$] (1a). Selected bond lengths (Å): Os(1)-Os-(2), 2.893(2); Os(1) - Os(3), 2.823(2); Os(2) - Os(3), 2.944(2);Os(1)-P, 2.306(5); Os(2)-P, 2.347(4); Os(3)-P, 2.855(5); 1.32(4); C(4)-C(5), 1.47(3).

 $SiC_5H_4P(CO)_9$ (1a) and $[Os_3H\{(Me_3Si)_2C_{10}H_9P_2\}(CO)_9]$ (2a) from 2-(trimethylsilyl)-1-phosphabenzene and $[Os_3H_2(Me_3SiC_5H_4As)(CO)_9]$ (1b) and $[Os_3H_{(Me_3Si)_2}$ - $C_{10}H_9As_2$ }(CO)₉] (2b) from 2-(trimethylsilyl)-1-arsabenzene.¹⁰ The organic ligands in **2a**,**b** are derived by intramolecular Diels-Alder cycloaddition of two heterocyclic ligands (Scheme 1).

Clusters 1a,b are isostructural with almost identical IR spectra around 2000 cm⁻¹. The X-ray structure of 1a (Figure 1)¹¹ is quite unlike those of stoichiometrically related tertiary phosphines and tertiary arsines of the type $[Os_3H_2(CO)_9L]$ (L = tertiary phosphine or arsine) which are structurally related to [Os₃H₂(CO)₁₀] as COsubstituted derivatives.¹² These clusters are purple, have L as a normal terminal two-electron donor, and are formally coordinatively unsaturated. In contrast, cluster 1a has a four-electron μ_3 -ligand and is coordinatively saturated. Bond distances and bond angles for

[†] IVIC.

[‡] University College London.

[§] Universidad de Chile.

Figure 2. X-ray structure of the cluster $[Os_3H\{(Me_3Si)_2C_{10}H_9As_2\}(CO)_9]$ (2b). Selected bond lengths (Å): Os(1)-Os(2), 2.867(2); Os(1)-Os(3), 2.923(2); Os(2)-Os(3), 2.917(2); Os(1)-As(1), 2.470(2); Os(2)-As(2), 2.497(2); Os(3)-As(1), 2.469(2); As(1)-C(1), 1.96(2); As(1)-C(5), 1.94(2); C(1)-C(2), 1.30(3); C(2)-C(3), 1.53(3); C(3)-C(4), 1.50(3); C(4)-C(5), 1.55(2); C(4)-C(8), 1.55(3); As(2)-C(5), 1.95(2); As(2)-C(6), 1.87(2); As(2)-C(10), 1.98(2); C(6)-C(7), 1.36(3); C(7)-C(8), 1.47(3); C(8)-C(9), 1.49(3); C(9)-C(10), 1.32(3); Si-C(1), 1.86(2).

1a closely parallel those of $[Os_3H_2(2^{-t}BuC_5H_4P)(CO)_9]$ obtained similarly from 2-*tert*-butyl-1-phosphabenzene.⁴ The hydride ligands (¹H NMR (CD₂Cl₂): δ -17.66, -19.25) were not located in the X-ray study but bridge the Os(1)-Os(2) and Os(2)-Os(3) edges on the basis of the metal-metal bond lengths and other ligand positions. At 220 K the hydride signals for 1a are resolved into two sets (mole ratio 20:1). The minor isomer probably has hydrides along the Os(1)-Os(2) and Os(1)-Os(3) edges. The cluster 1b is isostructural with 1a, but the hydride ligands (¹H NMR (CDCl₃, 245 K): δ -17.49, -19.43) are not resolved into two sets of hydrides, indicating that either only one isomer is present or the corresponding fluxional process has not been frozen out. For the cluster **2b** (X-ray structure, Figure 2),¹³ the tricyclic ligand is coordinated through the arsenido bridging atom As(1) and through the tertiary arsine atom As(2) and, hence, behaves as a five-electron donor consistent with **2b** being a monohydride (¹H NMR (CD₂Cl₂): δ -18.70). The ring containing As(1) contains only one C=C bond, C(1)-C(2), and the ring containing As(2) has two C=C bonds: C(6)-C(7) and C(9)-C(10).

Clusters **2a,b** are also formed quantitatively by the reaction of **1a,b** with an excess of the appropriate ligand in refluxing *n*-octane. The mechanism of formation of the cycloadduct is unknown but requires various H atom shifts as well as formation of heteroatom (As or P)–C bonds and C–C bonds. Scheme 1 shows possible intermediates (shown in brackets) in the formation of

Communications

the coupled products 2a,b and the differently coupled product 3 obtained from phosphabenzene.⁴

(10) Reaction of $[Os_3H_2(CO)_{10}]$ with 2-(trimethylsilyl)-1-phosphabenzene: A solution of the ligand (59 mg, 0.26 mmol) and $[Os_3H_2(CO)_{10}]$ (100 mg, 0.12 mmol) in cyclohexane (30 cm³) was refluxed for 30 min. TLC workup (SiO₂; eluent pentane) gave yellow 1a (60 mg, 51%) (crystals for X-ray structure from cyclohexane) and yellow 2a (46 mg, 38%). 1a: ν (CO) (C_9H_{12}) 2104 m, 2077 vs, 2049 vs, 2033 s, 2022 m, 2009 s, 1995 m, 1980 s cm⁻¹; ¹H NMR (CD₂Cl₂, 200 K) δ 6.81 (ddd, H^b), 6.70 (dd, H^d), 6.06 (m, H^c), 2.62 (br, dd, H^a), 0.12 (s, SiMe₃), -17.66 (d, H^e), -19.25 (dd, H^c) (at 220 K, two extra hydride signals were resolved at δ -17.83 and -18.63 for a minor isomer (mole ratio, major:minor 20:1)); ³¹P[¹H] NMR (CD₂Cl₂, 296 K): δ -18.1 (s). Anal. Calcd (found) for C₁₇H₁₅O₉Os₃PSi: C, 20.56 (20.43); H, 1.52 (1.49). 2a: ν (CO) (C₆H₁₂) 2079 m, 2050 vs, 2024 s, 1999 m, 1978 s, 1969 w, 1952 mw cm⁻¹; ¹H NMR (CD₂Cl₂, 296 K) δ 7.32 (dd, H^a), 7.10 (ddd, H^b), 6.98 (ddd, H^c), 6.82 (ddd, H^b), 4.03 (dddd, H^d), 3.28 (ddd, Hⁱ), 2.82 (m, H^e), 2.37 (m, H^s), 1.97 (dddd, H^c), 0.22 (s, SiMe₃), 0.12 (s, SiMe₃), -18.42 (d, P²). Anal. Calcd (found) for C_{24H₂₈O₉Os₃P₂Si₂: C, 25.85 (26.08); H, 2.43 (2.55). Reaction of [Os₃H₄(CO)₁₀] with 2-(trimethyl-silyl)-1-arsabenzene: A similar reaction gave yellow 1b (47%) and orange-yellow 2b (32%) (crystals for X-ray structure from dichloromethane-cyclohexane mixture). Ib: ν (CO) (C₆H₁₂) 2102 m, 2076 vs, 2049 vs, 2030 s, 2021 s, 2007 vs, 1995 m, 1980 m cm⁻¹; ¹H NMR (CD₂Cl₂, 296 K) δ 7.04 (d, H^a), Anal. Calcd (found) for C₁₇H₁₅OgOs₃AsSi: C, 19.69 (19.55); H, 1.45 (1.41). 2b: ν (CO) (C₆H₁₂) 2078 m, 2049 vs, 2023 s, 1997 m, 1979 s, 1965 w, 1951 mw cm⁻¹; ¹H NMR (CD₂Cl₂, 296 K) δ 7.04 (dd, H^b), 7.02 (d, H^a), 6.90 (ddd, H^b), 6.75 (dd, H^c), 4.15 (dddd, H^d), 2.95 (br, d, Hⁱ), 2.77 (dddd, H^a), 2.34 (dddd, H^s), 1.85 (ddd, H^d), 0.18 (s, SiMe₃}

Acknowledgment. This work was supported by the Science and Engineering Research Council (SERC) of Great Britain, The Royal Society, the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT) of Venezuela, and the Comisión Nacional de Ciencia y Tecnología (CONICYT) of Chile.

Supplementary Material Available: Text giving experimental details and spectroscopic data for all new compounds and tables of crystal data, data collection, and structure solution parameters, positional and thermal parameters, bond lengths, and bond angles for **1a** and **2b** (15 pages). Ordering information is given on any current masthead page.

OM940280P

(11) Crystal data and data collection and refinement details for 1a: $C_{17}H_{15}O_9O_{53}PSi$, $M_r = 992.908$, triclinic, $P\bar{1}$, a = 9.136(3) Å, b = 9.295(5) Å, c = 15.040(5) Å, $a = 104.34(3)^\circ$, $\beta = 105.05(3)^\circ$, $\gamma = 94.48(4)^\circ$, V = 1181.1(8) Å³, Z = 2, $\lambda(Mo \ K\alpha) = 0.710$ 73 Å, direct methods (SHELXTL-PLUS), 5397 unique absorption-corrected data, $5 \le 20 \le 55^\circ$, $I_o \ge 3\sigma(I_o)$, 280 parameters (all non-H atoms anisotropic), R = 0.069, $R_w = 0.064$, Nicolet R3v/m diffractometer.

(12) Benfield, R. E.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Zuccaro, C. Acta Crystallogr., Sect. B 1979, 35, 2210.

(13) Crystal data and data collection and refinement details for **2b**: $C_{25}H_{28}As_2O_9O_{53}Si_2$, $M_r = 1249.15$, monoclinic, P_{21}/n , a = 14.846(4) Å, b = 11.307(5) Å, c = 20.41(1) Å, $\beta = 100.50(3)^\circ$, V = 3370(2) Å³, Z = 4, $\lambda(Mo K\alpha) = 0.710$ 73, direct methods (SHELXTL-PLUS), 5876 unique absorption-corrected data, $5 \le 2\theta \le 50^\circ$, $I_o \ge 3\sigma(I_o)$, 360 parameters (all non-H atoms anisotropic), R = 0.065, $R_w = 0.067$, Nicolet R3v/m diffractometer.